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ABSTRACT

Background: Internet gaming disorder (IGD) is included in the DSM-5 as a provisional diagnosis.

Whether IGD should be regarded as a disorder and, if so, how it should be defined and thresholded

have generated considerable debate.Methods: In the current study, machine learning was used, based on

regional and interregional brain features. Resting-state data from 374 subjects (including 148 IGD

subjects with DSM-5 scores ≥5 and 93 IGD subjects with DSM-5 scores ≥6) were collected, and

multivariate pattern analysis (MVPA) was employed to classify IGD from recreational game use (RGU)

subjects based on regional brain features (ReHo) and communication between brain regions (functional

connectivity; FC). Permutation tests were used to assess classifier performance. Results: The results

demonstrated that when using DSM-5 scores ≥5 as the inclusion criteria for IGD subjects, MVPA could

not differentiate IGD subjects from RGU, whether based on ReHo or FC features or by using different

templates. MVPA could differentiate IGD subjects from RGU better than expected by chance when

using DSM-5 scores ≥6 with both ReHo and FC features. The brain regions involved in the default

mode network and executive control network and the cerebellum exhibited high discriminative power

during classification. Discussion: The current findings challenge the current IGD diagnostic criteria

thresholding proposed in the DSM-5, suggesting that more stringent criteria may be needed for

diagnosing IGD. The findings suggest that brain regions involved in the default mode network and

executive control network relate importantly to the core criteria for IGD.
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INTRODUCTION

Because internet gaming disorder (IGD) has been associated
with severe negative consequences, such as impaired psy-
chological states, social deficits, and poor academic perfor-
mance (Ioannidis et al., 2019; Przybylski, Weinstein, &
Murayama, 2017; Yao et al., 2017; Zheng et al., 2019), the
American Psychiatric Association has included IGD as a
potential diagnosable psychiatric disorder (DSM-5, https://
www.psychiatry.org/psychiatrists/practice/dsm). More
recently, the eleventh edition of The International Classifi-
cation of Diseases (ICD-11) has included criteria for gaming
disorder (ICD-11, https://icd.who.int/browse11/l-m/en).
The DSM-5 proposed nine criteria for diagnosing IGD that
were adapted from gambling disorder and that have been
widely used in studies and clinical contexts (Petry &
O’Brien, 2013; Petry et al., 2014), although evidence sup-
porting their validity has been debated.

However, the direct transposition of IGD criteria from
established diagnostic criteria for gambling disorder and the
inclusion of dimensions such as tolerance or withdrawal
have generated debate and controversy (Deleuze et al., 2017;
Griffiths et al., 2016; Kardefelt-Winther et al., 2017; Petry
et al., 2016). Evidence regarding features of IGD varies
across studies (Brand et al., 2019; Kiraly & Demetrovics,
2017). For example, prevalence estimates of IGD vary widely
and range from less than 1% to approximately 50% (Petry &
O’Brien, 2013), with somewhat more narrow ranges (0.7–
27.7%) reported internationally (Mihara & Higuchi, 2017;
Rehbein, Kliem, Baier, Mossle, & Petry, 2015) and from 0.3
to 1% in an online survey (Przybylski et al., 2017). Some
differences relate to methodological approaches and varying
definitions of IGD. In addition to prevalence, potential
predictive factors (Dong, M. Wang, et al., in press; Dong,
Zheng, et al., 2018; Strittmatter et al., 2016; Wartberg,
Kriston, Zieglmeier, Lincoln, & Kammerl, 2019) and nega-
tive effects (Dong, Liu, Zheng, Du, & Potenza, 2019; Dong,
Wang, Du, & Potenza, 2018; van den Eijnden, Koning,
Doornwaard, van Gurp, & Ter Bogt, 2018) of IGD have been
debated, and whether IGD could potentially be regarded as a
mental disorder remains controversial (Aarseth et al., 2017;
Potenza, 2018; Quandt, 2017; van Rooij et al., 2018). These
debates suggest that further research is needed into IGD
(Van Rooij & Kardefelt-Winther 2017), with investigations
needed to investigate its defining features and how it may be
differentiated from recreational game use (RGU). Under-
standing the pathophysiology of IGD may provide insight
into these debates.

