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Abstract. At the FSE conference of ToSC 2018, Kranz et al. presented
their results on shortest linear programs for the linear layers of several
well known block ciphers in literature. Shortest linear programs are essen-
tially the minimum number of 2-input xor gates required to completely
describe a linear system of equations. In the above paper the authors
showed that the commonly used metrics like d-xor/s-xor count that are
used to judge the “lightweightedness” do not represent the minimum
number of xor gates required to describe a given MDS matrix. In fact
they used heuristic based algorithms of Boyar/Peralta and Paar to find
implementations of MDS matrices with even fewer xor gates than was
previously known. They proved that the AES mixcolumn matrix can
be implemented with as little as 97 xor gates. In this paper we show
that the values reported in the above paper are not optimal. By suit-
ably including random bits in the instances of the above algorithms we
can achieve implementations of almost all matrices with lesser number
of gates than were reported in the above paper. As a result we report
an implementation of the AES mixcolumn matrix that uses only 95 xor
gates.
In the second part of the paper, we observe that most standard cell
libraries contain both 2 and 3-input xor gates, with the silicon area of
the 3-input xor gate being smaller than the sum of the areas of two
2-input xor gates. Hence when linear circuits are synthesized by logic
compilers (with specific instructions to optimize for area), most of them
would return a solution circuit containing both 2 and 3-input xor gates.
Thus from a practical point of view, reducing circuit size in presence of
these gates is no longer equivalent to solving the shortest linear program.
In this paper we show that by adopting a graph based heuristic it is
possible to convert a circuit constructed with 2-input xor gates to another
functionally equivalent circuit that utilizes both 2 and 3-input xor gates
and occupies less hardware area. As a result we obtain more lightweight
implementations of all the matrices listed in the ToSC paper.

1 Introduction

Shortest linear programs are essentially the minimum number of 2-input xor
gates required to completely describe a linear system of equations. The advan-
tages to having a short linear program solution of a given matrix over GF (2)



are obvious. Since such linear matrices are used in the diffusion layer of block ci-
phers, they lead to more lightweight implementations of the block cipher circuit
in hardware.

There has been extensive study on construction of lightweight diffusion lay-
ers with Maximum diffusion property [GR15,SKOP15,SS16, SS17,LS16,LW16,
BKL16, JPST17] that guarantees optimal diffusion of differentials across the
linear layer. MDS matrices ensure that the sum of the number of active cells
before and after the linear layer is at least equal to one more than the number
of rows/columns of the matrix. The advent of recursive constructions for MDS
matrices [AF14,GPV17], made block cipher and hash function circuits more com-
pact as was evidenced in the designs of LED [GPPR11] and Photon [GPP11].
Recent years have seen MDS matrices being constructed using several under-
lying structures like Toeplitz matrices, Hadamard matrices Cauchy matrices,
Vandermonde matrices etc. The end goal for all these approaches is to minimize
the xor gate count of the matrices. However since the problem of finding the
minimal xor gate count of any linear system of equations is known to be NP-
complete [BMP08], the authors resorted to heuristic methods of evaluating the
gate count of such matrices. Some such metrics like d-xor and s-xor count have
been proposed earlier [JPST17]. However, in [KLSW18b], the authors showed
that such heuristic metrics do not reflect accurately the minimum number of
xor gates required to completely describe any linear system. Instead, the ap-
proach followed in [KLSW18b], was to try and find the shortest linear program
of a given matrix by using approximation algorithms like the one proposed by
Boyar-Peralta [BP10] and Paar [Paa97]. As a result, they proposed instantia-
tions of several well known matrices in crypto-literature with a smaller number
of xor gates than was previously known. In particular, they proposed a circuit
for the AES mixcolumn matrix with only 97 xor gates, which was considerably
lower than the best construction of 103 gates known at the time [JMPS17].

Shortest linear program is a well known hard problem in computer science. It
is known that the problem is NP-complete (polynomially reducible to the Vertex-
Cover problem): in fact it was proven in [BMP08], the problem is MAX-SNP

complete, which roughly means that there are no good approximation algorithms
for the problem unless P = NP. Nevertheless, over the years there have been
many attempts at proposing approximation algorithms to solve the problem
when the size of the input matrix is limited. One of the first such attempts
was by Paar in [Paa97]. The algorithm is a essentially a greedy one, which
at every stage finds the pair of operands that appear most frequently in the
set of equations and replaces them with a new variable. The process continues
until all operands appear exactly once. For obvious reasons, the algorithm only
produces cancellation-free solutions to the problem. This basically means that
if one takes any two intermediate operands in the algorithm and writes out
the expression of each operand as a linear equation of the input variables, then
the two expressions will not contain any common term. It is well-known that
cancellation-free solutions are sub-optimal. There have been attempts to solve
the problem using SAT solvers [FS10]. The authors of this paper showed that
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the problem can be formulated as a SAT instance, i.e. if one wants to know if
a given linear system can be described using t xor gates, one may frame the
problem in such a manner so that a solution returned by the SAT solver would
be a unique encoding of the underlying t-xor gate circuit. An optimal solution
is reached when the solver returns a solution for some value of t but finds the
instance unsatisfiable for t − 1. SAT based solutions have been used before to
minimize gate complexities of Sboxes [Sto16] using similar approaches. But the
problem is that the running time of the solver itself is exponential in the size of
the input and for input sizes larger than 10, it is difficult to get a solution from
the solver in reasonable time. Another algorithm for the problem is due to Boyar-
Peralta [BP10]. Unlike Paar’s method, the algorithm may produce solutions with
cancellation.

