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Abstract. Power spectral density (PSD) analysis is an important part of understanding line-edge and linewidth
roughness in lithography. But uncertainty in the measured PSD, both random and systematic, complicates inter-
pretation. It is essential to understand and quantify the sources of the measured PSD’s uncertainty and to
develop mitigation strategies. Both analytical derivations and simulations of rough features are used to evaluate
data window functions for reducing spectral leakage and to understand the impact of data detrending on biases
in PSD, autocovariance function (ACF), and height-to-height covariance function measurement. A generalized
Welch window was found to be best among the windows tested. Linear detrending for line-edge roughness
measurement results in underestimation of the low-frequency PSD and errors in the ACF and height-to-height
covariance function. Measuring multiple edges per scanning electron microscope image reduces this detrending
bias. © 2015 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMM.14.3.033502]
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1 Introduction

Line-edge roughness (LER) and linewidth roughness (LWR)
in lithography have many detrimental impacts on the devices
being made. The nature of these impacts is a function of the
nature of the roughness, which includes both the amount of
roughness and its frequency content. Low-frequency rough-
ness, occurring over long length scales, behaves like an
error in the mean critical dimension or edge position,
resulting in feature-to-feature variation.1 High-frequency
roughness gives within-feature variation that we classically
recognize as a “rough” feature. The frequency behavior of
the roughness is usually characterized by its power spectral
density (PSD), which describes how much variance in the
feature can be found in each increment of frequency.
Knowing the PSD allows one to translate characteristics of
the roughness into effects of the roughness. An alternate
description is the autocovariance function (ACF), the Fourier
transform of the PSD. As many people have shown, meas-
uring the PSD involves important and subtle details.2–6

The PSD of a lithographically produced feature can be
thought of as existing over a nearly infinite range of frequen-
cies, with zero frequency representing the true average for an
infinitely long line or space, and the highest frequencies
reaching down to the atomic level. An idealization of reality
considers this frequency range as actually infinite, with a
continuous PSD describing the roughness. Measurement
of the PSD, however, is made by sampling the edge position
(in the case of LER) or the linewidth (in the case of LWR) of
a finite-length feature. In practice, the sampling distance is
considerably larger than the smallest distance where rough-
ness is still definable, and the finite-length of the sampled
line is far less than infinitely long (or even of the longest
feature being printed). For example, one might measure

512 points separated by a distance of 4 nm, for a total
line length of just over 2 μm. The resulting discrete PSD
exhibits not only random errors (measuring noise is funda-
mentally noisy), but systematic biases as well. The finite
length of the measured line gives rise to spectral leakage,
and the too-large sampling distance results in aliasing.

In my previous work on this topic, a number of important
random and systematic errors in PSD measurement were
identified and various mitigation strategies were proposed.2

Here, some additional effects will be investigated. First, the
use of different window functions will be explored to under-
stand their impact on spectral leakage. While the use of
any reasonable window function provides much better results
than the uniform (rectangular) window commonly employed,
many different windows have been proposed for many differ-
ent PSD applications. A range of window functions will be
evaluated here for the LER/LWR application. Next, the effect
of detrending—subtracting the mean or a best-fit line from the
measured edge—will be explored. Detrending is often neces-
sary but results in a systematic error in an important part of the
roughness spectrum—the low-frequency roughness.

2 PSD Uncertainty

Measuring roughness is noisy business. Since roughness is
by definition random, every measured feature will be dif-
ferent, producing a different PSD. It is well-known that
the measured PSD of random noise (sometimes called the
Wiener spectrum) has a relative standard deviation of one
at each frequency, that is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varðPSDðfÞÞ
p

hPSDðfÞi
¼ 1: (1)
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Further, the variance of the PSD at a given frequency is in-
dependent of the PSD at all other frequencies.7 Since the
PSD at each frequency is the sum of the squares of the
real and imaginary parts of the Fourier transform of the
roughness, a normal distribution of roughness will produce
a sampling distribution for the PSD that is χ2 with two
degrees of freedom (that is, an exponential distribution
with parameter 1/2). At the extremes of zero and the
Nyquist frequency, there is one degree of freedom since
the imaginary part of the Fourier transform will always be
zero at these frequencies. If PSDmðfÞ is the measured (esti-
mated) value of the PSD at a specific frequency, and
hPSDmðfÞi is the mean value averaged over many realiza-
tions of the roughness (that is, the true value), then with ν

degrees of freedom,

νPSDmðfÞ

hPSDmðfÞi
∼ χ2ðνÞ: (2)