Studies of IGD have suggested specific neural un-
derpinnings. For example, brain regions involved in reward
processing (including the nucleus accumbens (NAcc) and
striatum (Brand et al., 2019; Dong, M. Wang, H., Zheng
et al., 2020; Ziliang Wang et al., 2018) and executive function
(including the anterior cingulate cortex (ACC), orbitofrontal
cortex (OFC), inferior frontal gyrus (IFGs) and dorsolateral
prefrontal cortex (DLPFC) (Dong, Wang, Zhang, Du, &
Potenza, 2019; Zheng et al., 2019) have been implicated.
Relatively decreased engagement of executive control

circuits and increased responses to gaming cues in reward-
related brain regions have been observed, suggesting possible
aberrant neural processing and functional coordination
among these brain regions (Dong, Huang, & Du, 2011;
Palaus, Marron, Viejo-Sobera, & Redolar-Ripoll, 2017; M.
Wang, Dong, Zheng, Du, & Dong, 2020).

In addition to task-based studies, resting-state fMRI has
been employed to investigate regional and large-scale neural
network function and dysfunction. During rest, low-fre-
quency (0.01–0.08 Hz) blood oxygen level-dependent (BOLD)
fluctuations in functional magnetic resonance imaging (fMRI)
signals may relate to spontaneous neuronal activity, and
correlational analytic approaches have proven effective for
measuring functional connectivity (FC) network alterations in
neuropsychiatric conditions including addictions (Park et al.,
in press; M. Wang, N. Zeng et al., in press; Z. Wang et al.,
2019). Resting-state FC measured by the correlation between
two fMRI time series has been used for the discrimination of
psychiatric disorders (Biswal et al., 2010; Cai, Griffiths, Kor-
gaonkar, Williams, & Menon, in press; Yan et al., 2019). In
dealing with resting-state data, the regional homogeneity
(ReHo) also a commonly used method of rs-fMRI data
analysis, which reflects the synchronized neural activity in
functionally related brain regions. It has also been considered
an important index for changes in spontaneous neural activity
in the resting brain (Tian, Ren, & Zang, 2012; Zang, Jiang, Lu,
He, & Tian, 2004).

Resting-state fMRI could enhance the understanding of
pathophysiological mechanisms underlying failures to con-
trol gaming impulses in IGD (Park et al., in press; Y. Wang,
Wu, Luo, Zhang, & Dong, 2017; Z. Wang et al., 2019).
Studies have also suggested dysregulation of distributed
neural networks encompassing executive control over crav-
ings rather than the functional breakdown of a single
discrete brain region (Dong, Wang, Wang, Du, & Potenza,
2019; Park et al., in press; R. Wang et al., 2019). Abnormal
(i.e., differing from healthy comparison subjects) executive
control and reward processing have been reported in IGD
using resting-state fMRI FC, which detects synchronized
spontaneous activity among anatomically distinct regions or
networks. For example, studies have reported decreased FC
among executive-control and reward-related brain regions
(Chen et al., 2016; Han et al., 2018; Kim et al., 2019; Yuan
et al., 2017), suggesting imbalanced networks relating to
executive control and reward processes. Theoretical models
of IGD have proposed that executive control and reward
circuits contribute importantly and that the trade-off be-
tween these circuits may promote poorly controlled behav-
iors in IGD and other addictive disorders (Brand et al., 2019;
Dong & Potenza, 2014).

Although these studies provide insight into biological
mechanisms underlying IGD, there exist significant study
limitations. First, regional analysis may only identify brain
features related to specific discrete brain regions; this type of
analysis may not provide a neural-network-level view of the
brain. Second, seed-based FC is limited to obtaining infor-
mation related to the selected regions of interest, making it
difficult to understand whole-brain patterns of FC (van den
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Heuvel & Hulshoff Pol, 2010). Third, traditional group-level
statistical methods do not provide a mechanism for evalu-
ating the discriminative power of identified connections at
the individual level (Craddock, Holtzheimer, Hu, & May-
berg, 2009).

Multivariate pattern analysis (MVPAs) may overcome
some of these limitations and provide insight into IGD as a
diagnostic entity. MVPA has recently been utilized to
investigate potential brain signatures for clinical diagnoses in
mental disorders (Woo, Chang, Lindquist, & Wager, 2017).
The theoretical hypothesis is that if an MVPA-based clas-
sifier can label new samples with better-than-random ac-
curacy, then the two populations are likely to be different,
and the classifier may capture population-related differences
(Erickson, Korfiatis, Akkus, & Kline, 2017; Zeng et al., 2012).
In MVPA, the support vector machine (SVM) is a
commonly used approach. MVPA has successfully distin-
guished people with major depression from non-affected
individuals (Zeng et al., 2012) and identified putative neu-
roimaging makers for obsessive-compulsive disorder (Bruin,
Denys, & van Wingen, 2019) and biological markers for
bulimia nervosa (Cyr, Yang, Horga, & Marsh, 2018). MVPA
has also successfully been used to differentiate people with
substance addictions from those without based on ReHo (Y.
Zhang et al., 2011). While MVPA has proven useful in many
psychiatric disorders, it has yet to be applied to IGD (Z.
Wang, Dong, Du, Zhang, & Dong, 2020).