1.1 Contribution and Organization

In this paper we first show that both the Boyar-Peralta and the Paar algorithm
can be executed with additional randomness to produce shorter linear programs
for any given matrix. We explain how to efficiently incorporate additional ran-
domness and give an intuitive explanation of why our approach works. As a result
we produce shorter programs for almost all the matrices listed in [KLSW18b].
In particular, we propose an implementation of the AES mixcolumn matrix that
takes only 95 2-input xor gates. Very recently however, there have been 2 papers
which report implementation using only 94 xor gates [Max19,TP19].

As mentioned in the abstract, most standard cell libraries contain dedicated
two input and three input xor gates. The hardware area of the 3-input xor gate
is generally smaller than the sum of the areas of two 2-input xor gates. And
if a logic synthesizer is presented with a functional description of any linear
system in any hardware description language like VHDL or Verilog, and asked
to produce a circuit that is optimized for area, it generally comes up with a
circuit that utilizes both types of xor gates. In such a scenario, minimizing the
area of the circuit implementing the linear system can no longer be achieved by
computing the SLP solution. Indeed the solution that minimizes the hardware
area would depend on the individual areas of the 2-input and 3-input xor gates,
and this does not appear to be easier to solve than the SLP problem. In the
second part of the paper, we present a graph based approximation algorithm
that does the following: it takes as input an SLP solution and then encodes it as
a directed graph. It then recursively alters the edges of the graph till a certain
stopping criterion is reached. In the end we obtain a solution comprising both
2 and 3-input xor gates, which is smaller in area than the initial SLP solution
that we started with. As a result we provide improved circuit implementation of
all the matrices listed in [KLSW18b].

The rest of the paper is organized in the following manner. In Section 2, we
give a brief description of the Boyar-Peralta and Paar algorithms and explain
how randomness can be incorporated in the algorithm execution to produce
shorter linear programs for a given linear system. In Section 3, we explain the
working of our graph based approximation algorithm that produces a circuit for
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a given linear system utilizing both 2 and 3-input xor gates. Section 4, concludes
the paper.

2 Approximation algorithms

2.1 Boyar-Peralta method [BP10]

Before we proceed let us take a look at the Boyar-Peralta algorithm. The problem
is to find a short linear program that computes f(x) = Mx where M is an
m × n matrix over GF (2). The basic idea is as follows. A “base” S of known
linear functions is first constructed. Initially S is just the set of input variables
x1, x2, . . . , xn. The vector Dist[·] is the set of distances from S to the linear
functions given by the rows of M . That is, if fi is the linear function given by
the ith row of M then Dist[i] represents the minimum number of functions from
S that can add to give fi. Consequently, we have that initially, Dist[i] is just one
less than the hamming weight of row i. The following steps are then performed
in a loop:

• Choose a new base element by adding two existing base elements and add it
to S.
• Update Dist[i] since S has been modified.
• Do the above until Dist[i] = 0 for all i.

At any stage if the size of S is t there are
(

t
2

)

options to choose a new base.
The criterion for picking the new base element is

1. Pick one that minimizes the sum of elements of the updated Dist[·] array.
2. If there is a tie between two choices of the new base element, then resolve it

by choosing the base element that maximizes the Euclidean norm of updated
Dist[·] array.
This tie resolution criterion, may seem counter-intuitive. The basic idea is

that a distance vector like 0,0,3,1 is preferred to one like 1,1,1,1. In the latter
case, we would need 4 more gates to finish. In the former, 3 might do it. The
bulk of the time of the heuristic is spent on picking the new base element.

Example 1. Before proceeding it may be instructive to look at a small example of
the working of the above algorithm using an example take directly form [BP10].
Suppose we need a circuit that computes the system of equations defined as
follows. This is equivalent to finding a circuit for multiplication by the 6 × 5
matrix, M given on the left.

x0 ⊕ x1 ⊕ x2 = y0

x1 ⊕ x3 ⊕ x4 = y1

x0 ⊕ x2 ⊕ x3 ⊕ x4 = y2

x1 ⊕ x2 ⊕ x3 = y3

x0 ⊕ x1 ⊕ x3 = y4

x1 ⊕ x2 ⊕ x3 ⊕ x4 = y5

⇒





















1 1 1 0 0

0 1 0 1 1

1 0 1 1 1

0 1 1 1 0

1 1 0 1 0

0 1 1 1 1





















·
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x1

x2

x3

x4

















=
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The target functions to be computed are given rows of M. The initial base is given
by {x0, x1, x2, x3, x4}, which corresponds to S = {10000, 01000, 00100, 00010,
00001}. The initial distance vector is Dist = [2, 2, 3, 2, 2, 3]. The algorithm finds
two base vectors whose sum, when added to the base, minimizes the sum of the
new distances. It turns out the right choice is to calculate t5 = x1 ⊕ x3. So the
new base S is expanded to contain the signal 01010. The new distance vector is
Dist = [2, 1, 3, 1, 1, 2].