Since the variance of the χ2 distribution is 2ν, we see that, in
general

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var½PSDmðfÞ�
p

¼
hPSDmðfÞi

ffiffiffiffiffiffiffiffi

ν∕2
p : (3)

Error bars can easily be established for every measured
PSD value. The ð1 − αÞ% confidence interval will be7

νPSDmðfÞ

χ21−α∕2ðνÞ
< hPSDmðfÞi <

νPSDmðfÞ

χ2α∕2ðνÞ
: (4)

If 95% confidence interval error bars are desired for a
measured PSD value, the critical values for the χ2ðν ¼ 2Þ
distributions are 0.051 and 7.38. The 95% confidence
interval for a measured PSD value would then be
(0.271 PSDmðfÞ, 39.5 PSDmðfÞ), a very wide and very
asymmetric range.

Because of this very high uncertainty for any measured
PSD value, it is common to measure multiple PSDs and aver-
age them. If M PSDs are measured and averaged together,
the resulting averaged PSD will have 2M degrees of free-
dom. Thus, the standard deviation of the measurements of
the PSD are reduced by 1∕

ffiffiffiffiffiffiffiffiffi

ðMÞ
p

. As an example, averaging
25 PSDs will result in a 95% confidence interval for
each PSD point of [0.70 PSDmðfÞ, 1.55 PSDmðfÞ]. If 100
PSDs are averaged, the 95% confidence interval is
[0.83 PSDmðfÞ, 1.23 PSDmðfÞ]. For large degrees of free-
dom (>100, for example), the χ2 distribution approaches
a normal distribution with a standard deviation equal to
the mean∕

ffiffiffiffiffiffiffiffiffi

ðMÞ
p

An example of a single PSD and an aver-
aged PSD withM ¼ 25, each showing error bars, is found in
Fig. 1. Because the y-axis is on a logarithmic scale, the
lengths of the error bars will be the same for every data
point and it is sufficient to plot error bars for one data
point. The inclusion of error bars on a measured PSD should
be standard practice in order to avoid over interpretation of
the data, but unfortunately is quite rare.

Systematic errors in PSD measurement are caused by sev-
eral factors.2 Spectral leakage results from the finite value of
L∕ξ, the ratio of the measurement length to the correlation
length. Aliasing occurs when the object being measured has
power at frequencies greater than the sampling (Nyquist) fre-
quency, equal to 1∕ð2ΔyÞ for a sampling distance of Δy.

Averaging occurs whenever the measurement spot size is
an appreciable fraction of the sampling distance. Scanning
electron microscope (SEM) image noise increases the
PSD for all frequencies. All of these systematic errors can
be significant and vary in degree and form as a function
of the physical parameters of the PSD, in particular the cor-
relation length and the roughness exponent. Note that each of
these biases in PSD measurement is an artifact of the meas-
urement process, thus complicating interpretation of a meas-
urement that we hope will give insight into the true
roughness behavior of the feature. A thorough understanding
of these effects can be used to minimize and/or correct for the
systematic errors, resulting in a measured PSD much closer
to the actual PSD.2

3 Reducing Spectral Leakage through Windowing

Spectral leakage is caused by the finite length of the meas-
urement window, L. Consider the simple but useful case of a
stretched exponential ACF,

ACFcðτÞ ¼ σ2e−ðjτj∕ξÞ
2α

; (5)

Fig. 1 Examples of (a) a single power spectral density (PSD), and
(b) an averaged PSD (M ¼ 25), each showing 95% confidence inter-
val error bars displayed for one data point. PSDs were generated
using simulation with N ¼ 512 points, Δy ¼ 1 nm, ξ ¼ 10 nm,
σ ¼ 5 nm, H ¼ 0.5, with leakage and aliasing included in the
simulation.
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where τ is the distance, ξ is the correlation length, α is the
roughness exponent, and σ is the true LER/LWR (as opposed
to that measured for a finite line length). For α ¼ 0.5, the
resulting continuous PSD can be analytically derived,8 lead-
ing to the Palasantzas PSD function9 with a roughness expo-
nent of H ¼ 0.5:

PSDcðfÞ ¼
2σ2ξ

1þ ð2π fξÞ2
: (6)

