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We examine the prolongation structures for' the modified Korteweg-de Vries equation, the nonlinear 
Schrodinger equation and the Korteweg-de Vries equation. The former equation yields a sub algebra of 
SL(3, R)®R()'), while the latter two give SL(2, R)®R()') . .. It is shown how to reconstruct the equation 
from the incomplete Lie algebra. This process is not unique and leads to transformations between 
equations, the Miura transformation being one of them. A new equation arising in connection with the 
nonlinear Schrodinger equation is discussed. 

§1. Introduction 

This paper is a sequel to an earlier one in which we studied the prolongation structure 
for the sine-Gordon equation. Prolongation structures have been introduced by Wahl­
quist and Estabrook l

) in the context of the Korteweg-de Vries equation and have been 
described as incomplete Lie algebras_2) By this we mean an algebra for which not all of 
the commutators are known. Briefly explained, they arise in the following manner. 

Suppose that we are dealing with a system of differential equations for n dependent 
variables, collectively denoted by u, and two independent variables, the coordinates x and 
t _ Higher order equations can, of course, be written as such a system; u are then 
elements of the local jet bundle. All our considerations will be purely local and we are 
dealing only with equations in two dimensions_ Generalizations to more than two 
dimensions are possible,2)-4) but there our understanding is even more limited than in the 
two dimensional case. 

Define two-forms F, again denoted so collectively, on an (n + 2) dimensional manifold 
with coordinates (u, x, t) such that the restriction of F to the submanifold labelled by the 
coordinates (x, t) yields when annulled the original equations. In this process, often 
called sectioning, u become functions of (x, t) and F are then evaluated on the sub­
manifold_ Restriction will be denoted by a solidus and the original equations read 

Fi=O - (1·1) 

The integrability conditions of the equations now become the condition that Fare 
closed under exterior differentiation; i.e., there should exist a matrix of one-forms Tj such 
that (here and in what follows we omit the wedge which normally appears between 
differential forms) 

dF=TjF=O mod F. (1· 2) 

Such a set of forms F is called a closed ideaL 
Prolongation variables, or pseudopotentials, denoted by y, are introduced as follows_ 

Suppose that the one forms 

*) Permanent address: Max-Planck-Institut fUr Astrophysik, Karl-Schwarzschild-Str. 1,8046 Garching, Federal 
Republic of Germany. 
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More Prolongation Structures 1015 

w=-dy+A(u,x, t,y)dx+B(u,x, t,y)dt, (1· 3) 

when restricted and annulled are to give equations for y which are integrable if u is a 
solution of the original equations. The condition for this is 

dw=O mod w, F. (1,4) 

The number of pseudopotentials and consequently the length of the vectors A and B is as 
yet undetermined as we have no a priori way of knowing how many prolongation 
variables exist. By introducing them we have enlarged the dimension of the manifold on 
which the various forms live to an unspecified number. 

Equations (1·4) yield terms in dudx, dudt which can partly be absorbed by F and 
those in dydx, dydt for which one uses (1' 3) giving a term of the form (( JA/ ()y) B 
-(JB/()y)A)dxdt. The terms which cannot be absorbed by F together with the one just 
mentioned yield a numberof equations specifying some of the u derivatives of A and B; 
y derivatives appear only in the term mentioned above in the form of the Lie bracket with 
respect to the y coordinates of the two vector fields A and B. If these equations, and it 
may not always be possible to do so, can be used to determine the u dependence of A and 
B completely, we are left with several vector fields depending only on the y's and having 
to satisfy commutator equations like those for a Lie algebra. Not all commutators will 
be given a priori, but the Jacobi identities will have to be satisfied. 

There are two possibilities. The Jacobi identities could determine the commutators 
completely. On the other hand, some of the commutators could be left undetermined. 
One then introduces new generators, vector fields, equal to those undetermined com­
mutators and repeats the process of going through the Jacobi identities. If it appears that 
the algebra can be enlarged, new generators introduced, ad infinitum one can attempt to 
deduce the structure of the emerging infinite dimensional Lie algebra. 