Step 2 According to the algorithm we have a choice between x1⊕x2 and x0⊕t5.
The updatedDist vectors for the above choices are respectively [1, 1, 3, 1, 1, 2]
and [2, 1, 3, 1, 0, 2], both of which sum to 9. However the second choice gives
a Euclidean norm of

√
19. So we choose t6 = x0 ⊕ t5 = y4.

Step 3 t7 = x2 ⊕ t5 = y3, new Dist = [2, 1, 3, 0, 0, 1].
Step 4 t8 = x4 ⊕ t5 = y1, new Dist = [2, 0, 3, 0, 0, 1].
Step 5 t9 = x2 ⊕ t8 = y5, new Dist = [2, 0, 2, 0, 0, 0].
Step 6 t10 = x0 ⊕ x1, new Dist = [1, 0, 1, 0, 0, 0].
Step 7 t11 = x2 ⊕ t10 = y0, new Dist = [0, 0, 1, 0, 0, 0].
Step 8 t12 = t8 ⊕ t11 = y2, new Dist = [0, 0, 0, 0, 0, 0].

This therefore gives a circuit with eight gates.

2.2 Our Experiments

The authors of [KLSW18b] were kind enough to make all the codes used by them
freely available in the public domain [KLSW18a]. We downloaded the C++ code
for the Boyar-Peralta algorithm which is based on the code available at [BP18]
written by the authors of [BP10]. We ran the code for the AES mixcolumn matrix
and found that it returned a solution with 96 xor gates. This was surprising for
us, since the authors of [KLSW18b] claim that their implementation of the AES
mixcolumn matrix takes 97 xor gates. Initially we concluded that it must have
been an error by the authors of [KLSW18b]. But on closer inspection we started
to make a sense of why the discrepancy arose.

In the code used by [KLSW18a], the ordering of the input byte in terms
of bits is as follows: [x0, x1, x2, . . . , x7] which essentially means that they place
the least significant bit first, whereas the ordering we used is [x7, x6, x5, . . . , x0]
which essentially means most significant bit first and arranging bits in decreasing
index order. This means that the AES mixcolumn matrices we and the authors
of [KLSW18b] have used in our respective experiments would be column and row
shuffled versions of each other. However there is nothing in the steps of the Boyar-
Peralta algorithm that suggests that if we present column/row shuffled instances
of the same matrix to the algorithm, it would output different solutions. In fact
the algorithm picks out a new base element at each step which minimizes the
sum of given distance vector, and computes a Euclidean norm to resolve ties.
Since this sum or norm should not change no matter how the columns/rows are
arranged, there is every reason to believe that that the output of the algorithm
should be independent of how the matrix is arranged, if the underlying linear
system is unchanged.
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However as it turns out, the way in which the algorithm has been imple-
mented in [KLSW18a], it does output different results when different column
shuffled instances of the same matrix is input. The reason this happens is as
follows. Following is a snippet of the C++ code where the algorithm implements
resolution of ties via Euclidean norm:

MinDistance = BaseSize*NumTargets; //i.e. something big

OldNorm = 0; //i.e. something small

for (int i = 0; i < BaseSize - 1; i++) {

for (int j = i+1; j < BaseSize; j++) {

NewBase = Base[i] ^ Base[j];

ThisDist = TotalDistance();//also calculates NDist[]

if (ThisDist <= MinDistance) {

//calculate Norm

ThisNorm = 0;

for (int k = 0; k < NumTargets; k++) {

d = NDist[k];

ThisNorm = ThisNorm + d*d;

}

//resolve tie in favor of largest norm

if((ThisDist < MinDistance)||(ThisNorm > OldNorm))

{

besti = i;

bestj = j;

TheBest = NewBase;

for (int uu = 0; uu < NumTargets; uu++) {

BestDist[uu] = NDist[uu];

}

MinDistance = ThisDist;

OldNorm = ThisNorm;

}

}

}

}

//update Dist array

NewBase = TheBest;

for (int i = 0; i < NumTargets; i++) {

Dist[i] = BestDist[i];

}

//update Base with TheBest

Base[BaseSize] = TheBest;

The above code is intuitively easy to understand and follow. We describe
it briefly. The variable BaseSize stores the current size of S. The algorithm
then loops over all choices of the new base element. A candidate base element
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is placed in the global variable NewBase, and then the code computes the tem-
porary updated distance vector NDist[] via the function TotalDistance which
returns the sum of NDist[] in ThisDist. If ThisDist is less than or equal to the
current minimum stored in MinDistance, the code then computes the Euclidean
norm of NDist[] in ThisNorm. A final choice of new base element is made in the
variable TheBest, depending on whether the current candidate produces a sum
that is absolutely less than the current minimum MinDistance or it produces
a Euclidean norm strictly greater than the current maximum norm OldNorm.
Consider what happens when two candidates for the new base element say for
i=i0,j=j0 and i=i1,j=j1 produce identical values of ThisDist and ThisNorm.
According to the code, the new candidate would be the one which appears first
lexicographically in the double loop traversal of i,j. In general if such a sit-
uation appears for n choices for the new candidate base element, the code all
always chooses the one that appears first in the double loop traversal. Thus it
becomes clearer why the order in which the columns are arranged matrix is cru-
cial: shuffling of columns essentially means we shuffle the order of input variables
to the system, which in turn implies we shuffle the initial placement of elements
of S. This has a direct effect on how new candidates are chosen to be added to
S and takes the program execution in different directions.