As shown previously,2 the expected value of the sampled
PSD (which we will call PSDd, the discrete PSD) will differ
from the true (continuous) PSD as

hPSDdðfÞi ¼ PSDcðfÞð1þ εaliasÞð1þ εleakageÞ; (7)

where

εleakage ¼

�

ξ

L

��

ð2π fξÞ2 − 1

ð2π fξÞ2 þ 1

�

þO

�

ξ

L
e−L∕ξ

�

and εalias ≈ ðπ fΔy∕ sinðπ fΔyÞÞ2 − 1. Thus, the discrete
PSD is equal to the continuous PSD modified by two
error terms, εalias and εleakage. While the above error terms
are for the H ¼ 0.5 case, they have similar behaviors for
other roughness exponents.2

Windowing involves multiplying the data set by a window
function. If wðyÞ is the set of measured linewidths (for LWR)
or edge positions (for LER), measured at discrete y values
that are integer multiples of Δy, then windowing involves
weighting the data by a window gðyÞ before taking the
Fourier transform. Standard LER/LWR measurement can be
thought of as applying a rectangular measurement window to
a long feature: in the region of the line being measured
gðyÞ ¼ 1 and outside the region of line being measured
gðyÞ ¼ 0.

The impact of the data window on the PSD can be seen by
considering a continuous measurement of the PSD over a
finite line length.

hPSDmðfÞi ¼

��

�

�

�

Z

∞

−∞

gðyÞðwðyÞ − hwiÞ e−i 2πfydy

�

�

�

�

2
�

¼ G2ðfÞ ⊗ PSDcðfÞ; (8)

where GðfÞ is the Fourier transform of the window function
gðyÞ. For the rectangular window of a conventional LER
measurement, the continuous PSD is convolved with

G2ðfÞ ¼

�

sinðπfLÞ

πfL

�

2

: (9)

As L becomes large, the spectral window term of Eq. (9)
approaches a delta function and the measured PSD becomes
a perfect reproduction of the continuous PSD. For finite L,
the convolution of the window term causes a “leakage” of
other frequencies into the measured PSD at f. The large side-
lobes of the sinc function of Eq. (9) come from the rectan-
gular shape of the data window and result in a large amount
of leakage when L is small.

Note that Eq. (9) falls off as 1∕f2 away from the fre-
quency being measured. The PSD, on the other hand, falls
off as 1∕f2Hþ1 at high frequencies.2 ForH ¼ 0.5, the fall-off
of the window convolution term exactly matches the rise of
the PSD toward lower frequencies, so that the amount of
leakage is a constant at high frequencies. For H > 0.5, the
PSD rises faster than the window convolution term falls off,
and the leakage term gets bigger for higher frequencies.
Thus, leakage can be reduced for 0.5 < H < 1.0 by using
a G2ðfÞ that falls off at least as fast as 1∕f3.

Here, we consider several popular window functions
commonly used in spectral analysis. Table 1 shows the win-
dows studied here, where the window functions must be fur-
ther normalized by dividing by the root-mean-square value
of the window over the line length L. It is important to note
that all of the windows are symmetric about L∕2. Further, all
of the windows go to zero at y ¼ ð0; LÞ except the Hamming
window.

The simplicity of the Bartlett window allows an analytical
approach. The Fourier transform of the Bartlett window
gives

Table 1 Common window functions for spectral analysis.

Window Window function (unnormalized) for 0 < y < L (0 otherwise), ỹ ¼ 2jy − L∕2j∕L cwindow

Bartlett (Triangle) gBartlettðyÞ ¼ 1 − ỹ 1

Welch gWelchðyÞ ¼ 1 − ỹ2 0.84

Hann (Hanning) gHannðyÞ ¼ 1 − cosð2πy∕LÞ 1.09

Hamming gHammingðyÞ ¼ 0.54 − 0.46 cosð2πy∕LÞ —

Blackman gBlackmanðyÞ ¼ 0.42 − 0.5 cosð2πy∕LÞ þ 0.08 cosð4πy∕LÞ 1.48

Nuttall gNuttallðyÞ ¼ a0 − a1 cosð2πy∕LÞ þ a2 cosð4πy∕LÞ − a3 cosð6πy∕LÞ
a0 ¼ 0.355768, a1 ¼ 0.487396, a2 ¼ 0.144232, a3 ¼ 0.012604