To date, it is unknown whether MVPA can capture
regional or whole-brain resting-state FC patterns to
discriminate and identify individuals with IGD from those
with RGU at the individual subject level with a high degree
of accuracy. MVPAs abilities may be valuable in specifying
neural mechanisms underlying behavioral features of IGD
and providing additional information to advance our un-
derstanding of IGDs pathophysiology and diagnostic char-
acteristics.

We aimed to use regional brain features (ReHo) and the
FC to determine whether MVPA could distinguish IGD
subjects from RGU based on current diagnostic criteria for
IGD. To investigate, we used MVPA to determine whether

IGD subjects may be differentiated from those with RGU;
(2) whether the current proposed diagnostic criteria may
link to MVPAs propensity to distinguish IGD and RGU
individuals; and, (3) if so, which regions show high
discriminative power in discriminating IGD and RGU sub-
jects.

METHODS AND MATERIALS

Participant selection

Valid resting-state data from 374 subjects (148 IGD subjects
(DSM-5 score ≥5), with 93 IGD subjects scoring ≥6), and
226 RGU subjects) scanned between April 2016 and April
2019 were selected for the current study. Exclusion criteria
(e.g., incomplete information, poor spatial normalization,
incomplete brain coverage, excessive head motion) and final
inclusions are provided in Table 1.

Criteria for selection of IGD and RGU subjects have been
reported in our previous studies (Dong, M. Wang et al., in
press; Dong, M. Wang, Z. Wang et al., 2020) and are
described briefly below. IGD diagnosis was determined
based on scores of 50 or more on Young’s internet addiction
test (IAT, www.netaddiction.com) (Young, 2009) and,
concurrently, by meeting the proposed DSM-5 IGD criteria
(Petry et al., 2014) (Table 1). RGU participants were
required to meet fewer than 5 of the 9 proposed DSM-5
criteria for IGD and to score less than 50 on Young’s IAT.

All participants were right-handed and were university
students recruited through advertisements. All participants
provided written informed consent and underwent struc-
tured psychiatric interviews (using the Mini-International
Neuropsychiatric Interview (MINI)) (Lecrubier et al., 1997)
performed by an experienced psychiatrist. All participants
were free of psychiatric disorders (including major depres-
sion, anxiety disorders, schizophrenia, and substance-
dependence disorders) as assessed by the MINI. Prior to
fMRI, participants were asked to complete a 10-item gaming
urge questionnaire based on a tobacco craving questionnaire

Table 1. Demographics and clinical characteristics of all subjects

IGD RGU P-value

N 5 148

Male 5 86

Female 5 62

N 5 226

Male 5 141

Female 5 85 Group

Demographics

Age (Year) (M ± SD) 21.25 ± 2.455 21.60 ± 2.484 0.185

Years of education (M ± SD) 14.56 ± 1.494 14.61 ± 1.408 0.773

Clinical characteristics (M ± SD)

IAT score 64.91 ± 8.618 39.21 ± 10.62 0.000

DSM score 5.969 ± 1.045 2.529 ± 1.417 0.000

Gaming time (Hours/Week) 8.264 ± 3.641 6.146 ± 3.063 0.000

Gaming history (Year) 3.705 ± 0.6632 3.745 ± 0.664 0.594

Abbreviations: IGD, Internet Gaming Disorder; RGU, recreational game use; M, mean; SD, standard deviation; IAT, Internet Addiction Test;

DSM, number of DSM-5 criteria.
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using a 10-point response scale (Cox, Tiffany, & Christen,
2001).

Data acquisition

During fMRI, subjects were instructed to keep their eyes
closed, relax, remain awake and perform no specific cogni-
tive exercises. Resting-state functional data (T2*-weighted
images) were acquired before any tasks were performed
using a 3T Siemens Trio MRI scanner. Earplugs and a head
coil with foam pads were used to minimize machine noise
and head motion. Specific parameters are as follows: repe-
tition time 5 2,000 ms, interleaved 33 axial slices, echo time
5 30 ms, thickness 5 3.0 mm, flip angle 5 908, field of view
(FOV) 5 220 mm 3 220 mm, matrix 5 64 3 64. To
minimize head movement, all subjects’ heads were fixed with
foam padding. Each fMRI scan lasted 7 min and included
210 imaging volumes.