2.3 New idea

In the paper [BP10], the authors suggest other methods to resolve ties including
choosing random candidate elements. We did not take this approach for two
reasons: one it may not necessarily lead to optimal solutions and second it is
not necessarily straightforward to adapt the code snippet to accommodate ran-
dom candidate choices. However since the order of rows/columns seems to bring
about a change in the output of this particular code execution: we tried the
following idea. We take the target matrix M and multiply with randomly gen-
erated permutation matrices P and Q to get MR = P ·M ·Q. This only shuffles
the rows and columns of the matrix and so keeps the underlying linear system
unchanged. We use MR as input to the C++ code and extract a solution. The
code could be run multiple number of times with random permutation matrices
until we get a solution better than previously obtained.

We started our experiment with the AES mixcolumn matrix. After around
4 hours of execution we obtained a solution with 95 xor gates. The solution is
presented in Table 1. Note that the permutation matrices P, Q has been listed
as a table. For example, PT [0] = 4 implies that in the 0th row of P , the element
in the 4th column is 1 and the rest are 0.

2.4 Paar’s algorithm

Paar’s algorithm is essentially a greedy one, which at every stage finds the pair of
operands that appear most frequently in the set of equations and replaces them
with a new variable. The process continues until all operands appear exactly
once. The algorithm however returns cancellation-free solutions that are known
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Table 1: AES mixcolumn using 95 xor gates

# Gate # Gate # Gate

1 t0 = x0 + x2 33 t32 = x9 + t3 65 t64 = x1 + t0

2 t1 = x10 + x24 34 y21 = t9 + t32 66 t65 = t6 + t13

3 t2 = x0 + x10 35 t34 = x19 + t6 67 y4 = t64 + t65

4 t3 = x2 + x24 36 y20 = t2 + t34 68 t67 = t10 + t32

5 t4 = x3 + x5 37 t36 = t1 + t9 69 t68 = x31 + t34

6 t5 = x4 + x11 38 y18 = t34 + t36 70 y5 = t67 + t68

7 t6 = x9 + x20 39 t38 = x20 + t9 71 t70 = y18 + y4

8 t7 = x16 + x29 40 y26 = t0 + t38 72 y27 = t67 + t70

9 t8 = x6 + x23 41 t40 = x11 + t8 73 t72 = x13 + t1

10 t9 = x19 + x21 42 y9 = t14 + t40 74 t73 = t15 + t16

11 t10 = x1 + x7 43 t42 = x13 + t5 75 y14 = t72 + t73

12 t11 = x12 + x26 44 t43 = x6 + x17 76 t75 = x15 + t2

13 t12 = x8 + x30 45 y15 = t42 + t43 77 t76 = x27 + t16

14 t13 = x18 + x31 46 t45 = x11 + y10 78 t77 = t0 + t17

15 t14 = x13 + x14 47 y16 = t29 + t45 79 t78 = t14 + t77

16 t15 = x17 + x28 48 t47 = x12 + t12 80 y24 = x28 + t78

17 t16 = x15 + x22 49 y28 = t13 + t47 81 t80 = t75 + t76

18 t17 = x25 + x27 50 t49 = x18 + t11 82 t81 = x17 + t14

19 t18 = x2 + t1 51 t50 = x1 + y28 83 y2 = t80 + t81

20 y8 = t7 + t18 52 y7 = t49 + t50 84 t83 = t3 + t11

21 t20 = x16 + t2 53 t52 = x7 + x8 85 y3 = t76 + t83

22 t21 = x2 + t2 54 y30 = t49 + t52 86 t85 = t12 + t17

23 y29 = t4 + t21 55 t54 = x18 + t10 87 y1 = t75 + t85

24 t23 = x3 + y8 56 y12 = t36 + t54 88 t87 = y14 + t78

25 y25 = t20 + t23 57 t56 = x23 + t5 89 y13 = t80 + t87

26 t25 = x5 + x24 58 y17 = t15 + t56 90 t89 = x26 + x30

27 y23 = t20 + t25 59 t58 = x28 + y9 91 t90 = t77 + t89

28 t27 = x5 + t7 60 y19 = t42 + t58 92 y6 = t76 + t90

29 y10 = t8 + t27 61 t60 = x29 + t4 93 t92 = x25 + t83

30 t29 = x23 + t4 62 y31 = t5 + t60 94 t93 = y1 + y6

31 t30 = x4 + x16 63 t62 = x30 + t10 95 y0 = t92 + t93

32 y11 = t29 + t30 64 y22 = t11 + t62

PT=[4,12,11,28, 22,30,20,5, 16,26,9,17, 6,27,3,18, 1,10,7,2, 15,31,13,24, 19,8,23,14, 29,0,21,25]

QT=[24,5,11,14, 15,12,31,19, 10,3,6,28, 22,8,1,21, 0,29,23,17, 27,30,7,9, 2,16,4,13, 25,26,18,20]
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to be not always optimal. But it is always useful to use this algorithm to decrease
the gate count of larger matrices for which the Boyar-Peralta method is unable
to return a solution in practical time.

Let us look at the details of the algorithm. Let M be the matrix whose gate
count is to be minimized. Then the algorithm performs the following steps:

Step 1 Find columns whose bitwise AND has largest weight. This essentially
finds two operands xi, xj whose xor occurs most number of times in the
underlying linear system.

