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More Than a Feeling: Learning to Grasp and

Regrasp using Vision and Touch

Roberto Calandra1, Andrew Owens1, Dinesh Jayaraman1, Justin Lin1, Wenzhen Yuan2,

Jitendra Malik1, Edward H. Adelson2, and Sergey Levine1

Abstract—For humans, the process of grasping an object relies
heavily on rich tactile feedback. Most recent robotic grasping
work, however, has been based only on visual input, and thus
cannot easily benefit from feedback after initiating contact. In this
paper, we investigate how a robot can learn to use tactile infor-
mation to iteratively and efficiently adjust its grasp. To this end,
we propose an end-to-end action-conditional model that learns
regrasping policies from raw visuo-tactile data. This model – a
deep, multimodal convolutional network – predicts the outcome
of a candidate grasp adjustment, and then executes a grasp by
iteratively selecting the most promising actions. Our approach re-
quires neither calibration of the tactile sensors, nor any analytical
modeling of contact forces, thus reducing the engineering effort
required to obtain efficient grasping policies. We train our model
with data from about 6,450 grasping trials on a two-finger gripper
equipped with GelSight high-resolution tactile sensors on each
finger. Across extensive experiments, our approach outperforms a
variety of baselines at (i) estimating grasp adjustment outcomes,
(ii) selecting efficient grasp adjustments for quick grasping,
and (iii) reducing the amount of force applied at the fingers,
while maintaining competitive performance. Finally, we study
the choices made by our model and show that it has successfully
acquired useful and interpretable grasping behaviors.

Index Terms—Deep Learning in Robotics and Automation;
Grasping; Perception for Grasping and Manipulation; Force and
Tactile Sensing

I. INTRODUCTION

G
RASPING is a deeply interactive task: we initiate con-

tact by reaching our fingers toward an object, adjust

the placement of our fingers, and balance contact forces as

we lift. During this process, the feedback provided by the

sense of touch is paramount, as demonstrated by human

experiments [1]. Nonetheless, incorporating touch sensing into

robotic grasping has thus far proved challenging, due to

hardware limitations (e.g., sensor sensitivity and cost) and
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the difficulty of integrating tactile inputs into standard con-

trol schemes. Consequently, the predominant input modalities

currently used in the robotic grasping literature are vision and

depth.

Figure 1: We propose an action-

conditional model that iteratively

adjusts a robot’s grasp based on

raw visuo-tactile inputs.

However, vision does

not easily permit the

measurement of and

reaction to ongoing

contact forces, thus

significantly hindering

the potential benefits of

interaction. As a result,

vision-based grasping

approaches have largely

relied on selecting a grasp

configuration (location,

orientation, and forces) in

advance, before making

contact with the object.

In the quest for inter-

active grasping, we study

how tactile sensing can be

integrated into a grasping

system that can probe an

object and then reactively

adjust its grasp to achieve

the highest chance of success. Our method is based on learning

an action-conditioned grasping model, trained end-to-end in

a self-supervised manner by using a robot to autonomously

collect grasp attempts. In contrast to prior self-supervised

grasping work [2], [3], however, our model incorporates rich

touch sensing from a pair of GelSight sensors (see Fig. 1).

Incorporating tactile sensing into action-conditional models,

however, is not straightforward. The robot only receives tactile

input intermittently, when its fingers are in contact with the

object and, since each regrasp attempt can disturb the object

position and pose, the scene changes with each interaction.

In contrast, grasping methods that use vision typically do not

interact repeatedly with the object, but simply drive the arm

toward a chosen grasp pose and then attempt a single grasp.

Our contributions are as follows: (1) we introduce a new

multi-modal action-conditional model for grasping using vi-

sion and touch; (2) we show that our model is effective

at grasping novel objects, in comparison to unconditional

models and vision-only variations; (3) we analyze the learned

grasping policy and show that it produces interpretable and

useful grasping behaviors; (4) we demonstrate that our model
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permits explicit constraints on contact forces, allowing us

to command the robot to “gently” grasp an object with

significantly reduced force. Since it incorporates raw visuo-

tactile inputs, our approach requires neither calibration of the

tactile sensors, nor any analytical modeling of contact forces,

hence significantly reducing the engineering effort required to

obtain efficient grasping policies.