Data preprocessing

Resting-state data analysis was performed using DPABI
(Yan, Wang, Zuo, & Zang, 2016), a user-friendly pipeline
package that incorporates recent research advances in head-
motion control and measurement standardization. Pre-
processing was performed using a standard approach that
consisted of the following steps: (1) the initial 10 vol were
discarded, and slice-timing correction was performed; (2)
the time series of images for each subject were realigned
using a six-parameter (rigid-body) linear transformation; (3)
individual T1-weighted images were co-registered to the
mean functional image using a 6-degrees-of-freedom linear
transformation without re-sampling and was then
segmented into gray matter (GM), white matter (WM) and
cerebrospinal fluid (CSF); (4) transformations from indi-
vidual native space to the MNI space were computed with
the DARTEL tool; (5) the Friston 24-parameter model was
used to regress out head-motion effects with global signal
regression (Fox, Zhang, Snyder, & Raichle, 2009); (6) the
mean framewise displacement (FD, derived from Jenkin-
son’s relative root-mean-square algorithm) was used to
address the residual effects of the residual motion analyses as
a covariate between group analyses; and, (7) band-pass
filtering between 0.01 and 0.08 Hz.

In global signal regression (GSR), artifactual negative
correlations were observed, but this technique was suggested
to improve the specificity of positive correlations and to
remove specific confounds from the data to facilitate the
evaluation of neurophysiological relationships (Fox et al.,
2009). For ReHo, most studies have not included GSR in
their analyses; for FC, the results with GSR are more readily
and reliably interpreted. Based on this information, the GSR
step was not included in ReHo but was included in FC
analyses in the current study.

The registered fMRI volumes with the Montreal
Neurological Institute template were divided into 116 re-
gions according to the automated anatomical labeling Atlas.
The Atlas divides the cortex into 90 regions (45 in each

hemisphere) and divides the cerebellum into 26 regions
(nine in each cerebellar hemisphere and eight in the vermis).

Support vector machine analyses using regional brain

features (ReHo)

The classification algorithm (SVM) was applied using the
Pattern Recognition for Neuroimaging Toolbox (PRoNTo)
(Schrouff, Rosa, Rondina, & Marquand, 2013) (http://www.
mlnl.cs.ucl.ac.uk/pronto) to estimate potential brain regions
contributing most to classifying IGD versus RGU subjects.
Briefly, the main steps of the SVM method include: (a)
extracting and selecting features, (b) selecting discriminative
regions, (c) training the SVM classifier model using the
training data, and, (d) evaluating the performance of the
SVM model using the evaluation data (Amarreh, Meyerand,
Stafstrom, Hermann, & Birn, 2014; Dyrba, Grothe, Kirste, &
Teipel, 2015).

In the present study, each 3D image was transformed
into a column vector of features, and each value corre-
sponded to a single corresponding voxel intensity. Thus, this
feature vector encoded the pattern of ReHo values. In
comparison, feature selection involves the selection of a
subset of features that facilitates learning (Noble, 2006; Orr�u,
Pettersson-Yeo, Marquand, Sartori, & Mechelli, 2012). In
this study, feature selection consisted of identifying brain
regions that are expected to differ between groups. The
above-mentioned procedures were automatically processed
in PRoNTos ‘Prepare feature set’ programs.

A leave-one-out cross-validation method was conducted
to perform SVM classifier validation, where feature selection
was performed on the training partition of the data each
time to avoid circularity effects. In this study, feature se-
lection involved excluding a single subject from each group
and training the classifier using the remaining subjects.
Then, the excluded subject pair was used to test the ability of
the classifier to classify new cases reliably. The above-
mentioned procedures were repeated for each subject pair
until the classifier could obtain a relatively unbiased estimate
of generalizability (Orr�u et al., 2012). The above procedures
were automatically processed in PRoNTos “Specify model”
programs. The entire process has been described in detail in
previous studies (Schnyer, Clasen, Gonzalez, & Beevers,
2017).