Step 2 Extend matrix M , by adding the above product column newcol to the
matrix.

Step 3 For the two previous columns do oldcol ← oldcol · newcol. The above
two steps adds the xor gate v = xi ⊕ xj to the gate list and by adding the
product column to M creates a new input variable v. By doing oldcol ←
oldcol · newcol, the algorithm removes extra xors in the matrix structure,
which are no longer needed after the addition of the new column.

Example 2. It is again instructive to understand the algorithm with a small
example. Given the following linear system.

x1 ⊕ x2 = y1

x1 ⊕ x2 ⊕ x3 = y2

x1 ⊕ x2 ⊕ x3 ⊕ x4 = y3

x2 ⊕ x3 ⊕ x4 = y4

⇒











1 1 0 0

1 1 1 0

1 1 1 1

0 1 1 1











·











x1

x2

x3

x4











=











y1

y2

y3

y4











In this example, the product of the second and third column has largest weight.
We have v1 = x2 + x3. The new column to be added is (1 1 1 1) · (0 1 1 1) =
(0 1 1 1), and after the oldcol← oldcol·newcol step we have the following system.

x1 ⊕ x2 = y1

x1 ⊕ v1 = y2

x1 ⊕ x4 ⊕ v1 = y3

x4 ⊕ v1 = y4

⇒











1 1 0 0 0

1 0 0 0 1

1 0 0 1 1

0 0 0 1 1











·

















x1

x2

x3

x4

v1

















=











y1

y2

y3

y4











The above steps are continued until all targets are achieved.

Again, there are no steps in the above algorithm that suggest that different re-
sults would be output if the input matrices are row/column shuffled. However
again due to the C++ implementation of the above algorithm in [KLSW18a],
column shuffled versions of the same matrix do produce different outcomes. The
reasons due too are quite similar: for candidate column pairs Ci0 , Cj0 and Ci1 , Cj1

both of whose products have the same hamming weight, the code in [KLSW18a]
chooses the one which occurs first lexicographically during a standard double
loop search over every pair of columns. Thus shuffling of columns of M directly
impacts the outcome. Again we could multiply with randomly generated permu-
tation matrices P and Q to get MR = P ·M ·Q. The code is run multiple number
of times with random permutation matrices until we get a solution better than
previously obtained.
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Note that in the original paper [Paa97], two algorithms were proposed of
which we have discussed the first one. The second algorithm recurses on all
possible choices of candidate intermediate steps and thus will output the optimal
result. The probabilistic version suggested in this paper is thus something in
between the two original algorithms. We did not try to implement Paar’s second
algorithm as it took a lot of time to run on the computing systems we had access
to.

2.5 Results

We ran the the modified algorithms for all the matrices listed in [KLSW18b]. For
smaller 32×32 matrices the Boyar-Peralta algorithm can be executed efficiently
in reasonable time. For 64 × 64 and larger matrices we used the modified Paar
algorithm as the Boyar-Peralta took an unreasonable amount of time just to exe-
cute the optimization of one shuffled version of the target matrix M . The results
are given in Table 2 and Table 3. Table 2 contains matrices proposed in recent
literature, whereas Table 3 contains matrices used in some cryptographic con-
structions. For almost all matrices we have improved the results of [KLSW18b].

3 Optimization with 3-input xor gates

One of the motivations of constructing circuits with lower number of xor gates
is that it makes for a more lightweight implementation in hardware. However
most standard cell libraries of CMOS logic processes have dedicated gates that
support both the 2-input and the 3-input xor functionality. Generally the area
of a 3-input xor gate is lower than the area of two 2-input xor gates. Take
for example, the standard cell library CORE90GPHVT v 2.1.a of the STM 90nm
CMOS logic process. It has two types of gates

• 2-input xor gate with area: 2 GE
• 3-input xor gate with area: 3.25 GE

where GE refers to Gate equivalents which is the area of a two input NAND
gate. Our experiments started with the AES mixcolumn matrix. We presented
a functional description of the matrix written in VHDL to the Synopsys design
compiler and instructed it to compile a circuit optimized for area. It returned
a solution with 39 3-input xor and 31 2-input xor gates. The area of the above
circuit is 39 ∗ 3.25 + 31 ∗ 2 = 188.75 GE which is less than 2 ∗ 95 = 190 GE (the
area of 95 2-input xor gates).

However the situation is different for another library CORE65GPHVT v 5.1

which is based on the STM 65nm CMOS logic process. It has two types of xor
gates listed as follows:

• 2-input xor gate with area: 1.981 GE
• 3-input xor gate with area:: 3.715 GE
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Table 2: Comparison of gate counts for matrices available in literature

# Matrix Type Gate count in [KLSW18b] Gate count in this paper

4× 4 matrices over GF (24)

1 [SKOP15] Hadamard 48 46

2 [LS16] Circulant 44 44

3 [LW16] Circulant 44 44

4 [BKL16] Circulant 42 42

5 [SS16] Toeplitz 43 42

6 [JPST17] 43 42

7 [SKOP15] Hadamard, Involutary 48 47

8 [LW16] Hadamard, Involutary 48 46

9 [SS16] Involutary 42 40

10 [JPST17] Involutary 47 46

4× 4 matrices over GF (28)