Backlund transformations arise in the present context as follows: Consider a map ¢>: 
(u, y, x, t) ~ (-u, y, x, t) such that 

¢>*F=O mod F,w. (1· 5) 

This guarantees that ii( u, y, x, t) will be a solution of the equations if u is a solution and 
y a corresponding pseudo potential. 

Finding the prolongation structure for the sine-Gordon equation has been the subject 
of the previous paper.5) Section 2 will deal with the prolongation structure of the 
modified Korteweg-de Vries equation, the Korteweg-de Vries equation and the nonlinear 
Schrodinger equation. The Korteweg-de Vries equation has already been the subject of 
intensive studies;2),6)-14) the prolongation algebra shown in the next section on the other 
hand will be somewhat different from the one discussed in the previous works. The 
nonlinear Schrodinger equation with its Backlund transformation has also been 
studied. 15

)-l7) We shall derive its infinite dimensional prolongation algebra and study it 
further in § 3. The results of this section have been announced in a brief report.18) 

Is it possible to go in the opposite direction; i.e., given an incomplete Lie algebra, is it 
possible to find the differential equations whose prolongation structure it is? This has 
been done in some instances,12),13) and we shall see in § 3 that the way back, from the 
prolongation structure to the equation, is not a unique one. In the case of the Korteweg­
de Vries equation we shall rediscover the Miura transformation,6) and for the nonlinear 
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1016 C. Hoenselaers 

Schrodinger equation we shall find a hitherto unknown equation. 
In § 4 we shall show that this new equation has only a finite dimensional prolongation 

structure, nevertheless it admits a Backlund transformation. We shall also derive 
another new equation related to the modified Korteweg-de Vries equation in the same 
manner as the latter is related to the Kot'teweg·de Vries equation. 

§ 2. From equations to prolongation structures 

The first example we wish to discuss in this section is the modified Korteweg·de Vries 
equation, which we take in the form 

(2·1) 

The more known form results from differentiating this equation with respect to x and 
using vx as variable. 

The three fprms 

Fl = - dvdt + udxdt , 

F2 = - dudt + adxdt , 

·13 F3=-dvdx+dadt+ Z u dxdt, 

on a manifold with coordinates (v, u, a, x, t) give when restricted and annulled 

1 Fj=O(=)-vx+ u= - ux+a=vt+ax+Zu3=0, 

(2·2) 

which is the same as (2·1). It is easy to check thatthe integrability conditions (1·2) are 
satisfied. 

Pseudopotentials are now introduced by 

w=-dy+A(v, u, a,y)dx+B(v, u, a,y)dt. (2· 3) 

This is a slight specialization of (1·3) as A and B do not depend on the coordinates. 
Coordinate dependent prolongations have been constructed for the Korteweg-de Vries 
equation/4

) but, as the original equation does not depend on x and t, they can be refor­
mulated such that they lead to the same algebra. 

The terms in (1·4) which cannot be expressed by F or w yield 

dadt: Ba+ Av=O, 

dudx: Au=O, 

dadx: Aa=O, 

dxdt: [AB]=Bua+Bvu+ ~ Avu3. 

The commutator in the last expression is the ordinary Lie bracket of two vector fields with 
respect to the prolongation variables y. Remember that we have suppressed the vector 
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More Prolongation Structures 1017 

indices on A and B. 
Differentiating the last equation twice with respect to a, we get equations for B which 

can be solved immediately. We find 

B=-Ava+ ~ Avvu2+BIU+B2, 

where A, Bl, B2 depend only on v and the y's. Inserting this expression into the com­
mutator and equating terms we can proceed with the integration to find 

A=A3sinv+A2cosv+A 1 , 

B = - A3( acosv+ ~ u2sinv)+ A2( asinv- ~ u2cosv) 

(2·4) 

The A i depend only on the prolongation variables. The commutators which have to be 
satisfied by the generators A i are 

[AIA2]= [AIA3]= [A 1A 4]=0, 

[A 2A3] = -A4, [A 3A4]= - A 5, [A 2A4]=A6, 

[AIA7]+ [A 3A 6]=0, [A2A5]- [A3A 6]=0, 

[A 3A7]+[AIA6]=0, [A 2A7]+[A 1A 5]=0, 

[A3A 5]+[A2A6]=0. 

