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Abstract

Heteromorphic sex chromosomes are common in eukaryotes and largely ubiquitous in birds and mammals. The largest number

of multiple sex chromosomes in vertebrates known today is found in the monotreme platypus (Ornithorhynchus anatinus, 2n =

52) which exhibits precisely 10 sex chromosomes. Interestingly, fish, amphibians, and reptiles have sex determination mecha-

nisms that do or do not involve morphologically differentiated sex chromosomes. Relatively few amphibian species carry

heteromorphic sex chromosomes, and when present, they are frequently represented by only one pair, either XX:XY or

ZZ:ZW types. Here, in contrast, with several evidences, from classical and molecular cytogenetic analyses, we found 12 sex

chromosomes in a Brazilian population of the smoky jungle frog, designated as Leptodactylus pentadactylus Laurenti, 1768

(Leptodactylinae), which has a karyotype with 2n = 22 chromosomes. Males exhibited an astonishing stable ring-shaped meiotic

chain composed of six X and six Y chromosomes. The number of sex chromosomes is larger than the number of autosomes

found, and these data represent the largest number of multiple sex chromosomes ever found among vertebrate species.

Additionally, sequence and karyotype variation data suggest that this species may represent a complex of species, in which

the chromosomal rearrangements may possibly have played an important role in the evolution process.
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Introduction

The evolution of sex chromosomes has occurred independent-

ly numerous times in several eukaryotic lineages. Although

their origins are independent, sex chromosomes across line-

ages display several common features and represent a fasci-

nating example of evolutionary convergence. Among these

common features, the restriction of recombination, repetitive

DNA accumulation, and gene loss in the Y or W

chromosomes may have led to chromosome differentiation

and the possible establishment of morphologically distinct

(heteromorphic) elements (Bachtrog et al. 2014; Graves

2016; Wright et al. 2016). In vertebrates, heteromorphic sex

chromosomes involved in sex determination are common in

mammals (X0, XY, or multiple XY chromosomes) and birds

(ZW). In contrast, morphologically differentiated sex chromo-

somes are less common among fish, amphibians, and reptiles

but can involve XX:XY and ZZ:ZW sex systems (Ellegren

2011; Wright et al. 2016; Bachtrog et al. 2014; Graves 2016).

The widespread occurrence of homomorphic sex chromo-

somes observed in amphibians and fish is explained by two

major hypotheses. The high-turnover hypothesis suggests that

the chromosomes have insufficient time to degenerate because

mutations affecting the sex-determining pathway appear reg-

ularly, causing changes to the ancestral sex chromosome

(Schartl 2004; Volff et al. 2007; Sarre et al. 2011). This hy-

pothesis has been supported by several studies in amphibians

(Hotz et al. 1997; Miura 2007; Malone and Fontenot 2008;

Stöck et al. 2011a; Stöck et al. 2013a) and fish (Tanaka et al.

2007; Cnaani et al. 2008; Ross et al. 2009). According to the

Bfountain of youth^ hypothesis (Perrin 2009), the
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homomorphy of sex chromosomes is maintained by eventual

recombination events. Although X-Y recombination is

prevented in males, it can occur in XY females during occa-

sional sex reversal events given that recombination patterns

are expected to rely on phenotype rather than genotypic sex

(Perrin 2009). The fountain of youth hypothesis has been sup-

ported in studies on amphibians (Stöck et al. 2011b; Guerrero

et al. 2012; Stöck et al. 2013b).

Although most amphibians present homomorphic sex

chromosomes, heteromorphic conditions have been reported

in a few species, which primarily exhibit simple ZZ:ZW or

XX:XY sex chromosome systems (Schmid et al. 2010). Cases

of multiple sex chromosomes in amphibians have been spo-

radically reported. For example, in the anurans Strabomantis

biporcatus (formerly Eleutherodactylus maussi) (Schmid

et al. 1992) and Pristimantis riveroi (Schmid et al. 2003), an

X1X1X2X2♀:X1X2Y♂ sex chromosome system evolved

through centric fusion involving the original Y and a large

autosome. Recently, an X1Y1X2Y2 system was documented

in males of one population of Rana temporaria from Sweden

(Rodrigues et al. 2016). With the exception of birds, in which

only the simple ZW system has been observed to date, multi-

ple sex chromosome systems have been well-documented in

several species of amniotes, mostly mammals (Graves 2016;

Pokorná et al. 2014). The most intriguing and unusual multi-

ple sex chromosome meiotic chains among vertebrates have

been observed in the monotremes short-beaked echidna

(Tachyglossus aculeatus) and platypus (Ornithorhynchus

anatinus), in which males present 9 and 10 sex chromosomes,

respectively (Murtagh 1977; Grützner et al. 2004; Gruetzner

et al. 2006; Rens et al. 2007).