II. RELATED WORK

A. Learning to Grasp

A significant body of work in robotics has studied analytic

grasping models, which use known or estimated models of

object geometry, environments, and robot grippers, and which

typically make use of manually defined grasping metrics [4],

[5], [6]. While these methods provide considerable insight

into the physical interactions in grasping, their actual per-

formance depends on how well the real-world system fits

the assumptions of the analytic model. Model misspecifi-

cation and unmodeled factors can substantially reduce their

effectiveness. As an alternative, data-driven approaches have

sought to predict grasp outcomes from human supervision [7],

[8], simulation [9], [10], [11], or autonomous robotic data

collection [2], [3], typically using visual or depth observations.

Among these works, the most related to ours is [3], which also

proposes to use an action-conditional model. However, these

prior works (with a few exceptions that we discuss below)

do not consider tactile sensing, focusing instead on vision

and 3D geometry, which afford a limited ability to reason

about contact forces, pressures, and compliance. Critically,

most of these methods rely on selecting grasp configurations

in advance, before ever coming into contact with the target

object. In contrast, we show that it is possible to exploit rich

tactile feedback after contact to iteratively adjust and improve

robotic grasps. For an overview of learning for robot grasping,

we refer the reader to [12].

B. Tactile Sensors in Grasping

A variety of tactile sensors have been developed [13],

mainly measuring force and torque, or the pressure distribution

over the sensor. Multiple works [14], [15], [16], [17], [18]

suggested the use of tactile sensors to estimate grasp stability.

While these works estimate the stability of an ongoing grasp,

we focus instead on selecting grasp adjustments to produce

a stable new grasp. [19] incorporated tactile readings into

dynamics models of objects for a dexterous hand, thereby

adapting the grasp. Works such as [20], [21], [22] extracted

features from tactile signals to detect/predict slip, so as to

adaptively adjust the grasping force. Researchers have also

proposed robotic systems that integrate visual and tactile in-

formation for grasping using model-based methods [23], [24],

[25], [26], [27], which improved grasping performance over

single-modality inputs. However, these approaches require

accurate models of the robot and the objects to grasp, and

often also calibrated tactile sensors. Along similar lines, [28]

proposed a regrasping policy based on tactile sensing (without

visual input) and a learned stability metric, which uses a

heuristic transition function to predict future tactile readings.

Our approach does not require any prior model or transition

function, as it learns entirely end-to-end from raw inputs.

Closer to our approach are [29], [30], which proposed

to learn regrasping using tactile sensors. In contrast to our

approach, [30] directly optimizes a policy. Optimizing a pol-

icy requires the data collection to be on-policy and to be

intertwined with the policy update; our approach does not

directly optimize a policy, but learns an action-conditioned

model. As a result our approach can use any data collected.

Additionally, by using an action-conditioned model, we can

change the objective of the policy at evaluation time (as

in the case of reducing the grasping force demonstrated in

Sec. VI-D), while changing the objective for a policy learning

method would require re-training the policy, and thus require

repeating the data collection process. Another difference with

these works is that, in [29], [30], the features used from the

tactile sensors are manually designed by applying PCA and

extracting the first 5 principal components. Our approach,

although using substantially higher resolution tactile inputs,

does not require any manual engineering of features. Finally,

our experiments consider a substantially wider range of objects

than demonstrated by [30], with 65 training objects, and a

detailed evaluation on 22 previously unseen test objects.

Closely related is also our previous work [18], where we

proposed a visuo-tactile model from raw inputs for classifying

grasp outcomes. The main difference to the present work is

that [18] does not make use of the learned visuo-tactile model

to actively select the next grasp to perform, but simply to

evaluate the stability of an ongoing grasp. For grasp selection,

this method executes random grasps iteratively until it arrives

at a grasp that is stable according to the learned model. While

this allows for evaluation of the correlation between touch

sensing and grasp outcome, it does not by itself provide a

practical method for grasp selection: in our experiments, we

found that this prior approach could require as many as 50

random regrasp attempts to yield a stable grasp. Furthermore,

by including the grasping force as part of the action, our

approach allows for the grasping force to be modulated

during the evaluation to achieve secondary objectives, such

as minimum-force grasps.