We should mention that the integration gives one more term in B. This term propor­
tional to v, however, has to vanish by virtue of the Jacobi identities. 

Introducing more generators such that, for instance, [A 2A6] = - As and working 
through the 161 Jacobi identities we get the incomplete algebra of Table I. 

First we note that A 1 and A 7 do not appear as the result of a commutator; furthermore 

Table I. 

[A,A.] k 
2 3 4 6 8 10 r 5 7 9 11 

1 0 0 0 0 0 0 0 0 0 0 
2 -A, As 0 -As 0 -A9 -Au 0 
3 -A5 As 0 0 -AlO 0 -All 
4 A9 AlO 0 0 ? 0 
5 All 0 0 
6 0 0 
7 0 0 0 0 
8 0 
9 

10 

[A,A9]+ [A3All] =0, [A,As]+ [A 3A ll ]=0, 
[A,AlO]- [AzAll]=O, [A,AlO] + [A5As]=0, 
[A5A9]- [AsAlO]=O, [AsAll]- [AsA1O]=0, 
[A sA9]+[A,All]=0. 
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1018 C. Hoenselaers 

they commute with all other generators and hence will continue to do so no matter how 
many new generators we introduce. We note furthermore that there are three "types" of 
generators, those which commute with A2, A3 and A4 respectively. Commuting two 
"types" always gives a generator of the third type. All this is very reminiscent of what 
we found for the sine-Gordon equation.S

) On the other hand, A2 and A3 never appear as 
commutators; thus the emerging structure is 

[Xi Yk]= - Zi+k, [YiZk] = - Xi+k+l, [ZiXk] = - Yi+k+l, 

The identifications are 

(2·6) 

To compare with the sine-Gordon case: There are no basic generators, i.e., those which 
appear in (2·4) after integrating out the v, u, a dependence, with negative indices and 
there are two commutators, the second and third of (2·5), involving a shift of indices. 
The resulting algebra is a sub algebra of SL(3, R)0R(fi.) involving only the Taylor part. 
A representation in terms of infinite matrices and the associated linear eigenvalue problem 
are easy to find, and we shall not pursue this matter further. 

The next example is the nonlinear Schrodinger equation 

(2·7) 

A * denotes the complex conjugate. These are actually two equations and we have to 
consider four forms 

FI=-dudt+adxdt, 

F2=-du*dt+a*dxdt, 

F3= -dudt- i(dadt+ u2u*dxdt) , 

F4=-du*dt+i(da*dt+uu*2dxdt) . (2· 8) 

The pseudopotentials are introduced in the same manner as before, (2·3). The cal­
culational procedure for integrating out the u, u*, a, a* dependence is completely 
analogous to the one above and we proceed immediately to 

A=A4UU*+ A 3u+ A2U*+ AI, 

B= i(au*- a*u)A4+i(aA3- a* A 2+ uu* As+ UA7+ u* A 6 + As) , 

where A and B have to satisfy 

[AB]=Bua+ Bu*a*- i( u2u* Au- uu*2Au') . 

(2· 9) 

(2·10) 

This yields after introducing some new generators the incomplete algebra shown in 
Table II. 

A4 commutes with every generator and will continue to do so. In fact, it corresponds 
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More Prolongation Structures 1019 

Table II. 

[AtAk] k 
3 5 6 7 8 9 10 r 2 4 

1 -A. A7 0 0 -A9 A,. 0 

2 As 0 A9 0 A2 0 

3 0 -A,. 0 -A3 0 
4 0 0 0 0 0 0 
5 

6 A. 0 
7 -A7 0 
8 -A9 A,. 
9 ? 

[A ,A 9]=[A sA.], [AzA7]= [A 3A.], 
[A,AlO]=[AsA7]. 

to a potential which, unlike the previous example where A2 and A3 corresponded to 
potentials, has no influence on the prolongation structure and can thus be omitted. So far 
the discussion has been rather parallel to Ref. 16). 