2.08

Parzen gParzenðyÞ ¼

�

1 − 6ỹ2 þ 6ỹ3 L∕4 < y < 3 L∕4

2ð1 − ỹÞ3 y < L∕4; y > 3 L∕4
1.85
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G2
BartlettðfÞ ¼

�

sinðπfL∕2Þ

πfL∕2

�

4

: (10)

Since this window term falls off as 1∕f4, the high frequen-
cies of the PSD will not experience significant leakage. In the
continuum limit, the leakage for the Bartlett window can be
calculated analytically2

εleak;Barlett ¼ 12

�

ξ

L

�

2
�

3ð2πfξÞ2 − 1

½ð2π fξÞ2 þ 1� 2

�

: (11)

For other windows, simulation can be used to calculate the
leakage term. Figure 2 shows the results following the sim-
ulation and calculation procedure described in Ref. 2.

First, note that all of these window functions produce
much lower leakage than the rectangular window at high
frequencies, and lower leakage at low frequencies whenever
L≳12ξ. For the rectangular window, the maximum leakages
for H ¼ 0.5 are �ξ∕L, which is about �0.02 for the case
depicted in Fig. 2. Thus, windowing can reduce the leakage
by at least an order of magnitude for this case. It is also inter-
esting to see that all of the windows produce leakages that go
to zero at high frequency except the Hamming window due
to its nonzero endpoints. It is also clear that the best perform-
ing window of this set is the Welch window.

To quantify the quality of leakage reduction, we take note
that each window (other than Hamming) follows the same
basic εleakageðfÞ behavior. Thus, we can use the analytical
result for the Bartlett window and model the leakage as

εleakage ¼ cwindow12

�

ξ

L

�

2
�

3ð2πfξÞ2 − 1

½ð2πfξÞ2 þ 1� 2

�

: (12)

We can now find the value of cwindow that produces the best
fit to the simulated leakage data. Those values are listed in
Table 1. For example, the Welch window results in 84% of
the leakage of the Bartlett window. The Hann and Blackman
windows produce about 9% and 48% more leakage, respec-
tively, than the Bartlett window.

Examining the relationship between the Bartlett window
and the best window of those investigated here, the Welch
window, one can see a generalization of form

gnðyÞ ¼ 1 − ỹn; ỹ ¼
jy − L∕2j

L∕2
: (13)

When n ¼ 1, we have the triangular Bartlett window. When
n ¼ 2, we have the parabolic Welch window. Other values of
n, then, would produce other windows, which I will
refer to as generalized Welch windows. Varying the window
order n and determining the best fit cwindow from Eq. (12)
gives results as shown in Fig. 3. A window order of n ¼
1.7–1.8 produces the best leakage suppression, slightly better
than the Welch window and 17% better than the Bartlett win-
dow. An alternate metric, the RMS leakage over the full fre-
quency range, produces a similar curve with the same best
window and a minimum RMS εleakage of 0.0006.

While the results presented in Fig. 3 are for the case of a
roughness exponent of H ¼ 0.5, simulations were also per-
formed for H ¼ 0.9. The same trend as seen in Fig. 3 was
found when H ¼ 0.9, with the values of cwindow about 40%
higher. A window order of n ¼ 1.7–1.8 again produced the
best leakage suppression.

4 Impact of Detrending

Using simulation, it is possible to generate random rough
features to be analyzed where the exact statistical properties
of the feature are known a priori.10 For example, when gen-
erating a rough line, the mean linewidth of an infinitely long
line is an input to the simulation. When analyzing the simu-
lated rough line, it is possible to take advantage of this
knowledge and calculate the PSD of the deviation of the line-
width from the known population mean. But with experi-
mental data this population mean is never known and so must
be estimated, generally by using the sample mean. Likewise,
a simulated rough edge has a known ideal edge position. But
the roughness of an experimental edge must be measured
against an assumed edge position, generally taken to be the
best-fit line through the data. Subtracting the sample mean

Fig. 2 Calculation of spectral leakage for different window functions.
PSDs were generated using simulation with N ¼ 512 points,
Δy ¼ 1 nm, ξ ¼ 10 nm, σ ¼ 5 nm, H ¼ 0.5, and each curve is gener-
ated from the average of at least 109 simulated PSDs.