Concurrently to our work, [31] also proposed a tactile

regrasping method based on the GelSight sensor. This method

simulates transformations to tactile readings based on rigid

body dynamics, while our approach is entirely data-driven

and self-supervised, which means that we do not require

assumptions about dynamics or environment structure. An in-

depth exploration of the tradeoffs between data-driven and

analytic approaches would an interesting future topic of study.

Another concurrent work [32], explores grasping with a 3-

axis force sensor, but reports comparatively low success rates,

focusing instead on tactile localization without vision. Our

method uses rich touch sensing that is aware of texture and

surface shape, simultaneously incorporates multiple modali-

ties, and can flexibly accommodate additional constraints, such

as minimum-force grasps.

The main contribution of this paper is a practical approach

that exploits visual and tactile sensing to grasp successfully

and efficiently i.e., with as few regrasps as possible. We do
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Figure 2: Examples of raw tactile data collected by one of the GelSights (right) for different training objects (left).

so by building predictive models that can predict the grasp

outcome of a given action. Our experiments demonstrate that

our action-conditioned predictive model substantially outper-

forms the results that can be obtained via grasp classification,

illustrating the value of closed-loop regrasping. Finally, we

demonstrate that our action-conditioned model can be used to

optimize for gentler grasps, enabling the robot to determine

grasps that can pick up an object with minimal force (hence

avoiding damage to fragile objects). To the best of our knowl-

edge, our work is the first to propose an action-conditioned

model for learning to grasp from raw visuo-tactile inputs.

III. HARDWARE SETUP

In our experiments we used a hardware configuration con-

sisting of a 7-DoF Sawyer arm, a Weiss WSG-50 parallel grip-

per, and two GelSight sensors [33], one for each finger. Each

GelSight sensor provides raw pixel measurements at a resolu-

tion of 1280x960 at 30Hz over an area of 24mm× 18mm.

Additionally, a Microsoft Kinect2 sensor was mounted in front

of the robot to provide visual data. The GelSight sensor is an

optical tactile sensor that measures high-resolution topography

of the contact surface [34], [33]. The surface of the sensor is

a soft elastomer painted with a reflective membrane, which

deforms to the shape of the object upon contact. Underneath

this elastomer is a camera (an ordinary webcam) that views

the deformed gel. The gel is illuminated by colored lights,

which light the gel from different directions. Additional visual

cues of contacts are provided by the deformation of the grid

of markers painted on the sensor surface, which can be used

to compute the shear force and slip information [35]. One

valuable property of the GelSight sensor is that the sensory

data is provided on a regular 2D grid image format, hence

we can use convolutional neural network (CNN) architectures

initially designed for visual processing to process readings

from the tactile sensor. Previous work on material property

estimation with GelSight [36], [37] has successfully applied

CNNs pretrained from natural image data. Examples of raw

tactile data from the GelSight are shown in Fig. 2.

IV. DEEP VISUO-TACTILE MODELS FOR GRASPING

We formalize grasping as a Markov decision process (MDP)

where we greedily select the gripper actions that maximize the

probability of successfully grasping an object. To address this,

we solve the following prediction problem: given the robot’s

current visuo-tactile observations st at time t, and an action a,

we predict the probability that, after applying the action, the

gripper will be in a configuration that leads to a successful

grasp at time t+1. In Sec. IV-B, we describe how we use this

prediction model to select optimal grasping actions.

Raw visuo-tactile observations s are acquired from tactile

sensors and the RGB camera, as shown in Fig. 3. Each action a

directs the gripper to a new pose relative to its current pose.

For example, an action a might consist of moving the gripper

to the left by 2 cm, and rotating it by 15◦. More concretely,

let o(st,a) ∈ {0, 1} be the binary grasp outcome at time

t + 1 resulting from executing action a from grasp state st:

if o(s,a) is 1, the grasp is successful. At evaluation time,

these outcome labels o(st,at) are unknown and the robot must

estimate them. At training time, the robot performs random

trials as described in Sec. V to collect state-action-outcome

tuples (si,ai, oi) ∈ X , which we will use to train an action-

conditional model that can be used for selecting actions.