There are again three "types" of generators commuting with A 2, A3 and As, re­
spectively. We find immediately the algebra 

[XiYk]=-Yi+k, [XiZk] = Zi+k , [YiZk]=Xi+k, 

(2-11) 

with 

The identifications of Al and A5 hold, of course, only up to generators which commute 
with all others. 

The basic generators all carry positive indices and the algebra determined by (2·11) 
is thus SL(2, R)®R(Jt) or the Taylor part of AI(l). Again representations are well 
known. 

The Korteweg-de Vries equation has been discussed quite often and it seems almost 
superfluous to include a discussion of its prolongation structure. For reasons which will 
become apparent later we, nevertheless, do so and use it in the form 

The forms Fare 

FI = - dvdt + udxdt , 

F2 =-dudt+adxdt, 

(2·12) 
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1020 C. Hoenselaers 

Pseudopotentials are again introduced by (2·3) and integrating out the v, u, a dependence 
gives 

B=( -av+ ~ u2- ~ uv2)Aa-(a+uv)A2-( u+ ~ V2)A4- ~ v2A 7-vA 6 -A5. 

A and B have to satisfy 

[AB]=Bua+Bvu+ ~ u2Av. 

With As= [AIA 6 ] we arrive at the incomplete algebra listed in Table III. Note that A2, 
A a, A 4-A7 make up the algebra SL(2, R), Aa commutes with A4+A7 and A5-As. 
Finally, after some trial and error we find that the identifications 

A 2 =-XO , 

1 A7= J2( Y I- Zo) , 

1 
As= J2(ZI+ Y2) , 

Al and A5 being, of course, only defined up to generators which commute with all others, 
give precisely algebra (2 ·11). 

The prolongation algebra for the Korteweg·de Vries equation in the original formula­
tion l

) is [SL(2, R)Q9R(;1)]Q9H la ) where H is a five dimensional Heisenberg algebra. The 
appearance of H is presumably due to using u = vx as variable for the equation. 

There exist homomorphisms from the infinite algebras (2·5) and (2·11) into 3n 
dimensional algebras through the recursion relations 

Table III. 

[A;Ak] k 
2 3 4 5 6 7 1--+ 8 

A4 A2 As D As D 
2 A3 A7 -As D A, 

3 ~A2 -As -(A7+A4) A2 -A, 
4 A, 

5 
6 As 

7 

[A,As]= -[AlAs], [A,A,]=-[A 2A s], 

[AIAs1= - [A7As], 3[A,As] = - [AsA7]. 
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More Prolongation Structures 1021 

G stands for X, Y and Z and ak are constant parameters. These relations determine all 
generators with index~ n in terms of the first n ones. Inserting them into (2·5) and (2·11) 
then gives the commutators for the finite algebra. 

§ 3. From incomplete algebras to differential equations 

There is a ,dualism between Lie algebras and differential forms. Consider an n 
dimensional Lie algebra of generating vectors Ai, say, in a space with coordinates y. 

The dualism is expressed by the vector valued one-forms 

(3·1) 

which define two-forms (/) by 

(/)= dw mod w 

(3· 2) 

The generators Ai are supposed to be linearly independent and (3·2) thus defines at least 
n two-forms. If we are dealing with a complete algebra they are just the Maurer-Cartan 
structure forms of the algebra. 

N ow assume that we are only given an incomplete algebra. As we have seen, such 
an algebra consists of some known commutators and some algebraic relations among the 
unknown ones. Of course, the Jacobi identities have to be checked to ensure that every­
thing is consistent. The two-forms (/) split naturally into two sets, Q and J.:. There are 
n forms Q; they contain the d~i and those products of the ~i coming from known 
commutators. The unknown commutators are supposed to be linearly independent 
modulo their algebraic relations. The forms J.: which contain only products of the ~i are 
those multiplying the linearly independent unknown commutators. As we have started 
from a Lie algebra, it follows that dQ = 0 mod Q, J.: and dJ.: = 0 mod Q, J.:. 