Fig. 3 Varying the window order from the generalized Welch window
of Eq. (13) and fitting the resulting leakage to the scaled Bartlett model
of Eq. (12) allows one to determine the window that produces the mini-
mum leakage. Best fit cwindow values were found using simulation with
N ¼ 512 points, Δy ¼ 1 nm, ξ ¼ 10 nm, σ ¼ 5 nm, H ¼ 0.5, and the
average of 1010 simulated PSDs.
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for LWR data and the best-fit linear trend for LER data is
called detrending the data. In other applications, such as
measuring the roughness of optical components, higher
order detrending is sometimes used.11

Detrending, while necessary, causes a loss of information.
For the PSD, that loss occurs at low frequencies. For exam-
ple, a segment of a line as shown in Fig. 4(a) is detrended by
subtracting out the best-fit line through the data. This is nec-
essary, for example, if the wafer was rotated slightly before
measurement in the SEM. The trend, however, could also be
part of a low-frequency variation that would be revealed if a
longer line segment was measured, as in Fig. 4(b).

The impact of detrending, both sample mean and linear
subtraction, can be studied through simulation. Subtracting
the sample mean before calculating the PSD has a very sim-
ple effect: it forces the zero-frequency PSD to be 0, but oth-
erwise has no impact on the PSD of higher frequencies.
Linear detrending has an impact that is felt over the course
of all the low-frequency PSD values. Figure 5 shows an
example of a PSD with and without linear detrending (a sim-
ilar behavior was found for larger roughness exponents as
well). The difference, that is the bias caused by detrending,
can be explained by a simple empirical model based on the
major trend observed in Fig. 5(b)

hPSDlinearðfÞi ¼ hPSDdðfÞið1 − εlinearÞ;

εlinear ¼
1

πðfLÞ 2
: (14)

As can be seen, the biggest impact of linear detrending is
on the lowest frequencies. The lowest measureable fre-
quency of the PSD occurs at f ¼ 1∕L, so that the linear
detrending error at this frequency is 1∕π, or about 30%.
This will be a noticeable bias if 10 or more PSDs are aver-
aged together. The second lowest frequency will have a

linear detrending bias of 1∕4π, or about 8%. This bias
would not be noticed unless 100 or more PSDs are averaged
together.

The above results assumed a rectangular data window for
PSD calculation. When a higher-order window such as the
Welch window is used, the impact of linear detrending is less
significant at the higher frequencies (Fig. 6). Simulations
suggest the following empirical model using the Welch or
other higher-order windows:

εlinear ¼
1

πðf LÞ 5
: (15)

Thus, when using a reasonable data window, only the lowest
frequency (f ¼ 1∕L) is appreciably affected by linear
detrending. However, at this lowest frequency the use of
the Welch window or other data windows has no effect
on the detrending bias.

The impact of detrending can be further reduced if multi-
ple features are detrended together. For example, it is
common to capture an SEM image with multiple features. If
LER is to be extracted from each of the feature edges, a sim-
ple approach would be to fit individual straight lines to each
edge, then measure the LER after individual detrending. This
produces the 1∕π bias for PSDðf ¼ 1∕LÞ. Alternately, all of
the edges can be detrended together, assuming that every true
edge is parallel (a very common case). Thus, one slope is
found that best fits every edge in the image. This is equiv-
alent to taking out one rotational error for the entire SEM
image. As a result, the linear detrending bias is reduced by
the number of edges in the image being detrended together
(true whether a rectangular or other data window is used).
Thus, for a rectangular window we have

Thus, for a rectangular window we have for k edges per
image,

Fig. 4 Example of the impact of detrending on line-edge roughness measurement. (a) The first 25% of a
longer line segment, and (b) the full line segment, indicating that low-frequency roughness is removed by
linear detrending.
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εlinear ¼
1

kπðfLÞ 2
: (16)

If four or more edges are linearly detrended per image, the
impact of this detrending bias will be small enough to be
neglected in most circumstances.

5 Impact of Detrending on the ACF and Height-
Height Covariance Function

While it is common to use the PSD to describe and evaluate
the frequency dependence of measured roughness, the ACF
is sometimes used as well. The ACF can be calculated from
the Fourier transform of the PSD, but it can also be calculated
directly from sampled data. As we shall see, detrending has a
significant impact on the directly measured ACF.