As for performance evaluation, once the SVM algorithm
was established, it was used to predict to which group a new
and previously unseen subject would belong (Orr�u et al.,
2012). A 1,000-times non-parametric permutation test (Cui,
Xia, Su, Shu, & Gong, 2016; Ecker et al., 2010; Schnyer et al.,
2017) was used to obtain a corrected p-value to determine
the statistical significance of the accuracy, sensitivity and
specificity. In detail, accuracy is the proportion of subjects
correctly classified into the patient or control group. Sensi-
tivity and specificity represent the proportion of subjects
classified correctly. In addition, receiver operating charac-
teristic (ROC) analysis and the AUC (area under the ROC
curve) were used to evaluate the performance of the classi-
fiers. The AUC represents the classification power of a
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classifier, and a larger AUC indicates better classification
ability (Cui et al., 2016; Fawcett, 2005).

Each model in PRoNTo calculates images representing
the weights per voxel and images summarizing the weights
per regions of interest, as defined by an atlas (Schrouff et al.,
2013). The regional contributions can be ranked in
descending order, yielding a sorted list of regions according
to their contribution to the classification model. To inves-
tigate the classification power of specific locations in the
brain, we computed vector weights and listed brain regions
with weights in the first 5%, cluster size >100 voxels.

SVM analyses using interregional brain features (FC)

For FC, the SVM was applied using LibSVM, a library for
SVMs (https://www.csie.ntu.edu.tw/∼cjlin/libsvm/). Based
on the LibSVM, the estimation of indexes and the final
estimation were performed using scripts (we include these
scripts in the Supplementary Materials). The detailed pa-
rameters are described below.

We obtained the regional mean time series for each in-
dividual by averaging the fMRI time series over all voxels in
each of the 116 regions. Pearson correlation coefficient was
used in evaluating the FC between each pair of regions. A
total of (116 3 115)/2 5 6,670 functional connectivity
matrix was extracted as classification features for each sub-
ject.

Abnormal FC patterns in IGD subjects could be repre-
sented by highly discriminating functional connections,
thus, by reducing the number of features could accelerates
the computation and reduces noise. For this, we first per-
formed ‘feature selection’ to construct the feature space for
classification. Second, we used the Kendall tau rank corre-
lation coefficient to estimate the discriminative power of a
feature, which can be quantitatively measured by its rele-
vance to the classification. By these steps, we can calculate a
distribution-free test of independence between two variables.

Leave-one-out cross-validation strategy was used to es-
timate the generalization ability of the classifiers. The final
feature set differs slightly between iterations, as the feature
ranking is based on a slightly different training data set in
each iteration of the cross-validation (the ‘one’ leaved-out is
different for each time). We abstracted the consensus FC of
each crossvalidation iteration, and denoted the consensus
FC discriminative power by averaging all iterations of the
cross-validation. We denoted the region weights (the relative
contribution to the identification) by calculating the occur-
rence number in the consensus functional connections.

(The scripts to run these above-described steps are
included as a “feature selection” in the Supplementary files).

After obtaining the features with high discriminative
power (25 in the current study, as obtained from the above-
mentioned step), we employed the SVM with a linear kernel
function to solve the classification problem. The best
parameter setting was reported as the final results.

Permutation tests were employed to estimate the statis-
tical significance of the observed classification accuracy. In
permutation testing, the class labels of the training data were

randomly permuted prior to training. Cross-validation was
then performed on the permuted training set, and the per-
mutation was repeated 1,000 times.

(The scripts to run “SVM classification” and “permuta-
tion test” steps are included as “svm classification” in Sup-
plementary files).

Ethics

The experiment conforms to the Code of Ethics of the
World Medical Association (Declaration of Helsinki). The
Human Investigations Committee of Zhejiang Normal
University approved this research. All subjects were uni-
versity students from Shanghai and were recruited through
advertisements. All participants provided written informed
consent before experimentation.

RESULTS

ReHo results

Classifier evaluation results with DSM-5 scores ≥5. In the
classification of the two groups, the area under the ROC
(AUC) was 0.74 (Fig. 1A). Using a leave-one-out cross-
validation strategy, the linear SVM classifier achieved an
accuracy of 73.8% (43.92% for IGD; 93.36% for RGU) when
using subjects with scores ≥5 in the DSM-5 criteria. This
result indicates that the SVM identified most IGD subjects as
RGU (Fig. 1B and C).