Commonly called the smoky jungle frog, Leptodactylus

pentadactylus (Laurenti, 1768) is a species distributed in the

Amazon basin, occurring in Colombia, Peru, Bolivia, Brazil,

Guyana, Suriname, and French Guyana (Frost 2017). In a

cytogenetic study on the Neotropical genus Leptodactylus, a

meiotic ring with 12 chromosomes, besides five bivalents,

was observed in one male specimen assigned to this species

(Gazoni et al. 2012). This structure was the result of multiple

reciprocal translocations confirmed by comparing replication

bands, mainly for the largest chromosomes of the

L. pentadactylus specimen (Gazoni et al. 2012). Cells with

2n = 22 and FN = 44, which are characteristic of most of

Leptodactylus species, were observed during mitotic meta-

phases; however, not all chromosomes were paired (Gazoni

et al. 2012). Nevertheless, the meiotic chain was apparently

resolved during meiosis with alternate segregation, allowing

the formation of balanced gametes (Gazoni et al. 2012). As

these findings were based on the analysis of only one male, it

was not possible to infer whether this chain is well-established

in the population or the species or whether it might represent a

sex chromosome chain. Karyotypes with 2n = 22 and FN = 44

have been described for individuals identified as

L. pentadactylus collected from other locations in Brazil,

Ecuador, and Peru (Brum-Zorilla and Saez 1968; Bogart

1974; Heyer and Diment 1974; Amaro-Ghilardi et al. 2004;

Coelho et al. 2016) without the occurrence of spontaneous

translocations (see comments in Gazoni et al. 2012).

The presence of sex chromosome chains is rare and has

been observed in some plants, invertebrates, and (as noted

above) the monotremes platypus and short-beaked echidna,

being their formation due to fusions or translocations involv-

ing autosomes (neo-sex chromosomes) (Ellegren 2011; Rens

et al. 2007; Šíchová et al. 2015; Šíchová et al. 2016). Meiotic

multivalents with more than four chromosomes have been

observed in a few anurans (Lourenço et al. 2000; Siqueira

et al. 2004; Campos et al. 2008) and fish (Gross et al. 2009);

however, in these cases, the translocations considered respon-

sible for the terminal chromosome associations are present in

both sexes. An alternative hypothesis for some of these chro-

mosome associations involves non-chiasmatic ectopic pairing

due to heterochromatic telomeric sequences (Schmid et al.

2010). Nevertheless, heteromorphisms suggesting transloca-

tions are present in most of these cases. In all these organisms,

the chains are not well-fixed in the studied populations, and

the number of elements forming the chains is labile.

Here, we present a chromosomal analysis of 13 specimens

(seven males and six females) of L. pentadactylus from

Paranaíta, Mato Grosso State, Brazil, using classical and mo-

lecular cytogenetic approaches to test the hypothesis of the

presence of a sex-related chromosomal chain in this popula-

tion. In addition, we included a genetic diversity analysis

using mitochondrial and nuclear markers to explore the vari-

ation within this population.

Material and methods

Classical and molecular cytogenetic analyses were performed

on six females and seven males of L. pentadactylus collected

in the Brazilian southern Amazon in the municipality of

Paranaíta, Mato Grosso State, between 2012 and 2014

(Table S1 – Electronic supplementary material). The analyzed

specimens were deposited in the Célio F. B. Haddad amphib-

ian collection (CFBH), Departamento de Zoologia, Instituto

de Biociências, UNESP, Rio Claro, São Paulo, Brazil. All

specimens were collected under permission provided by

Instituto Chico Mendes de Conservação da Biodiversidade

(ICMBio-SISBIO authorization number 30202-2).