The ACF of the feature edge position (or feature width) is
defined as

ACFðτÞ ¼ hðwðsÞ − hwiÞðwðsþ τÞ − hwiÞi; (17)

where w is the measured linewidth/edge position, s and sþ τ

are the positions where measurements are made along the
length of the line, hwi is the true mean linewidth/edge posi-
tion of the feature, and stationarity is assumed. To calculate
the ACF directly from sampled data, with lag τ ¼ mΔy,
position s ¼ nΔy, and line length L ¼ NΔy, a common
unbiased estimator is

ACFdðτÞ ¼
1

N −m

X

N−1−m

n¼0

ðwðsÞ − hwiÞðwðsþ τÞ − hwiÞ:

(18)

The fact that the discrete, sampled ACF is an unbiased
estimator of the true ACF, i.e., that hACFdðτÞi ¼ ACFðτÞ,

Fig. 5 Impact of linear detrending on the resulting PSD using a rec-
tangular data window: (a) PSD without detrending (upper, blue curve)
compared to the PSD with linear detrending (lower, red curve), and
(b) the relative difference between the original and detrended
PSDs (that is, εlinear), with the noise floor indicated by the horizontal
line and the model of Eq. (14) depicted as the dashed line. PSDs
were generated using simulation with N ¼ 512 points, Δy ¼ 1 nm,
and the Palasantzas PSD function with ξ ¼ 10 nm, σ ¼ 5 nm,
H ¼ 0.5, M ¼ 1010 PSDs averaged together, and aliasing was turned
off.

Fig. 6 Impact of linear detrending on the resulting PSD using the
Welch data window: (a) PSD without detrending (upper, blue
curve) compared to the PSD with linear detrending (lower, red
curve), and (b) the relative difference between the original and
detrended PSDs, with the noise floor indicated by the horizontal
line and the model of Eq. (15) depicted as the dashed line. PSDs
were generated using simulation with N ¼ 512 points, Δy ¼ 1 nm,
and the Palasantzas PSD function with ξ ¼ 10 nm, σ ¼ 5 nm,
H ¼ 0.5, M ¼ 1010 PSDs averaged together, and no aliasing.
Similar results were observed for higher roughness exponents.
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is significant. While the sampled PSD suffers from the sig-
nificant biases of leakage and aliasing, the discrete ACF does
not. Detrending, however, does cause a bias. Detrending
involves replacing hwi in this equation with either w̄ for
LWR data or with the best fit line for LER data.

The impact of detrending on the ACF has been studied
previously by O'Neill and Walther12 and Freniere et al.13

They derived general expressions for the bias caused by
mean and linear detrending of the continuous ACF (ACFc).
Applying the case of sample mean subtraction to the exponen-
tial ACF [that is, Eq. (5) for α ¼ 0.5] and evaluating their
expression produces

ACF−meanðτÞ ¼ ACFcðτÞ−
2σ2ξ

L

×

	

1þ
ξ

L
−

�

ξ

L− τ

�

ð1þ e−τ∕ξ − e−ðL−τÞ∕ξÞ




:

(19)

A graph of the ACF with and without sample mean detrending
is shown in Fig. 7. The ACF bias generated by simulation
matches essentially exactly with Eq. (19). The bias term is
approximately constant until the lag approaches to within a
few correlation lengths of L. Thus, for most values of the lag,

ACFcðτÞ − ACF−meanðτÞ ≈
2σ2ξ

L

	

1 −
ξ

L




: (20)

Note that the detrended ACF goes negative, even though
the true ACF is always positive. For the case of linear
detrending, the measured ACF crosses zero twice, giving
the false impression that there is a damped periodic variation
in the correlation behavior. For a small lag (where the lin-
early detrended ACF stays positive), the bias for the linearly
detrended ACF is about constant and about twice the amount
as for the subtraction of the sample mean.

The height-height covariance function (HHCF) is some-
times used in place of the ACF. The HHCF is defined as

HHCFðτÞ ¼ h½wðsÞ − wðsþ τÞ�2i: (21)

For sampled data, the unbiased estimator is

HHCFdðτÞ ¼
1

N −m

X

N−1−m

n¼0

½wðsÞ − wðsþ τÞ�2: (22)

The HHCF is related to the ACF by

HHCFðτÞ ¼ 2½σ2 − ACFðτÞ�: (23)

Like the ACF, the HHCF does not suffer from the biases
of aliasing and leakage that plague the PSD. Further, the
HHCF has one important advantage over the ACF: it is not
biased by detrending using the mean of the sample data. As
Eqs. (21) and (22) make clear, subtracting any value from
both wðsÞ and wðsþ τÞ does not impact the calculated
HHCF. Looking at Eq. (23), the bias in the ACF from
mean detrending is exactly compensated by the bias in σ2

from mean detrending. The same thing is not true for linear
detrending. Like the ACF, the HHCF suffers from a bias,
strongest at the long lag distances, when linear detrending
is used (Fig. 8). Thus, HHCF is very useful for LWR data
since it is unbiased. For LER data, both ACF and HHCF
are biased.