Classifier evaluation results with DSM-5 scores ≥6. In this
classification, the area under the ROC (AUC) was 0.95
(Fig. 2A). When using a more stringent threshold for
selecting IGD subjects (DSM-5 scores ≥6), the classifier
achieved an accuracy of 89.84% (63.44% for IGD; 98.58% for
RGU). The permutation test showed that the accuracy of
this classifier was significantly higher than that achieved by
chance (P 5 0.001; 1,000 permutation), which suggests that
the SVM can differentiate the two groups to a significant
degree (Fig. 2B and C).

Brain regions with high discriminative power. Using the
second criteria (DSM-5 score ≥6), the most informative
regions for classification between IGD subjects and RGUs
included the following: (1) bilateral inferior cerebellum
(AAL Label 104, 103); OFC (Label 6, 5); cuneus (Label 45);
inferior temporal gyrus (Label 89); middle frontal gyrus
(Label 8); and parahippocampal (Label 39). See details in
Supplementary Table 1.

FC results

Classification results using DSM-5 scores ≥5. Fig. 3A in-
dicates that using 25 indexes achieved the best results. Using
leave-one-out cross validation, the linear SVM classifier
achieved an accuracy of 60.42% (41.33% for IGD; 72.16% for
RGU). The permutation distribution of the estimate is
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shown in Fig. 3B, indicating that the classifier did not learn
the relationships between the data and labels and was likely
to be wrong. The accuracy for this classifier is worse than
that expected by random chance, which means that the SVM
could not well discriminate the two groups.

Classification results using DSM-5 scores ≥6. Given con-
cerns that IGD may be pathologizing RGU and the poor

ability of SVM to distinguish IGD and RGU groups using
the proposed diagnostic threshold, we next examined the
extent to which increasing the threshold to 6 criteria may
improve MVPAs ability to accurately distinguish IGD and
RGU groups. Fig. 4A indicates that using 25 indexes ach-
ieved the best results. Using leave-one-out cross validation,
the linear SVM classifier achieved an accuracy of 75.31%
(59.16% for IGD; 82.73% for RGU). The permutation test of

Fig. 1. Classification results using ReHo features with the IGD DSM-5 inclusion criteria ≥5. (A) Area under the curve (AUC; or receiver

operating characteristic (ROC)) showing the performance of the binary classifier. (B) Histogram showing the distribution of the two groups.

(C) Scatterplots showing discrimination between the two groups

Fig. 2. Classification results using ReHo features with the IGD DSM-5 inclusion criteria ≥6. (A) Area under the curve (AUC; or receiver

operating characteristic (ROC)) showing the performance of the binary classifier. (B) Histogram showing the distribution of the two groups.

(C) Scatterplots showing discrimination between the two groups

Fig. 3. Classification results using FC features with the IGD DSM-5 inclusion criteria ≥5. (A) Estimated estimation accuracy with a step size

5 25. (B) Area under the curve (AUC; or receiver operating characteristic (ROC)) curve showing the performance of the binary classifier
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Unauthenticated | Downloaded 08/27/22 10:30 AM UTC



the estimate is shown in Fig. 4B, indicating that the classifier
learned the relationships between the data and labels and
was likely to be correct.

Brain networks with high discriminative power. Supple-
mentary Table 2 shows FC that exhibited higher weights in
the classification process. These included regions in the
default-mode network (precuneus and middle temporal
gyrus) and the executive-control network (ACC and middle
frontal cortex).

Reproducibility processing

To avoid effects from the templates, we also used other
templates based on resting states, including the Yeo 17
functional networks template (Yeo et al., 2011). All results
showed that SVM could not distinguish IGD from RGU
subjects when using a cut-off of ≥5 (accuracy for IGD
subjects 5 52.03%; when using IGD ≥6, the accuracy rates
for IGD subjects increased to 60%, higher than that ex-
pected by random chance. See details in Supplementary
Materials).

In this study, we used a linear SVM classifier when
attempting to discriminate IGD from RGU subjects to
determine if MVPA could differentiate the IGD and RGU
groups. We found that when using the proposed DSM
threshold of ≥5 inclusion criteria, MVPA accuracy rates
were lower than those expected by chance, which means that
MVPA could not reliably detect differences between IGD
and RGU groups. When we used a more stringent threshold
(DSM-5 score ≥6), MVPA could discriminate the IGD
subjects from RGU at a higher rate than that expected by
chance, although accuracy was still rather low and could not
be used in clinical diagnosis. We believe these conclusions
are valid for the following reasons. (1) We investigated
regional features and FC as classifying vectors, and both
suggested similar conclusions. (2) In addition to structural
ROIs (AAL template), we also used brain networks origi-
nally from functionally defined regions, which also achieved
similar results. (3) Furthermore, choosing the generalization
rate as the statistic, the statistical significance of the observed
classification accuracies was estimated by permutation
testing.