Chromosome preparations

Deep sedation euthanasia by dermal absorption of lidocaine

hydrochloride 5% was in accordance with the Ethical

Committee in Animal Use (CEUA – permission number

027/2011), UNESP, Rio Claro, Brazil. Direct cytological
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preparations were obtained from the bone marrow, liver, in-

testine, and testis after a 4-h in vivo colchicine treatment

(Baldissera Jr. et al. 1993; Schmid 1978).

Conventional and molecular cytogenetic analyses

Conventional analysis was performed using Giemsa staining

in all animals, and chromosome preparations of males and

females were submitted to fluorescence in situ hybridization

(FISH) experiments, according to Pinkel et al. (1986), using

specific probes, such as biotinylated GATA(8) microsatellite

(Sigma, St. Louis, MO, USA), telomeric repeat TTAGGG(n)

(Telomere PNAFISHKit/FITC –DakoCytomation, Glostrup,

Copenhagen, Denmark), and major rDNA HM123 (Meunier-

Rotival et al. 1979). Comparative genomic hybridization

(CGH) was performed according to Abramyan et al. (2009)

with the following modifications: 300 ng of female and male

genomic DNAs labeled with Biotin-16-dUTP and Anti-

Digoxigenin (Roche Diagnostics, Indianapolis, IN, USA)

through nick translation, respectively, were co-precipitated

with female unlabeled digested DNA (100–500 bp). Then,

3 μL of probe was added to the mixture for hybridization; this

process was performed separately for male and female chro-

mosome preparations. The probes labeled with biotin were

detected with streptavidin-Alexa Fluor®-488 (green spectrum

– Invitrogen, San Diego, CA, USA), and digoxigenin-labeled

DNA was detected using anti-digoxigenin-rhodamine (red

spectrum – Roche Diagnostics, Indianapolis, IN, USA).

Images were captured using the software DP Controller and

a cooled camera (DP71) connected to a fluorescence micro-

scope Olympus BX51 (Olympus Corporation, Shinjuku,

Tokyo, Japan). Slight uniform adjustments in contrast were

performed using DP Manager Software. Figures were orga-

nized using the Corel X6 Suit program (Corel Corporation,

Ottawa, ON, Canada).

DNA sequences analyses

We extracted whole genomic DNA from ethanol-preserved

tissues (liver or muscle) using either the ammonium acetate

precipitation method (Maniatis et al. 1982) or QIA Quick

DNeasy kits (Qiagen Inc., Hilden, North Rhine-Westphalia,

Germany) following the manufacturer’s guidelines. We am-

plified and sequenced two mitochondrial (16S ribosomal RNA

gene (16S), cytochrome oxidase c subunit I (COI)) and two

nuclear (brain-derived neurotrophic factor gene (BDNF), cel-

lular myelocytomatosis gene (C-myc)) gene fragments for all

analyzed specimens. DNA fragments were amplified by stan-

dard PCR technique using the primers listed in Table S2 –

Electronic supplementary material (Crawford 2003; Lyra

et al. 2016; Palumbi et al. 1991; Van der Meijden et al.

2007; Wiens et al. 2005). PCR products were purified via

enzymatic reaction and sequenced with the BigDye™

terminator Cycle Sequencing Kit v3.1 (Applied Biosystems,

CA, USA) in an automatic Sequencer 3730XL by Macrogen

Inc., Seoul, South Korea. Sequences were verified and direct

and reverse sequences were converted to a single contig using

Geneious Pro software V6.1.5 (Biomatters Ltda). The se-

quences were deposited in GenBank (Table S1 – Electronic

supplementary material). Alignments were conducted in the

online version of MAFFT v6 (Katoh 2013), and sequences

from each gene fragment were converted into unique haplo-

types using the collapser function of Fabox software (Villesen

2007). We inferred haplotype networks for each gene frag-

ment using TCS v1.21 (Clement et al. 2000).

To better understand the relationship between the samples

analyzed here and other populations of L. pentadactylus, we

estimated maximum-likelihood phylogenetic tree using

the16S sequences. We included all 16S sequences of

L. pentadactylus available in GenBank along with some

closed related species (see Fig. 4 for accession numbers).

The phylogenetic inference was done in PhyML 3.0 using

Smart Model Selection option (Guindon et al. 2010; Lefort

et al. 2017). We also estimated uncorrected p-distances be-

tween populations and species using MEGA v.6 (Tamura

et al. 2013).