11 [SKOP15] Subfield 98 94

12 [LS16] Circulant 112 110

13 [LW16] 102 102

14 [BKL16] Circulant 110 108

15 [SS16] Toeplitz 107 104

16 [JPST17] Subfield 86 86

17 [SKOP15] Subfield, Involutary 100 94

18 [LW16] Hadamard, Involutary 91 90

19 [SS16] Involutary 100 98

20 [JPST17] Subfield, Involutary 91* 92

8× 8 matrices over GF (24)

21 [SKOP15] Hadamard 194 192

22 [SS17] Toeplitz 204 203

23 [SKOP15] Hadamard, Involutary 217 212

8× 8 matrices over GF (28)

24 [SKOP15] Hadamard 467 460

25 [LS16] Circulant 447 443

26 [BKL16] Circulant 498 497

27 [SS17] Toeplitz 438 436

28 [SKOP15] Hadamard, Involutary 428 419

29 [JPST17] Hadamard, Involutary 599 591

* On running the code from [KLSW18a] on our PC, we got solution 92 for this matrix
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Table 3: Comparison of gate counts for matrices used in cryptographic construc-
tions

Gate Count

# Cipher Type [KLSW18b] This paper

4× 4 matrices over GF (28)

1 AES [DR02] Circulant 97 95

2 ANUBIS [BR00a] Hadamard, Involutary 113 102

3 CLEFIA M0* [SSA+07] Hadamard, Involutary 106 102

4 CLEFIA M1 [SSA+07] Hadamard 111 110

5 FOX MU4 [JV04] 137 131

6 TWOFISH [SKW+98] 129 125

8× 8 matrices over GF (28)

7 FOX MU8 [JV04] 594 592

8 GRØSTL [GKM+09] Circulant 475 460

9 KHAZAD [BR00b] Hadamard, Involutary 507 492

10 WHIRLPOOL [BR11] Circulant 465 464

4× 4 matrices over GF (24)

11 JOLTIK [JNP13] Hadamard, Involutary 48 47

12 SMALLSCALE AES [CMR05] Circulant 47 45

8× 8 matrices over GF (24)

13 WHIRLWIND M0 [BNN+10] Hadamard, Subfield 212 210

14 WHIRLWIND M1 [BNN+10] Hadamard, Subfield 235 234

Non MDS matrices

15 QARMA128 [Ava17] Circulant (4× 4 over GF (28)) 48 48

16 ARIA [KKP+03] Involutary (16× 16 over GF (28)) 416 392

17 MIDORI [BBI+15] Involutary (4× 4 over GF (24)) 24 24

18 PRINCE M0, M1 [BCG+12] (16× 16 over GF (2)) 24 24

19 PRIDE L0-L3 [ADK+14] (16× 16 over GF (2)) 24 24

20 QARMA64 [Ava17] Circulant (4× 4 over GF (24)) 24 24

21 SKINNY64 [BJK+16] (4× 4 over GF (24)) 12 12

* ANUBIS and CLEFIA M0 matrices are the same. [KLSW18b] gives different results for them.

It might have been an error.
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If we took the previous solution and tried to apply it to this library the gate
area would be 39 ∗ 3.715 + 31 ∗ 1.981 = 206.296 GE which is much more than
95 ∗ 1.981 = 188.195 GE that would be obtained by using only the 2-input xor
gate. In fact when we repeated the exercise for this library and asked the design
compiler to synthesize an area optimized circuit it returned a solution with 38
3-input xors and 32 2-input xors which amounts to 204.56 GE. The experiments
bring out three crucial facts: a) The SLP solution does not always represent the
optimal circuit area when the circuit compiler can additionally use 3-input xor
gates, b) the optimal solution is heavily dependent on the target standard cell
library, a solution that is optimal for a given library may not be optimal for
a different library, c) the solutions returned by circuit compilers may also not
represent the optimal solution in terms of circuit area.

3.1 Incremental graph based technique

Since a single 3-input xor is smaller in area than two 2-input xors, we started
with the rule of thumb that, given any matrix, we should convert all instances
of two 2-input xors to a single 3-input xor wherever possible. However, consider
the following linear system before proceeding.

Example 3. y1 = x1 ⊕ x2 ⊕ x3, y2 = x2 ⊕ x3 ⊕ x4.

One could solve the above problem in a straightforward manner by using two
3-input xor gates that would cost 6.5 GE in the 90nm library and around 7.4
GE in the 65 nm library. However an SLP based solution that reuses the sum
x2⊕x3 could give us a solution using three 2-input xors, that would cost around
6 GE in both libraries.

• Solution: t1 = x2 ⊕ x3, y2 = t1 ⊕ x4 and y1 = x1 ⊕ t1.

Let us say we already have a SLP solution for a given matrix obtained by
either the Boyar-Peralta or the Paar method and we want to take this solution
as a starting point and make incremental modifications to it to get a circuit that
uses both 2 and 3-input xor gates. The standard way to do this would be to
check if there are pairs of 2-input xors in the original SLP solution that could be
replaced with a 3-input xor gate thereby reducing the area of the circuit. This
approach has an additional advantage that the final solution of this approach is
guaranteed to have less area than the corresponding SLP solution, irrespective
of the library of synthesis. Given the information in the above example, a handy
way to proceed is to check if the output of a particular 2-input xor gate is used
multiple times in the circuit. If so then it is best to avoid removing this xor gate
from the SLP solution to facilitate insertion of another 3-input xor gate. Let us
formalize this intuitive approach.