A. End-to-End Outcome Prediction

We would like to learn a function f(s,a) that directly

predicts the success probability for a future grasp, given

observations from the current grasp s and a candidate action a.

We parametrize f as a deep neural network, whose architecture

is shown in Fig. 3. There are multiple design choices when

designing deep models for multi-modal inputs [38]. In our

experiments, we decided to employ a network processing

the state s, consisting of raw RGB inputs from the frontal

camera and the two GelSight tactile sensors, in three deep

stacks of convolutional layers. Additionally, the action a

is processed in a two-layer, fully-connected stack (a multi-

layer perceptron). We then use a late fusion approach to

combine information from these modalities: the feature vectors

produced by these four stacks are concatenated, and fed to

a two-layer fully-connected network that produces the prob-

ability, f(s,a), that the input action from the current state

results in a successful grasp at the next step. We train the

network f on the training dataset X to minimize the loss

Ldir(f,X) =
∑

(s,a,o)∈X L(f(s,a), o) where L is the cross-

entropy loss. As input for the tactile CNNs, we rescale the
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Figure 3: Action-conditioned visuo-tactile model network architecture.

original GelSight RGB images to 256×256, and subsequently

(for data augmentation) sample random 224×224 crops. This

kind of image resolution is standard for CNN-based object

recognition in computer vision, though it is substantially lower

than the native resolution of the GelSight. Although we did

not investigate the effect of image resolution on performance,

this is an interesting question for future work.

a) Network design: We process each image using a con-

volutional network. Specifically, we use the penultimate layer

of a 50-layer deep residual network [39]. We further emphasize

deformations in each GelSight image through background

subtraction i.e., we pass the neural network the difference

of the GelSight images before and after contact. The action

network is a multi-layer perceptron consisting of two fully-

connected layers with 1024 hidden units each. This network

takes as input vector representations of the action and pose.

The action is a 5-dimensional vector consisting of a 3D

motion, in-plane rotation, and change in force. Likewise, the

end effector pose is a 4-dimensional vector represented by

position and angle. Moreover, we also provided the network

with the 3D motion transformed into the gripper’s coordinate

system. To fuse these networks, we concatenate the outputs of

the four input branches (camera image, two GelSight images,

and the action network), and then pass them through a two-

layer fully-connected network that produces a grasp success

probability. The first layer of this fusion network contains 1024

hidden units. Our model architecture is shown in Fig. 3.

b) Training: To speed up training, we pretrain these

networks using weights from a model trained to classify

objects on ImageNet [40], and we tie the weights of the two

tactile networks. We then jointly optimize the model with

a batch size of 16 for 9,000 iterations (using a dataset of

18,070 examples), lowering the learning rate by a factor of

10 after 7000 iterations.

B. Regrasp Optimization

Once the action-conditional model f has been learned,

we use it to select the action that maximize the expected

probability of success of the grasp after performing the action

a
∗

t = arg max
a
f (st,a) . (1)

We perform this optimization using stochastic search: we

randomly sample potential actions and predict the success

probability using the learned model f , and then select the

action with the highest success probability. Although this

optimization can be computationally expensive (in our exper-

iments, approximately 0.6 s for 5000 samples), in practice we

find that it performs well.

V. DATA COLLECTION

To collect the data necessary to train our model, we de-

signed a self-supervised automated data collection process.

In each trial, depth data from the front Kinect was used to

approximately identify the starting position of the object and

enclose it within a cylinder. We then set the end-effector (x, y)
coordinates to the position of the center of the cylinder plus a

small random perturbation, and set its height to be a random

value between the floor and the height of the cylinder. Its

orientation φ was set uniformly at random. Moreover, we

randomized the gripping force F to collect a large variety

of behaviors, from firm, stable grasps, to occasional slips, to

overly gentle grasps that fail more often. After moving to the

chosen position and orientation, and closing the gripper with

the desired gripping force, the gripper attempt to lift the object

and wait in the air for 4 s. If the object was still in the gripper

at the end of this time, the robot would place the object back

at a randomized position, and a new trial would start.