Results

Conventional Giemsa-staining cytogenetic analyses

The karyotype of the analyzed specimens presented 2n = 22

and FN = 44 (Fig. 1a, b). Some of the chromosomes were not

paired in males, whereas all seven females had 11 pairs of

homologous chromosomes. Six X and six Y chromosomes

were identified in the karyotypes of males, whereas 12 X

chromosomes where present in the females. The analyses of

meiotic cells in males, i.e., cells in diakinesis/metaphase I,

revealed translocated chromosomes forming a ring-shaped

chromosomal chain in all males analyzed. These transloca-

tions were recognized previously by comparison of replication

banding patterns in the study of Gazoni et al. (2012). This

closed chain harbored 12 elements that corresponded to

X1Y1X2Y2X3Y3X4Y4X5Y5X6Y6, and five typical biva-

lents are present (Fig. 1c). Chromosomes 1, X3 (formerly

chromosome 5), 3, 4, 5, X5 (formerly chromosome 10), and

X6 (formerly chromosome 11) were identified as metacentric;

chromosomes 2, X1 (formerly chromosome 3), and X4 (for-

merly chromosome 7) were identified as submetacentric; and

chromosomes X2 (formerly chromosomes 4) were identified

as subtelocentric (Fig. 1a). All seven males analyzed in this

work presented a karyotype with at least one chromosome

homologous to each chromosome pair of females. However,

the male karyotype presented six translocated chromosomes

that characterized the Y chromosomes, three of which were
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conspicuously unpaired (Fig. 1b). All meiotic cells from the

eight males studied presented the same chromosomal consti-

tution and ordering by elements size in the multivalent ring

(Fig. 1c). Metaphases II had two constitutions in all analyzed

males, in which six non-rearranged chromosomes (X chromo-

somes) or six rearranged chromosomes (Y chromosomes)

were found in addition to five autosomes (Fig. 1d).

Molecular cytogenetic analyses

Fluorescence in situ hybridization (FISH) using GATA(8) mi-

crosatellite as probes revealed signal exclusively in the

pericentromeric region of two small chromosomes in mitotic

metaphases of both sexes (Fig. 2a, b). In males, these chromo-

somes corresponded to a heteromorphic pair (X5 and Y5)

participating in the meiotic ring (Fig. 2c), and each chromo-

some was identified in two spermatocyte constitutions (Fig.

2d). The telomeric motifs were exclusively mapped to the

canonical telomeric regions, and intrachromosomal telomeric

sequences (ITS) were not observed in females (Fig. 2f) and

males (Fig. 2e), including those translocated Y chromosomes.

The chromosomes belonging to meiotic chain are associated

by terminal regions, i.e., telomere-telomere contact. The

HM123 rDNA (18S + 28S) probe hybridized in the terminal

regions of the short arms of chromosomes 8 in males and

females, which form one of the bivalents in male meiosis,

out of the chromosome chain (Fig. 2f (inset)). The CGH

experiments did not reveal differential hybridization signal

intensity between males and females using male and female

genomic DNAs as co-hybridized probes. Faint signals for the

two probes were observed along the entire euchromatin, and

stronger signals were observed in centromeric heterochroma-

tin and terminal regions (Figs. 3 and 4).

Sequence analyses

We found very low genetic variability among samples for both

mitochondrial and nuclear markers (Fig. S1 – Electronic sup-

plementary material), supporting that all individuals belong to

the same population. Phylogenetic inferences revealed two

clades for L. pentadactylus, one including all samples from

Paranaíta, MT, and the other including samples from Peru,

Brazil (Pará State), and French Guiana. The uncorrected p-

distance between samples from Paranaíta and others

L. pentadactylus ranged between 3.4 and 4.9%. The distances

between clades for 16S fragment (sensu Vieites et al. 2009)

might suggest that L. pentadactylus is a complex of species

that deserves further taxonomic investigations.

Discussion

An established chromosomal chain with 12 chromosomes in

Leptodactylus pentadactylus presented in this study revealed

Fig. 1 Giemsa stained

chromosomes of L. pentadactylus

from Paranaíta, MT, Brazil.