Let L be the SLP solution for an underlying linear system given by the
matrix M . Each line of L represents a 2-input xor gate used to implement the
circuit. Define a directed graph G = (V,E) in the following manner. Each line
of L is a vertex in the graph: thus the size of |V | is simply the length of L. Two

13



vertices vi, vj are connected by a directed edge in E, if the output of the xor
gate represented by vi is an input to the xor gate represented by vj . In such a
graph, a node with outdegree strictly equal to 1 are those whose outputs are
used only once. Nodes with outdegree 0 represent the gates which produce the
output bits of the linear system, although it may be possible that nodes with
larger outdegree produces output bits of the system. All other nodes are those
that are used multiple number of times. Thus our strategy would be as follows:

1. Make a list of all nodes of outdegree 1 and 0, and additionally those nodes
that produce output bits but have outdegree larger than 0.

2. If there exist two nodes vi, vj such that (vi, vj) ∈ E and outdegree(vi) = 1
and vi does not produce an output of the underlying linear system then merge
them to form a new node X that represents a 3-xor gate in the following
manner: the incoming edges of vi and vj are made the incoming edges of X
and if the outdegree of vj is 1, the outgoing edge of vj is made the outgoing
edge of X.

3. Essentially what the above step does is as follows: if vi represents the 2-input
xor gate t = x⊕ y and vj represents the 2-input xor gate u = t⊕ z, then the
outdegree of vi = 1, guarantees that t does not appear elsewhere in the SLP
solution. We merge them to a 3-input xor node X representing u = x⊕y⊕z.
Note that if t = x ⊕ y was an output of the system then the above merge
procedure would have proven counter-productive because we would have lost
the output signal t after the merge procedure.

4. The algorithm is recursively executed until all nodes of outdegree 1 of the
required property are exhausted.

The algorithm starts with an SLP solution for a given matrix obtained by either
the Boyar-Peralta or the Paar method, and runs the above steps iteratively until
a solution is found. Since permutation matrices P,Q for which we get the optimal
SLP solution for MR = P ·M ·Q, may not necessarily lead to the optimal area
after running the above algorithm, we run the above algorithm for a number of
randomly generated P,Q till a solution is obtained. In particular, for the AES
mixcolumn matrix we were able to get a solution with 39 2-input xor and 28
3-input xor gates. This gives an area of 169 GE with the CORE90GPHVT v 2.1.a

library and 181.3 GE with CORE65GPHVT v 5.1. This is well below the hardware
area of the corresponding SLP solution.

3.2 Results

We applied the above algorithm to all the SLP solutions that are listed above in
Section 2. For all the matrices that we experimented with, we obtained a circuit
implementation smaller in area than the area of the corresponding SLP solution.
The results are presented in Tables 4 and 5. We compare the area of the circuit
obtained after running the algorithm with the corresponding area of the SLP
solution (for the sake of conciseness we fix this value to 2 times the length of
SLP solution, in GE). Results for both the libraries CORE90GPHVT v 2.1.a and
CORE65GPHVT v 5.1 are tabulated.
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Table 4: Comparison of areas for matrices available in literature. Lib1 and Lib2
refer to CORE90GPHVT v 2.1.a and CORE65GPHVT v 5.1 respectively.

Area in GE

# Matrix Type # 2-xor #3-xor SLP Lib 1 Lib 2

4× 4 matrices over GF (24)

1 [SKOP15] Hadamard 26 10 92.0 84.5 88.7

2 [LS16] Circulant 20 12 88.0 79.0 84.2

3 [LW16] Circulant 20 12 88.0 79.0 84.2

4 [BKL16] Circulant 18 12 84.0 75.0 80.2

5 [SS16] Toeplitz 18 12 84.0 75.0 80.2

6 [JPST17] 13 15 84.0 74.8 81.5

7 [SKOP15] Hadamard, Involutary 16 16 94.0 84.0 91.1

8 [LW16] Hadamard, Involutary 13 15 86.0 74.8 81.5

9 [SS16] Involutary 20 10 80.0 72.5 76.8

10 [JPST17] Involutary 16 15 92.0 80.8 87.4

4× 4 matrices over GF (28)

11 [SKOP15] Subfield 45 25 188.0 171.3 182.0

12 [LS16] Circulant 28 42 220.0 192.5 211.5

13 [LW16] 31 35 204.0 175.8 191.4

14 [BKL16] Circulant 40 34 216.0 190.5 205.6

15 [SS16] Toeplitz 26 40 208.0 182.0 200.1

16 [JPST17] Subfield 26 30 172.0 149.5 163.0

17 [SKOP15] Subfield, Involutary 32 32 188.0 168.0 182.3

18 [LW16] Hadamard, Involutary 48 21 180.0 164.3 173.1

19 [SS16] Involutary 44 27 196.0 175.8 187.5

20 [JPST17] Subfield, Involutary 36 28 184.0 163.0 175.3

8× 8 matrices over GF (24)

21 [SKOP15] Hadamard 78 57 384.0 341.3 366.2

22 [SS17] Toeplitz 87 58 406.0 362.5 387.8

23 [SKOP15] Hadamard, Involutary 90 61 424.0 378.3 404.8

8× 8 matrices over GF (28)

24 [SKOP15] Hadamard 181 141 920.0 820.3 882.2

25 [LS16] Circulant 181 141 920.0 820.3 882.2

26 [BKL16] Circulant 157 144 886.0 782.0 845.8

27 [SS17] Toeplitz 153 144 872.0 782.0 837.9

28 [SKOP15] Hadamard, Involutary 167 126 838.0 743.5 798.8

29 [JPST17] Hadamard, Involutary 205 193 1182.0 1037.3 1022.9
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Table 5: Comparison of areas for matrices used in cryptographic constructions.
Lib1 and Lib2 refer to CORE90GPHVT v 2.1.a and CORE65GPHVT v 5.1 respec-
tively.