Such a set of forms Q, J.: is called an invariant differential systemI2
),13) or a constant 

coefficient idea1.2
),19) It can be analysed for its Cart an characters, genus g, etc. When Q 

and J.: are restricted to a solution manifold and annulled, i.e., 

(3 ·3) 

there are at least 9 exact one-forms -- the corresponding functions to be used as 
coordinates -- implied by the system (3·3) such that the ~i are linear combinations of 
the coordinate differentials multiplied by functions of the coordinates. In case we find 
more than 9 exact one-forms, only 9 of them will be linearly independent and we have our 
choice which of them to use as coordinates. The e are then chosen such that the J.: forms 
vanish identically and the Q forms yield a set of partial differential equations. 

Given a set of forms Q, J.: with genus > 2 one may ask whether it is possible to reduce 
the system to a smaller one. 13

) To this end one considers linear combinations 
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1022 C. Hoenselaers 

with constant coefficients ai such that 

sds=O mod Q, ~. 

Such as, preferably one which lowers the genus, can be set to zero and one of the Q forms 
disappears. Note, however, that reduction turns an independent one-form into a depen­
dent one, i.e., a coordinate into a potential, and that thus the equations implied by the 
original and the reduced system will be quite different. 

Consider the incomplete five dimensional algebra 

[A1A2] = - A 3 , 

[A1A 3]=A5, 

[A 1A4]=0, 

[A2A 3 ] = - A4 , 

[A2A 5]=0, 

[A 1A 5]+[A 2 A4]=0. 

Inserted into (3·3), this gives 

de=o, 

de=O, 

de=-ee, 

de=-ee, 

d~5=ee . 

ee-e~4=0 , 

ee=O, 

ee=O, 

~4e=0 , 

(3·4) 

The genus of this ideal is 2, i.e., the ~i are combinations of two exact one-forms. The 
obvious choice is, of course, to take ~l and e as those one-forms. Let us, nevertheless, 
see whether there are other possibilities. Obviously 

e=/:l7J , e=yr; 

with some one-form 7J. Then one derives from the de and de equations 

Hence set 

and without loss of generality 

e=-u dt, ~4=sinv dt, 

Furthermore 

e=sinv 8+(bsinv-a cosv)dt, 

e=cosv 8+(a sinv+ b cosv) dt 

~5=COSV dt. 

with some other one-form 8. Eliminating the dv8 term in the de and de equations one 
finds 
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More Prolongation Structures 

With 

we have 

e=sinv dx-(a cosv+ ~ u2sinv)dt=dZ, 

e=cosv dx+(a sinv- ~ u2cosv)dt=dw, 

e=-udt, 

e=sinv dt, 

e=cosv dt. 

1023 

We have found four exact one-forms, the differentials of x, t, z and w, in our system and 
we may use any two of them as coordinates. Using x and t we find 

Vx=u, ux=a, 

This is hardly surprising as the incomplete algebra with which we started consisted 
precisely of the five basic generators for the modified Korteweg-de Vries equation. 

On the other hand, we are not compelled to use x and t as coordinates, let us use z 
and t instead. This gives 

~l=dz , 

e=cotv dz+a cosecv dt, 

while the other forms remain unchanged. The resulting equation turns out to be 

(3- 5) 

It is obvious that quite a number of other equations can be derived by using various 
combinations as coordinates. The transformations connecting them change coordinates 
into potentials and vice versa. 

The situation changes if we consider the Korteweg-de Vries equation. The basic 
generators are according to the previous section Go, Xl, Y I , Zl- Y2 • . Equation (3-3) for 
the corresponding one-forms e .. ·~6 becomes 

d~l=ee , 

de=-ee, 

de=ee, 

d~4='~2~6-ee , 

2e~6-e~4-~4~5=0 , 

e~6+ee=0 , 

~4e=0 , 
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d;5= -e;5+e;4, 

d;6=;1;6+e;4. 