Numbers in parentheses refer to

the presumed ancestral

chromosomes, compared with

L. pentadactylus previously

studied from other locations, as

well as with other species of

Leptodactylus phylogenetically

close to L. pentadactylus (all of

them without heteromorphisms or

sex chromosomes recognized). a

Karyotype of female. b

Karyotype of male. c Meiotic

(diakinesis) chromosomes of two

males showing the same ordering

of chromosomes in their ring-

shaped chains composed of 12

sex chromosomes. d Two meiotic

(metaphase II) constitutions in

male L. pentadactylus: autosomes

plus Y chromosomes (left) and

autosomes plus X chromosomes

(right). Scale bar corresponds to

5 μm
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an unprecedentedly high number of sex chromosomes in ver-

tebrates. The species previously holding this record was the

platypus (Ornithorhynchus anatinus), with 10 XY chromo-

somes arranged in an open chain during diakinesis.

Additionally, the relative number of sex chromosomes to au-

tosomes is higher in L. pentadactylus than in the platypus. The

platypus has 10 sex chromosomes in a karyotype of 2n = 52

chromosomes (Grützner et al. 2004; Gruetzner et al. 2006),

whereas L. pentadactylus has greater than 50% of its chromo-

somes represented by sex chromosomes (12 in a karyotype of

2n = 22 chromosomes). As previously demonstrated for a sin-

gle L. pentadactylus male (Gazoni et al. 2012), the FISH-

mapped telomere sequences did not identify ITSs

(intrachromosomal telomeric sequences), in both male and

female mitotic metaphases. This occurs despite the transloca-

tions that occurred in the karyotype, and terminal telomere

signals confirmed the presence of 12 chromosomes in the

meiotic ring.

The translocation steps that occurred in the Y chromo-

somes might have led to a reduction of recombination events

with the presumably non-translocated X chromosomes, as

commonly occurring in evolving sex chromosomes (Wright

et al. 2016; Bachtrog et al. 2014; Graves 2016). In

L. pentadactylus, it is expected that a minimum of seven

translocated chromosomal segments have occurred among

the Y chromosomes, with the presence of at least two

rearranged regions in one of the Y chromosomes, to form

the closed chain, as demonstrated by Gazoni et al. (2012).

The factors that allowed L. pentadactylus to accumulate

these numerous translocations remain unclear. Like well doc-

umented in other derived sex systems, the chromosomes in-

corporated in the multivalent chain in males are potentially

Fig. 2 FISH using three different

repetitive DNA sequences in

chromosomes of L. pentadactylus

from Paranaíta, MT. a GATA(n)

repeats accumulation in one pair

of X chromosomes

(homomorphic) in female. b

GATA(n) microsatellite repeats

accumulation in an

heteromorphic chromosome pair

(one X and one Y chromosome)

in male. c Diakinesis from male

showing the association of the

chromosome pair with GATA(n)

accumulation in chain. d

Metaphases II frommale showing

segregation of the X and Y

chromosomes in distinct

spermatocyte karyotypes. e

Telomeric TTAGGG(n) repeats

distribution in mitotic

chromosomes of female. f

Telomeric mapping in male

diakinetic chromosomes of male;

the inset shows rDNA

hybridization in the bivalent

composed by chromosomes 8.

Scale bar corresponds to 5 μm
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less recombinant, a fact that could optimize or increase partic-

ular antagonist genes, thereby providing advantages to the

heterogametic sex or to the species, as discussed in Pokorná

et al. (2014), although it deserves more experimental analysis,

for example, using antibodies to study the synaptonemic

complex.