Area in GE

# Matrix Type #2-xor #3-xor SLP Lib 1 Lib 2

4× 4 matrices over GF (28)

1 AES [DR02] Circulant 39 28 190.0 169.0 181.3

2 ANUBIS [BR00a] Hadamard and 60 20 200.0 185.0 193.2

Involutary

3 CLEFIA M0 [SSA+07] Hadamard 60 20 200.0 185.0 193.2

Involutary

4 CLEFIA M1 [SSA+07] Hadamard 38 36 220.0 193.0 209.0

5 FOX MU4 [JV04] 46 43 262.0 231.8 250.9

6 TWOFISH [SKW+98] 43 42 250.0 222.5 241.2

8× 8 matrices over GF (28)

7 FOX MU8 [JV04] 212 190 1184.0 1041.5 1125.8

8 GRØSTL [GKM+09] Circulant 190 129 920.0 799.3 855.6

9 KHAZAD [BR00b] Hadamard and 224 134 984.0 883.5 941.6

Involutary

10 WHIRLPOOL [BR11] Circulant 154 155 928.0 811.8 880.9

4× 4 matrices over GF (24)

11 JOLTIK [JNP13] Hadamard and 16 16 94.0 84.0 91.1

Involutary

12 SMALLSCALE AES [CMR05] Circulant 19 13 90.0 80.3 85.9

8× 8 matrices over GF (24)

13 WHIRLWIND M0 [BNN+10] Hadamard and 82 64 420.0 372.0 400.2

Subfield

14 WHIRLWIND M1 [BNN+10] -do- 96 69 468.0 416.3 446.5

Non MDS matrices

15 QARMA128 [Ava17] Circulant 34 7 96.0 90.8 93.4

(4× 4 over GF (28))

16 ARIA [KKP+03] Involutary 136 128 784.0 688.0 744.8

(16× 16 over GF (28))

17 MIDORI [BBI+15] Involutary 16 4 48.0 45.0 46.6

(4× 4 over GF (24))

18 PRINCE M0, M1 [BCG+12] (16× 16 over GF (2)) 16 4 48.0 45.0 46.6

19 PRIDE L0-L3 [ADK+14] (16× 16 over GF (2)) 16 4 48.0 45.0 46.6

20 QARMA64 [Ava17] Circulant 16 4 48.0 45.0 46.6

(4× 4 over GF (24))

21 SKINNY64 [BJK+16] (4× 4 over GF (24)) 12 0 24.0 24.0 24.0
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4 Conclusion

In this paper we took another look at the shortest linear program problem for
implementing linear systems. We found implementation issues that may result
in a situation where the order of appearance of columns in a matrix affect the
outcome of heuristic based algorithms like the ones due to Boyar-Peralta and
Paar. We showed that by suitably including randomness in the execution of
these algorithms it is possible to obtain even more efficient solutions to the
SLP problem. We applied our method to the diffusion layer matrices of well
known constructions in literature. We were able to improve the number of xor
gates required for the implementations for most of these matrices. We have also
reported an implementation of the AES mixcolumn matrix that uses only 95
xor gates which is one of the smallest implementations of the AES mixcolumn
circuit.

In the second part of the paper, we observed that most standard cell libraries
contain both 2 and 3-input xor gates, with the silicon area of the 3-input xor gate
being smaller than the sum of the areas of two 2-input xor gates. Hence when
linear circuits are synthesized by logic compilers (with specific instructions to
optimize for area), most of them would return a solution circuit containing both 2
and 3-input xor gates. Thus from a practical point of view, reducing circuit size in
presence of these gates was not equivalent to solving the shortest linear program.
In this paper we showed that by adopting a graph based heuristic it is possible
to convert a circuit constructed with 2-input xor gates to another functionally
equivalent circuit that utilizes both 2 and 3-input xor gates and occupies less
hardware area. As a result we obtain more lightweight implementations of all
the matrices listed in first half of the paper.
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Knezevic, Lars R. Knudsen, Gregor Leander, Ventzislav Nikov, Christof
Paar, Christian Rechberger, Peter Rombouts, Søren S. Thomsen, and
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JMPS17. Jérémy Jean, Amir Moradi, Thomas Peyrin, and Pascal Sasdrich. Bit-
sliding: A generic technique for bit-serial implementations of spn-based
primitives - applications to aes, PRESENT and SKINNY. In Crypto-
graphic Hardware and Embedded Systems - CHES 2017 - 19th Interna-
tional Conference, Taipei, Taiwan, September 25-28, 2017, Proceedings,
pages 687–707, 2017.
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