The labels for this data (i.e., whether the grasp was suc-

cessful) were also automatically generated using deep neural

network classifiers (running two instances, one for each finger)

trained to detect contacts using the raw GelSight images

observed1. We performed additional manual labeling on a

small set of samples for which the automatic classification

was borderline ambiguous (e.g., if both sensor were not

confident of the presence of contacts after lifting), or in the

rare cases when a visual inspection would indicate a wrong

1This model was initially trained using manually collected data, and
iteratively fine-tuned in a self-supervised manner using the very same au-
tomatically collected, but manually labeled, data.
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label. Overall, we collected 6,450 grasping trials from over 65

training objects.

As the gripper moves from one position to another, the

locations that it moves to along the way can provide additional

data points for training. We use this idea to augment the

dataset with additional examples. When the robot is gripping

an object, we create a state-action pair with zero translation

or rotation, corresponding to the action of the robot keeping

the gripper in the same position (a useful possible action

for regrasping). Similarly, we create a state-action pair at the

moment that the robot has released the gripper but has not

yet moved. In this case, the action is the same as when the

gripper is in contact with the object. After this augmentation,

our dataset contains 18,070 examples.

During the data collection and experimental evaluation,

we replaced the gels of the two GelSight sensors multiple

times due to wear and tear. Each gel is unique, and as a

result produces slightly different inputs (e.g., grid of markers

might not be evenly aligned). Moreover, with the progressive

wear of the surface a single gel, the images can significantly

change over time. In our experiments we noticed how, initially,

replacing the gel would degrade the performance of the learned

models. However, after collecting data with a few different

gels, changing the gels did not seem to significantly affect

performance anymore, hence suggesting that the model learned

features that are reasonably invariant to the specific gel being

used.

VI. EXPERIMENTAL RESULTS

To validate our multi-modal grasping model, we first com-

pare the performance of the model on the dataset we collected.

Then, we test the model on an actual robot, and evaluate its

generalization capabilities on additional (unseen) test objects.

Moreover, we analyze the learned visuo-tactile model to gain

some insight into its learned behavior and features. Finally,

we demonstrate that it is possible to exploit our visuo-tactile

action-conditioned model to minimize the applied forces while

maintaining a high success rate. Videos showing the robotic

grasping experiments (and other material) are available online

at: https://sites.google.com/view/more-than-a-feeling

A. Model Evaluation

Table I: K-fold (K=3) cross-validation

accuracy of the different models trained

with 18,070 data points.

Model
Accuracy

(mean ± std. err.)

Chance 62.80%± 0.85%
Vision (+ action) 73.03%± 0.24%
Tactile (+ action) 79.34%± 0.66%
Tactile + Vision (+ action) 80.28%± 0.68%
Tactile + Vision (no action) 76.43%± 0.42%

First, we ask:

can our model

successfully learn

to predict future

grasp success for

novel objects?

Recall that while

previous works

such as [18] have

shown that it is

possible to predict

stability of ongoing grasps from visuo-tactile inputs, we seek

to evaluate the stability of future grasps, conditional on a

relative adjustment from the current grasp. We compare the

predictive performance of a number of variations of our

model, using our dataset of grasps (Sec. V). For this, we

use K-fold (K = 3) cross-validation, partitioning the data

by object instance. Does our model learn to use actions to

predict future outcomes? This is critical, since we expect to

use this model to search over possible actions during grasping

on a robot. To test this, we evaluate the model in Fig. 3

without the action (“Tactile + Vision (no action)” in Tab. I) –

an unconditional model similar to the one considered in [18]

– which without having access to the action corresponds to

computing the expectation over all the possible actions. We

see that performance indeed drops significantly when action

information is withheld, validating that the model learns to

successfully evaluate the importance of different actions.

Next, we test whether our model significantly outperforms

variations where different components are ablated, such as the

vision-only and tactile-only models. As seen in Tab. I, the full

visuo-tactile model performs best – results for future-grasp

prediction that are consistent with those reported in [18] for

the task of evaluating current grasps.