KX032569 Leptodactylus pentadactylus CFBH36694 Paranaita MT Brazil

KX032570 Leptodactylus pentadactylus CFBH36695 Paranaita MT Brazil

KX032565 Leptodactylus pentadactylus CFBH36693 Paranaita MT Brazil

KX032564 Leptodactylus pentadactylus CFBH36691 Paranaita MT Brazil

KX032571 Leptodactylus pentadactylus CFBH36696 Paranaita MT Brazil

KX032568 Leptodactylus pentadactylus CFBH36692 Paranaita MT Brazil

KX032567 Leptodactylus pentadactylus CFBH36690 Paranaita MT Brazil

KX032566 Leptodactylus pentadactylus CFBH36697 Paranaita MT Brazil

KX032563 Leptodactylus pentadactylus CFBH36566 Paranaita MT Brazil

KX032562 Leptodactylus pentadactylus CFBH36565 Paranaita MT Brazil

KX032572 Leptodactylus pentadactylus CFBH39773 Paranaita MT Brazil

KX032573 Leptodactylus pentadactylus CFBH39774 Paranaita MT Brazil

KX032574 Leptodactylus pentadactylus CFBH39775 Paranaita MT Brazil

EU201134 Leptodactylus pentadactylus 181mc Tibourou French Guiana

AY947867 Leptodactylus pentadactylus MZUSP 70917 Kukoinhokren PA Brazil

AY947868 Leptodactylus pentadactylus USNM 303466 Altamira PA Brazil

KM091607 Leptodactylus pentadactylus USNM 268971 Madre de Dios Peru

AY326017 Leptodactylus pentadactylus FC13095 Rio Penitencia Costa Rica

AY947862 Leptodactylus savagei USNM 534219 Colon Honduras

AY943238 Leptodactylus pentadactylus Bocas del Toro Panama

AY947866 Leptodactylus savagei USNM 298079 Bocas del Toro Panama

AY947864 Leptodactylus peritoaktites QCAZ 17056 Ecuador

JN691169 Leptodactylus myersi 1890T Trinite French Guiana

KM091601 Leptodactylus myersi S3

KM091606 Leptodactylus latransMNRJ 30733

100

8 9

100

5 6

6 8

9 6

6 9

6 2

8 6

5 8

9 7

0.02

Fig. 4 Maximum-likelihood tree obtained for Leptodactylus

pentadactylus and closely related species and geographical distribution

of samples. Red star indicates L. pentadactylus from Paranaíta, MT,

Brazil. Black dot indicates other samples of L. pentadactylus available

in GenBank. GenBank accession numbers are shown in each terminal.

There are two sequences of L. pentadactylus from Panamá and Costa

Rica, respectively. These sequences are probably misidentified and

might be Leptodactylus savagei according geographical location and

genetic diversity

Fig. 3 Comparative genome

hybridization (CGH) in female

and male of L. pentadactylus,

showing no particular

chromosome regions for both

sexes. Red (male genomeDNA—

anti-digoxigenin-rhodamin de-

tected) and green (female

genome DNA—streptavidin-

Alexa Fluor-488 detected)

spectrum merged in female (a)

and male (c), and red, green, and

blue (DAPI staining) spectrum

merged: female (b) and male (d).

Scale bar corresponds to 5 μm
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The stable chromosome constitutions found for each sex of

L. pentadactylus demonstrate that the sex-linked chromo-

somes are fixed in the analyzed population. Additionally, the

balanced proportion of males and females (7♂ and 6♀) col-
lected randomly in the wild may suggest no interference of the

translocations in the sex ratio. Microsatellite motifs are com-

mon in the Y/W chromosomes in diverse sauropsid taxa, sug-

gesting that these repetitive motifs are commonly present in

sauropsid genomes at low copy numbers and that amplifica-

tions of these motifs might have a functional role in compos-

ing the constitutive heterochromatin of sex chromosomes

(Matsubara et al. 2016). These authors proposed that the am-

plification of microsatellite repeats is tightly associated with

the differentiation and heterochromatinization of Y/W chro-

mosomes in sauropsids and other taxa. GATA and AGAT

repeat motifs, which are considered as the same repeat motif

because they have the same hybridization patterns (Matsubara

et al. 2016), were amplified and hybridized to sex chromo-

somes of Mus musculus (Mammalia, Muridae) (Singh et al.

1994), the turtle species Chelodina longicollis (Chelidae), and

the squamate species Notechis scutatus (Elapidae), Bassiana

duperreyi (Scincidae), Aprasia parapulchella (Pygopodidae),

and four Anolis species (Polychrotidae) (O’Meally et al. 2010;

Matsubara et al. 2013; Gamble et al. 2014; Rovatsos et al.

2015; Matsubara et al. 2016). However, no data regarding

the accumulation of microsatellites on the chromosomes of

anurans are presently available.