C. Hoenselaers 

(3-6) 

This system has genus 3, even though we have used only the basic generators for the 
Korteweg-de Vries equation! There is, however, a Cauchy characteristic since e does 
not appear in the }; forms. 

To see what has happened, let us introduce coordinates. There are three exact 
one-forms and the ;i are expressible in terms of them as 

e=-vdx+(a+uv)dt, 

e= h( -dx+ udt) , 

;4=vdt, 

1 e= /2(dX+(U+V2)dt) , 

c6- 1 d <;-/2t. 

The system (3-6) then yields the equations 

Vx=u, vz=l, 

ux=a, Uz=O, 

(3- 7) 

They· are, of course, equivalent to the Korteweg-de Vries equation (2-12) and the z 
dependence simply reflects the fact that we can add anything independent of x and t to v. 

The interesting linear combination of the ;ifor reducing system (3 -6) to a smaller one 
is 

2 

s=e+a;l++e. 

By setting s = ° or 

(3 -S) 

in (3-6) we get a system of genus 2. The introduction of coordinates yields the same 
result as for the unreduced system and we can use (3-7) with v, u, a replaced by if, ii, a. 
z is no longer an independent coordinate but a potential. The equations implied by the 
reduced system are 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/75/5/1014/1849555 by guest on 21 August 2022



More Prolongation Structures 1025 

and finally 

- + - 3 (-+ a)2 - 0 Vt Vxxx-z v 12 Vx= . (3·9) 

This is the modified Korteweg-de Vries equation. The potential z is determined by (3·8), 
viz. 

(3 ·10) 

N ow we only have to remember that 

V=v+z 

is a solution of the Korteweg-de Vries equation (2·12) to rediscover the Miura transforma­
tion. 6

) 

Something similar happens in the case of the nonlinear Schrodinger equation. The 
forms e···e dual to the basic generators Go, Gl, X 2 yield the system 

de=ee, 

de=-~le, 

de=ee, 

d~4=ee-e~5 , 

d~5=-e~5+ee , 

de=~1~6-e~4 , 

de=~5~6 . 

ee-~4e=0 , 

ee-~4~6=0 , 

~5e=0 , 

~6e=0 , 

Again the genus is 3. Coordinates and functions can be introduced such that 

e=dz+abdt, 

e=a d x-edt , e=bdx+ /dt, 

~4=dx, e=adt, ~6=bdt, e=dt. 

Inserting this into (3·11) gives 

ax=e, az= -a, 

ez= -e, 

bx=/ , 

bt = (jx+ ab2
) , /z=/. 

(3·11) 

(3·12) 

(3·13) 

By letting t --> it, z --> iz and identifying a and b with u and u*, respectively, we get the 
nonlinear Schrodinger equation. The z dependence reflects the arbitrary constant phase 
by which the wave function can be multiplied. 

Reduction of the system proceeds, as before, by looking for a form t as a linear 
combination of ~i such that tdt = 0 and then setting it to zero. We find 
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1026 C. Hoenselaers 

(3'14) 

Introducing coordinates for the reduced ideal gives again (3·12) with a, b, e,! replaced by 
the corresponding quantities with hat; z becomes a potential. 

The equations implied by (3·11) with (3·14) are 

(3'15) 

and 

1 ( - 1 -) [ 1 ( - 1 -) - -] dz=- /2 aa+a b dx+ mae-a! -ab dt. (3·16) 

Now 

satisfy (3'13) if a and r; are solutions of (3'15) and z given by (3·16). 
By making use of the above-mentioned correspondence between (3'13) and the 

nonlinear Schrodinger equation, it is easy to show that 

(3 ·17) 

satisfies the nonlinear Schrodinger equation if w solves 

(3·18) 

The transformation (3·17) between solutions of the new equation (3·18) and the nonlinear 
Schrodinger equation is analogous to the Miura transformation. We shall study the new 
equation in the following section. 