B. Robot Grasp Evaluation

Next, we evaluated the learned models on the robot. In

these experiments, we had the robot grasp a given object after

executing a series of regrasp actions. Each grasp begins by

randomly sampling an end-effector position and angle with

the manually engineered system used for the data collection

of Sec. V, but without closing the fingers of the robot. Since

we start from a configuration where the fingers are not in

contact, it is impossible to fairly compare against the tactile-

only variant of our model, which requires the robot to already

be in contact with the object to select a meaningful action.

Consequently, we compare with the vision-only variant of

our model, which is similar to that in [3]. We then use

the learned models to select the next grasp, by solving the

optimization of Eqn. (1). For the action optimization, we

consider translations in the interval [−2,+2] cm, gripper

rotations from [−17◦, 17◦], and force values in [4, 25] N. The

optimization is performed by randomly sampling 4900 actions,

plus 100 additional actions sweeping over the grasping force

interval, but having the end-effector rotation and translation

set to 0. Each action results in performing a translation and

rotation of the end-effector, and in closing the fingers with

the desired force. Moreover, if the predicted grasp success

probability is above the desired threshold, the re-grasp also

includes lifting the object. In our experiments, we set this

threshold to 0.9. To ensure that the probabilities are well-

calibrated, we applied Platt scaling [41] to its probability

predictions, using a validation set containing approximately

1900 examples.

As a baseline, we also evaluated against an approach that fits

a cylinder around the object using depth data and subsequently

attempt to grasp the centroid of the object using a constant

grasping force of 10N. Since we used this cylinder fitting

approach as a component of our data collection procedure,

it was manually engineered to perform well.

We first trained the models on 18,070 data points collected

as described in Sec. V, and evaluated them on a test set of

https://sites.google.com/view/more-than-a-feeling
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Table II: Detailed grasping results using different policies for the ”Easy” and ”Hard” test objects.
“E

as
y

”
se

t

Methods

Objects

Average
grasp

success

215g 160g 40g 125g 125g 65g 135g 30g 380g 140g 10g

% grasp success (# success / # trials)
Vision only 76% (38/50) 70% (7/10) 60% (6/10) 50% (5/10) 50% (5/10) 90% (9/10) 40% (4/10) 60% (6/10) 90% (9/10) 10% (1/10) 100% (10/10) 63.2%
Tactile + Vision 95% (95/100) 100% (10/10) 100% (10/10) 100% (10/10) 90% (9/10) 100% (10/10) 90% (9/10) 100% (10/10) 80% (8/10) 90% (9/10) 90% (9/10) 94.0%

Cylinder fitting 90% (18/20) 90% (18/20) 80% (16/20) 55% (11/20) 100% (20/20) 100% (20/20) 90% (18/20) 75% (15/20) 35% (7/20) 20% (4/20) 100% (20/20) 75.9%

“H
ar

d
”

se
t

Methods

Objects

Average
grasp

success

230g 120g 195g 50g 70g 85g 38g 165g 65g 340g 110g

% grasp success (# success / # trials)
Vision only 60% (6/10) 80% (8/10) 30% (3/10) 30% (3/10) 80% (8/10) 40% (4/10) 60% (6/10) 50% (5/10) 50% (5/10) 50% (5/10) 20% (2/10) 50%
Tactile + Vision 80 % (8/10) 100% (10/10) 50% (5/10) 80% (8/10) 90% (9/10) 70% (7/10) 100% (10/10) 40% (4/10) 60% (6/10) 80% (8/10) 60% (6/10) 73.6%

Cylinder fitting 95% (19/20) 100% (20/20) 35% (7/20) 100% (20/20) 90% (18/20) 15% (3/20) 90% (18/20) 85% (17/20) 15% (3/20) 15% (3/20) 95% (19/20) 66.8%