Like the PSD, the detrending bias in the ACF and HHCF
can be reduced by increasing the number of features that are
detrended together. Figure 9 shows the error in the HHCF
due to linear detrending. When only one edge is used to find
the best fit line, the worst case error is about −32% under
these conditions (the magnitude of the linear detrending error
is a function of ξ∕L). If k edges per image are used to find
one best-fit slope, the error is reduced by a factor of k. Thus,
an SEM image with four features (and eight edges) can be
used to find the HHCF of the LER with only about 4% maxi-
mum systematic bias (for the case shown in Figs. 8 and 9).

6 Conclusions

In my previous work, several important strategies were
developed for accurately measuring the PSD of rough
features:2

Fig. 7 Impact of mean and linear detrending on the resulting autoco-
variance function (ACF). ACFs were generated using simulation with
N ¼ 512 points, Δy ¼ 1 nm, and the Palasantzas PSD function with
ξ ¼ 10 nm, σ ¼ 5 nm, H ¼ 0.5, and M ¼ 108 ACFs averaged
together. A logarithmic scale for the lag distance was chosen to
make the differences in ACF more noticeable.

Fig. 8 Impact of linear detrending on the resulting HHCF. HHCFs
were generated using simulation with N ¼ 512 points, Δy ¼ 1 nm,
ξ ¼ 10 nm, σ ¼ 5 nm, α ¼ 0.5, and M ¼ 107 HHCFs averaged
together. A logarithmic scale for the lag distance was chosen to
make the differences in HHCF more noticeable.
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• Average together as many PSDs as possible to reduce
random errors (100 averaged PSDs result in 10% ran-
dom error in the PSD, one standard deviation);

• Leakage scales as ξ∕L, and aliasing scales as
Δy ¼ L∕N, so that a large N (the number of measure-
ment points) is beneficial for both low leakage and low
aliasing at the important mid frequencies (which is
equivalent to requiring that Δy ≪ ξ ≪ L);

• Use data windowing (the Bartlett, Welch, or similar
window) to reduce spectral leakage to small levels;

• Balance aliasing with averaging by optimizing the
sampling distance with respect to the interaction spot
size of the measurement tool. In the absence of SEM
image noise, an optimum balance occurs when the
sampling distance is set to about twice the spot size
FWHM;

• Reduce SEM measurement noise as much as possible
or eliminate it using a bias-free measurement scheme.
If this is not practical, extract the measurement noise
from the measured PSD itself;

• Extract and report all three PSD parameters (σ; ξ, and
H), as all three numbers are essential for understanding
LER. Reporting only σ is not sufficient.

Here, several further strategies were developed.

• Always put error bars on graphs of measured PSDs to
avoid over interpreting the resulting shapes;

• The best data window tested so far is the Welch win-
dow (or slightly better, the generalized Welch window
with n ≈ 1.7–1.8)—it should always be used;

• Linear detrending biases the PSD lower at the lowest
spatial frequency, corresponding to f ¼ 1∕L, by about

30%. To effectively eliminate this bias, be sure to
detrend four or more edges together in one image;

• The ACF is sensitive to both mean and linear detrend-
ing. The HHCF has the advantage of not being sensi-
tive to mean detrending and is thus preferable for LWR
analysis. Like the PSD, detrending bias is reduced in
direct proportion to the number of features/edges
detrended together. Further work is required to more
fully understand the implications of the uncertainties
and biases of the ACF and HHCF and how to mitigate
them;

As the above points make clear, care must be taken in
collecting and analyzing roughness data. Since details of
the measurement process (line length, sampling distance,
number of PSDs averaged together, measurement spot
size) and of the analysis process (type of data window
and detrending) dramatically affect both the random and sys-
tematic errors in the resulting PSD, these details should
always be reported when PSD results are presented.
Failure to do so makes interpretation of the data almost
impossible.
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the resulting HHCF. HHCFs were generated using simulation with
N ¼ 512 points, Δy ¼ 1 nm, ξ ¼ 10 nm, σ ¼ 5 nm, α ¼ 0.5, and M ¼
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