In closing this section we remark that the system conjugate to the incomplete algebra 
for the basic four generators of the sine-Gordon equation5

) reproduces the equation 
exactly. 

§ 4. Miscellaneous remarks 

The equation encountered at the end of the previous section appears to be new. We 
shall first study its prolongation structure and Backlund transformations. It can be 
expressed by the following forms: 

F1=-dwdt+vdxdt, 

F2=-dw*dt+v*dxdt, 

F3= -dwdx - i(dvdt+(2vv*-v2)dxdt) , 

F4= - dw* dx + i(dv* dt+ (2vv*- V*2) dxdt) . (4'1) 

Forms (j) are again introduced as in (2'3). The equations to be satisfied by A and Bare 
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Av=Av*=Bv-iAw=Bv*+iAw*=O, 

[AB]= iAw(vZ-2vv*) - iA w*(v*z-2vv*) + Bwv+ Bw*v* . 

The solution is 

B = - ie-(w+w*)( v- v*) A 1 + A3 

and the Ai commute. The algebra is a three dimensional Abelian algebra and the only 
nontrivial potential is given by 

dy = e-(w+w*) dx - ie-(w+w*)( v- v*) dt . (4- 2) 

There is no infinite number of conservation laws, the algebra is finite, and therefore we did 
not expect a Backlund transformation. It came as a surprise when we checked (i -5) that 

w=w+ln y (4-3) 

is again a solution. As W enters Eq. (4-1) only up to an additive complex constant and 
y is also only determined up to a constant, there are three free constants hidden in (4 -3). 

We can, however, not generate more than one new solution by (4-3). Suppose Wo is 
a solution and Yo the corresponding potential. It then follows from (4-2) by inserting WI 
= wo+ lnyo and using the equation for Yo that 

1 dYI=--Z dyo. 
Yo 

Hence Wz = WI + InYI is equivalent to WI up to the above mentioned constants. 
The transformation (4 -3) acts on solutions of the modified Schrodinger equation via 

(3 -17). The new solution is 

(4-4) 

Aside from the trivial solution we have found the following solutions for our new 
equation: 

w=ia(x+3at); 

w=ln g+ia fgZdx, 

( a)1/3 (1 ( g = 7J (1 +/3)-I/Zcot 2 sn 3Jajj2 . 7[)) 
24;3 x, slUTZ . (4- 5) 

Let us now turn to the question whether we can find generalizations of the Miura 
transformation. As we have seen in the previous section, it arose from turning a global 
symmetry into a local one. Consider the equations 

Vt+vxxx + ~ (vx)n=o (4-6) 

for positive integers n. They are obviously invariant under v"'" v+const. Now turn this 
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global symmetry into a local one by setting 

v=u+y 

giving 

(4·7) 

(4·8) 

This is, of course, meaningless unless we require y to be a potential of a yet to be 
discovered equation for u. Hence we set 

Yx=k( u) , 

Yt = l( u, Ux, uxx) . (4·9) 

The integrability condition k t = Ix gives, using (4·8) to replace Ut and (4·9) to express the 
various derivatives of Y, an equation which can be solved by sorting out the coefficients 
of Uxxx and Uxx. The intermediate result is 

and 

lk 3+ 3 kk 2+1k ~(n) ikn-i-O -2 uuuUx -2 u uuUx -2 u~ . Ux -. 
,=2 Z 

It is obvious that n > 3 yields k = const; furthermore n < 2 also gives nothing interesting, the 
equations are linear, after all. 

n=2 gives k=-(1!6)u2+au+(J which in turn yields an equation which can be 
transformed to the modified Korteweg-de Vries equation and (4·7) again is the Miura 
transformation. 

For n=3 we find 

k=a sin(u+(J) 

and the equation we get by inserting (4·9) into (4·8) reads 

(4 ·10) 

This is the equation we get from "gauging" the global symmetry of the modified 
Korteweg-de Vries equation. 

Hardly necessary to say, we get Eq. (3·15) from gauging the z-dependence in (3·13). 
Gauging the additive constant in (3·18) gives yet another more complicated equation. 
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