11 previously unseen objects (that we call “Easy”). These

objects significantly differed from the ones seen in the training

set in terms of color, weight, shape, friction, etc. From the

evaluations, we found that our visuo-tactile model significantly

outperformed both the vision-only and the cylinder fitting

models, achieving 94% accuracy. However, on the harder

objects from the “Hard” test set, this learned model would

not perform very well. Hence, we decided to collect more

data on the training objects, but this time on-policy using the

learned model. We thus collected a new dataset consisting of

25,404 datapoints, which we used to re-train both the Vision

and Tactile+Vision models. After retraining, we evaluated the

performance again on the “Hard” test set. In Tab. II, we

can see how the visuo-tactile model again outperform the

other two models. Based on these experiments, the largest

improvements in performance of our model seem to happen

in the presence of compliant objects, and objects where it is

difficult to visually ascertain a good grasp, such as small or

irregular objects. Another interesting result is that the vision-

only model performs quite poorly. We hypothesize that the

main cause is the relatively small size of the dataset. Prior

work [3] used a smaller model and 40x more data. As such,

it is likely that the performance of our tactile+vision model

could also be further improved by collecting more data.

C. Understanding the Learned Visuo-Tactile Model

Our approach relies on a future grasp evaluation model

learned entirely from data, without manual specification of

heuristically useful behaviors. We now examine qualitatively:

what strategies has our model learned and what behaviors does

it produce?

1) Grasping Force: The first question we study is whether

or not the model has learned the importance of modulating

the amount of force F applied at the fingers for the grasp

outcome. Naturally, a stronger grasp is typically more likely

to succeed. To test this hypothesis, we placed the gripper in a

state where it was in contact with a previously unseen object.

We then asked the model to predict the probability of grasp

success given various finger forces, keeping the other parts of

the action vector fixed. Given this state and candidate actions,

we computed the corresponding success rate prediction. As

illustrated in Fig. 4, the model appears to have learned that
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(b) Unstable grasp

Figure 4: Predicted grasp success rate with varying the amount

of force F . The model learned that, when stably in contact with

the object, there is a correlation between force applied and

success rate. However, for unstable grasps, the model learned

that increasing the grasp force might misplace the object and

result in an unsuccessful grasp.

there is a correlation between the force and the grasp outcome.

However, further analysis shows that the model did not just

learn to increase the force in all cases: for multiple situations

having very high forces seems to reduce the predicted success

rate. For example, we saw this occur when the robot grasped

a cube whose corner was only half in contact with the fingers.

Due to the shape of the fingers, applying large forces in this

case would cause the object to be displaced and slip out of

the fingers, and the model correctly predicts that lower forces

should be preferred (see Fig. 4b).
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Figure 7: Example of predicted grasp

success rate varying the height of

the fingers. The model learned that

decreasing the height of the fingers

generally increases the success rate.

2) Height and

Center-of-Mass:

A second important

question is what the

model learned with

respect to the height

of the grasp. For

instance, it may be

important to grasp

close to the vertical

center-of-mass of the

object: objects that are held close to their top might slip away

under even small perturbations. At the same time, objects that

are grasped below the center-of-mass might be unstable and

rotate around the contact, increasing the chance of slippage.

Evaluating the model in different circumstances shows that the

model learned that the probability of success increases when

decreasing the height of the fingers (an example is shown in

Fig. 7). The model did not however, seem to have learned

any relevant correlation between the height of the object, or
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(a) Improvement from downward motion

Zoomed in
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Figure 5: What does the model learn? Here we show examples where the network

predicts that a downward motion will result in a grasp with (a) higher or (b) lower

chance of succeeding. Notice that downward movement is predicted to be beneficial

for cases where the fingers hold the top of an object, but not when they hold it

by the bottom. To more clearly visualize the contact on the robot’s fingertip, we

show the change in intensity of the GelSight images.
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Figure 6: Histograms of the actions ap-

plied by the Tactile+Vision policy for

the successful grasps. It can be noticed

how the policy strongly favour moving

downward.

the center-of-mass, and the preference for moving downward.