The GATA(n) microsatellite accumulation in one chromo-

some pair that participates in the meiotic sex-ring suggests the

initial differentiation of at least one chromosome pair in the

meiotic sex chain in L. pentadactylus. This marker provided

additional evidence for the heteromorphic condition of one

small pair, with the presence of fluorescence signals

pericentromerically in one clearly heteromorphic chromo-

some pair (submetacentric X, and subtelocentric Y – Fig.

2b) in males and in a homomorphic pair (submetacentrics

XX – Fig. 2a) in females.

The same pattern of this marker observed in the chromo-

some pair participating in the sex chromosome chain, as well

as the presence of the rDNA exclusively observed in the chro-

mosomes 8 of both sexes, forming a bivalent outside the chain

in males (as reported previously for a male specimen –Gazoni

et al. 2012), reinforces that the chromosomes participating in

the chain are the same in all analyzed males and that the

chromosome rings are well-established in this species.

CGH data on amphibian chromosomes were only reported

to Xenopus laevis and Xenopus tropicalis (Uno et al. 2008),

the cane toad Rhinella marina (as Bufo marinus) (Abramyan

et al. 2009), and Pseudis tocantins (Gatto et al. 2016). In the

Xenopus study, males and females exhibited the same hybrid-

ization signals as observed here for L. pentadactylus; no de-

tectable sex-specific signals were observed, even between the

known homomorphic sex chromosomes. In Rhinella marina,

specific signals were observed in one chromosome 7 in fe-

males, thereby confirming a ZZ/ZW sex chromosome system

involving the NOR-bearing chromosomes. In Pseudis

tocantins, CGH experiments suggested that different

heterocromatic bands in the Z and W chromosomes may be

due to the presence of different types of sequences or also due

to variation in the number of sequences present in both the

chromosomes.

Our CGH analyses suggest that the absence of sex-specific

signals could be due to absence, insignificant loss or gain, or

due to non-differentiation of DNA content of the sex chromo-

somes in L. pentadactylus. Although the technique presents

limitations to detect minor molecular alterations, this may fur-

ther suggest an absent or initial stage of content differentiation

of this multiple sex chromosome system, with no evident mo-

lecular differentiation between the heteromorphic sex

chromosomes.

Leptodactylus pentadactylus is a widespread species and

the karyotypes found in the males specimens from Paranaíta,

MT, Brazil, are distinct compared with those found from other

populations in the Amazon basin previously karyotyped

(Brum-Zorilla and Saez 1968; Bogart 1974; Heyer and

Diment 1974; Coelho et al. 2016). These authors described

indistinct chromosomal constitutions for both males and fe-

males, with karyotypes very similar to the described for fe-

males in this study. An exception was the karyotype of one

specimen of L. pentadactylus collected in the municipality of

Claudia (east of state of Mato Grosso) and analyzed by

Amaro-Ghilardi et al. (2004), who found rearrangements

which, at that time, were attributed to have originated after

in vitro fibroblast culture procedure. Unfortunately, the au-

thors could not determine the sex or visualize meiotic chro-

mosomes of the specimen, a small juvenile (Gazoni et al.

2012). This could be a priority area to study adult specimens,

as the Claudia population may present the same karyotype

features as the specimens from Paranaíta, in addition to a

possible closer phylogenetic relationship.

We also found high genetic distances between Paranaíta

population and other L. pentadactylus populations distributed

in the Amazon basin, suggesting that it may represent a com-

plex of species. These data together suggest that detailed stud-

ies of geographic variation in morphology, cytogenetic, and

molecular data, including specimens from Suriname, the type

location for L. pentadactylus, are important to shed light on

the taxonomic status of these confusing taxa. More important-

ly, this will lead to a better understanding of the distribution

and evolution of this multiple sex chromosome system.

For now, we suggest that the karyotype differences present

in this potential complex of species could possibly have an

important role in their evolution process, where the rearrange-

ments found in L. pentadactylus from Paranaíta, MT, may be

responsible for partial or even complete reproductive isolation

of this population.
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New approaches, particularly those involving sex-related

DNA sequences identification and mapping, synaptonemal

complex analyses, and chromosome painting with

chromosome-specific probes, are strongly interesting in the

L. pentadactylus species group. Undoubtedly, this special case

of multiple sex chromosomes makes L. pentadactylus an in-

teresting organism for studies aiming to improve knowledge

on the origin, evolution, and biological significance of this

special genome organization.
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