DISCUSSION

On the diagnostic criteria for IGD

MVPA cannot reliably distinguish IGD from RGU subjects

when using DSM-5 criteria scores ≥5. When using DSM-5
scores ≥5 as inclusion criteria, MVPA could not reliably
distinguish IGD from RGU subjects, whether using regional
brain features (ReHo) or FC or through use of different
templates. In terms of specificity, based on ReHo features,
the accuracy rates for IGD subjects (43.92%) were lower
than those expected by random chance (50%), which sug-
gests that MVPA categorized most of the IGD subjects as
RGU during classification. Similar features were also
observed when using FC in MVPA. The accuracy rates for
IGD subjects (41.33%) were also lower than those expected
by random chance, and MVPA also categorized most of the
IGD subjects as RGU during classification.

According to the theoretical underpinnings of MVPA,
when the classifier can label new samples with better-than-
chance accuracy, then the two populations are likely to be
truly different, and the classifier can capture the population-
related differences (Golland & Fischl, 2003). However, in the
current situation, MVPA could not distinguish IGD from
RGU subjects, which suggests that the two populations
demonstrate similar neural features, and MVPA could not
capture the differences between these two groups.

To avoid template bias, we also tried the 17 functional
networks defined by Yeo et al. (2011). Using these functional
regions of interest, SVM also achieved a classification ac-
curacy that was worse-than-random.

Taken together, MVPA could not capture differences
between IGD and RGU when using the proposed DSM-5
diagnostic threshold; it more frequently categorized IGD
subjects as RGU. These results challenge the diagnostic
thresholding for IGD. If, as the current results suggest, there
is no biological difference clearly distinguishing IGD and
RGU groups, the findings raise questions regarding the
current criteria and threshold employed in the DSM-5.

MVPA can distinguish IGD from RGU subjects when using

DSM-5 scores ≥6. When we increased the stringency of the
IGD inclusion criteria to DSM-5 scores ≥6, the classification

Fig. 4. Classification results using FC features with the IGD DSM-5 inclusion criteria ≥6. (A) Estimated estimation accuracy with a step

size 525. (B) Area under the curve (AUC; or receiver operating characteristic (ROC)) showing the performance of the binary classifier
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accuracy improved. Using ReHo, the accuracy rates for IGD
subjects reached 63.44%, which is significantly higher than
expected by chance (P 5 0.001), which suggests that MVPA
can discriminate IGD from RGU subjects. Using FC in
MVPA, the accuracy rates for IGD reached 59.16%, which is
also higher than that expected by chance (P 5 0.033), albeit
not as robust as for ReHo. According to the theoretical
underpinnings of MVPA, the current results suggest that
MVPA can successfully distinguish IGD from RGU subjects
at the more stringent IGD threshold, and MVPA can cap-
ture differences between these two groups.

We can draw several conclusions from the results. First,
MVPA could distinguish IGD from RGU subjects at a more
stringent diagnostic threshold, which suggests that IGD
subjects show different brain features than RGU. This lends
support to the notion that IGD constitutes a specific psy-
chiatric disorder that can be identified using machine
learning using neurobiological data.

Second, although MVPA can differentiate IGD from RGU
subjects at a more stringent diagnostic threshold, the accuracy
rates were approximately 60%, which are higher than those
expected by chance but still considerably lower than ideal
accuracies for use in clinical settings (using an accuracy rates
higher than 85% may have good predictive power). The re-
sults suggest that although the linear SVM classifier learned
the relationship between the groups and classifies them with a
probability higher than that expected by chance, MVPA may
not reliably capture disorder-related resting-state patterns,
particularly when using the proposed diagnostic threshold.
This result might suggest that resting-state differences are still
not that significant between IGD and RGU subjects, partic-
ularly when using the proposed diagnostic threshold.

A summary of the results with different inclusion criteria.

Taking these two criteria into consideration, we can conclude
that, first, IGD subjects show different features than RGU,
which could be detected by MVPA when using a threshold of
DSM-5 scores ≥6. This finding supports the notion that IGD
can be recognized as a specific disorder because it has specific
neural features (both regional features and FC) distinguished
from those of RGU, providing support that IGD should be
considered an independent disorder rather than a concern
secondary to other psychopathology (van Rooij et al., 2018).