In Fig. 5, we show examples, taken from our dataset, of cases

in which the model strongly preferred a downward motion

to a static or upward one. For this, we trained a variation of

our model without the end effector pose, so that it cannot

use the height above the table as a cue. We show held-out

examples with the most (and least) predicted improvement in

grasp success. The examples with the largest improvement in

downward motion tend to be cases in which the top of the

object has been gripped (which result in a visible bump in

the bottom of the GelSight image). Fig. 6 shows histograms

of the actions performed by the Tactile+Vision model for the

successful grasps in Sec. VI-B. For the z-translation, almost

50% of the actions used the maximum downward motion

allowed (i.e., 2cm), which clearly shows that the learned

model acquired a strong preference for moving downward to

produce stable grasps.

D. Minimum Force Grasp

One of the benefits of training an action-conditional grasp

outcome prediction model, in contrast to the static grasp

classification model in prior work [18], is that we can predict

how successful a given grasp will be if we modify the strength

of the grasp. Humans typically do not use the strongest grasp

possible, but rather employ the minimum amount of contact

force, out of consideration for energy consumption and object

fragility. Our model also allows us to directly optimize for

grasps with either a constraint on the contact force, or via

a weighted combination of contact force and grasp success

probability. In this experiment, we modified the optimization

in Eqn. (1) as a constrained optimization problem such that the

selected action would instead minimize the use of force, but

while still having an expected success rate > 90% (if such

an action existed, otherwise it would revert to the standard

optimization task).

We evaluated the success rate and applied the force of

grasps optimized for either pure grasp success or the minimum

force objective on the ‘Green tea cup’ object. After evaluating

100 grasps for each criterion using the Tactile+Vision model,

we observed a fairly similar grasp success rate, with 95/100
successful grasp for the maximum success optimization and

94/100 for the minimum force grasps. However, we can see

in Fig. 8a that, for the successful grasps, the force distribution

of the minimum force grasp optimization was substantially

lower compared to the maximum success criterion (mean of 10
vs 20 N). Similar results were obtained also when evaluating

the Vision only model, as shown in Fig. 8b. This time, both

criteria achieved a success rate of 76% (out of 50 trials),

which is lower than the Tactile+Vision model. However, the

force distribution of the minimum force grasping policy was

substantially lower compared to the maximum success criteria

at 6 vs 18 N. These results suggest that using a minimum

force optimization with our learned model can effectively

reduce the amount of force exerted when grasping, without

impacting performance. We believe that this is an important

result that show the quality of the learned visuo-tactile model,

and further motivate the use of tactile sensors in applications

which require handling of fragile objects (i.e., glass or fruit,

such as strawberries).

VII. CONCLUSIONS

Touch sensing is an inherently active sensing modality,

and it is natural that it would be best used in an active

fashion, via feedback controllers that incorporate tactile inputs

during the grasping process. Designing such controllers is

challenging, particularly with complex, high-bandwidth tac-

tile sensing combined with visual inputs. In this paper, we

introduced a novel action-conditional deep model capable of

incorporating raw inputs from vision and touch. By using raw

visuo-tactile information, this model can continuously re-plan

what action to take so as to best grasp objects. To train this

model, we collected over 6,000 trials from 65 training objects.

The learned model is capable of grasping a wide range of

unseen objects, and with a high success rate. Moreover, we

demonstrated that with an action-conditioned model, we can

easily decrease the amount of force exerted when grasping,

while preserving a similar chance of success.

Our method has multiple limitations that could be ad-

dressed in future work. First, our action-conditioned model

only makes single-step predictions, and does not perform

information-gathering actions. Second, we consider relatively

coarse actions – A model using fine-grained actions could

more delicately manipulate the object before the grasp, and

potentially react to slippage during the lift-off. Finally, it

would be valuable to extend our approach to more realistic

cluttered environments. Together, addressing these limitations

would require a transition to more continuous feedback control
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Figure 8: Histogram and mean (dashed lines) of the forces applied in the successful grasps. (a) Although the success rates

for the two Tactile+Vision policies are similar (95% maximum success vs 94% minimum force), the mean force applied is

significantly reduced when using the minimum force policy (10 vs 20 N). (b) The success rates for the Vision only policies

is lower at 76%, but again the mean force applied is significantly reduced when using the minimum force policy (6 vs 18 N).

strategy (potentially using torque control), which is an exciting

avenue for future work.
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