However, second, the above conclusions are based on a
threshold of DSM-5 scores ≥6. When using the proposed
diagnostic criteria (≥5), MVPA cannot distinguish the two
groups. This suggests that the current diagnostic criteria may
not be stringent enough, and more stringent inclusion criteria
may be needed. In the current study, although MVPA could
distinguish IGD from RGU subjects using resting-state data
and a more stringent diagnostic threshold, the accuracy rates
are still too low to be used in clinical settings.

Altered resting states in brain regions and

networks in IGD

Cerebellum. Altered connections were observed in the cer-
ebellum and in cerebellar connections with visual and

default-mode networks. Studies have reported abnormalities
in the cerebellum associated addictive disorders (Miquel
et al., 2016; Moreno-Rius & Miquel, 2017). We speculate
that aberrant cerebellar connectivity with the default-mode
network and affective network may partially underlie
emotional and cognitive symptoms seen in IGD.

Executive-control network. Executive-control networks are
widely studied in addictions, including IGD (Brand et al.,
2019). IGD patients show impairments in executive-control
functions, and in brain regions usually designated as within
executive-control networks (Brand et al., 2019; Dong, Wang,
Du, & Potenza, 2018; Zheng et al., 2019). In the current
study, the ReHo results showed that the OFC and the middle
frontal cortex regions were heavily weighted; the FC results
showed FC between the middle frontal cortex/ACC and
precuneus, and thalamus. The current results are consistent
with other findings implicating executive-control networks
in IGD.

Default-mode network. The default-mode network has been
suggested to support a baseline state of brain activity.
Abnormal function in the default-mode network has been
reported in neuropsychiatric disorders including schizo-
phrenia, attention-deficit hyperactivity disorder, depression,
Alzheimer’s disease and drug addictions (Greicius et al.,
2007; Pomarol-Clotet et al., 2008). Abnormalities in the
default-mode network in IGD have been reported in several
previous studies (L. Wang et al., 2016; Y. Wang et al., 2017;
J. T. Zhang et al., 2017).

A summary of altered brain regions and altered FC be-

tween brain regions. Both the ReHo and FC results found
that executive-network and default-mode networks were
heavily weighted when differentiating IGD from RGU sub-
jects. These results are consistent with previous studies of
IGD. However, in previous studies, reward-circuit-related
brain regions were often identified in the development and
maintenance of IGD; however, the current study did not
find a role for these regions in MVPA using resting-state
data. This result suggests that IGD involves executive-con-
trol failures relating to resting-state function, consistent with
prior findings. The extent to which MVPA may implicate
reward-related regions/networks using other data (e.g.,
functional data from cue-reactivity tasks) requires further
study.

Limitations and future directions. First, all subjects were
from China, and the results need validation using subjects
from other countries. Second, we only used resting-state
fMRI data. Further studies are needed using task-related
brain features or structural features. Third, we did not
measure cardiac or respiratory rates in the current study,
and these features may have been related to the low-fre-
quency domain of fMRI signals (Murphy et al., 2009) and
influenced the conclusions. Fourth, our consideration of
IGD criteria treated each similarly, and it is possible that
specific criteria may relate to neurobiological features more
closely than others. Fifth, criteria for IGD were investigated,
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and the extent to which the findings may extend to criteria
for ICD-11 gaming disorder warrant direct investigation.
Sixth, multi-modal imaging and clinical data might provide
better classification results for IGD and should be investi-
gated in future studies. Seventh, as the DSM-5 diagnostic
criteria are still in improving, and the final classification
results are based on the DSM-5 proposed criteria. Which
might affect the final conclusion of the current study.

CONCLUSIONS

Based on the findings above, we can draw several conclu-
sions. (1) MVPA can discriminate IGD from RGU subjects
based on resting-state fMRI and when using a more strin-
gent diagnostic threshold and can do so with an accuracy
higher than that expected by chance; these findings provide
support that IGD should be regarded as a legitimate mental
disorder, consistent with the World Health Organization’s
inclusion of gaming disorder in the ICD-11. (2) The DSM-5
diagnostic threshold warrants further consideration, partic-
ularly as related to resting-state neural functioning. (3) The
majority of the most discriminating brain regions/functional
connections were located within or in connection with the
cerebellum and executive-control and default-mode net-
works, thereby indicating that disease-related resting-state
network alterations may give rise to some mood and exec-
utive-control disturbances seen in IGD.
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