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Abstract. The objective of this article is to propose the use of moment functions and maximum 

entropy techniques as a flexible way to estimate conditional crop yield distributions. We present 

a moment based model that extends previous approaches in several dimensions, and can be 

easily estimated using standard econometric estimators. Upon identification of the yield 

moments under a variety of climate and irrigation regimes, we utilize maximum entropy 

techniques to analyze the distributional impacts from switching regimes. We consider the case of 

Arkansas, Mississippi, and Texas upland cotton to demonstrate how climate and irrigation affect 

the shape of the yield distribution, and compare our findings to other moment based approaches. 

We empirically illustrate several advantages of our moment based maximum entropy approach, 

including flexibility of the distributional tails across alternative irrigation and climate regimes. 
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The objective of this article is to propose the use of moment functions and maximum entropy 

techniques as a flexible way to estimate conditional crop yield distributions. This research 

contributes to the growing body of literature conditioning random agricultural output on input 

vectors such as management, pests, and weather (see Antle, 2010 and references therein). We 

apply this approach using both irrigated and dryland cotton yield data to demonstrate its 

flexibility in capturing the effects of climate change relative to other moment based approaches. 

Our application demonstrates this moment based maximum entropy approach’s ability to capture 

climate-driven changes in the “fatness” of the yield distribution’s tails, the importance of which 

was recently stressed in Nordhaus (2011), Pindyck (2011), and Weitzman (2011). 

Two main lines of research have been employed in modeling yield variability in response 

to climate change. One is using stochastic weather generators to obtain climate scenarios with 

different variability characteristics and agricultural crop models to simulate effects on the mean 

and variability of crop yields. Examples of this line of research include Mearns et al. (1992, 

1996, 1997), Wilks (1992), Barrow and Semenov (1995), Bindi et al. (1996), Peiris et al. (1996), 

Phillips et al. (1996), Riha et al. (1996), Semenov et al. (1996), Wolf et al. (1996), Olesen and 

Bindi (2002), Torriani et al. (2007), Xiong et al. (2009), Kapphan et al. (2011), and Wang et al. 

(2011) among others. One of the main findings of this line of research is that weather variable 

changes affect both the mean and variability of crop yields, with the magnitude of the effect 

depending on the crop and location used in the study. As noted in Schlenker and Roberts (2006, 

2009a), the drawback of these simulation based models is that they do not take into account the 

adaptive behavior of producers.  

The other line of research is a regression based framework that utilizes historical data to 

identify the effects of weather variables on both the mean and variability of yield. Examples of 
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this line of research include Adams et al., 2001, Chen et al., 2004; Isik and Devadoss, 2006; 

McCarl et al., 2008, Kim and Pang, 2009, Barnwal and Kotani, 2010, and Boubacar, 2010. The 

common aspect of these regression based studies is that they all use the Just and Pope (1978) 

stochastic production function, which Antle (1983) demonstrated as being overly restrictive in 

linking inputs to moments of the output distribution. 

Another branch of relevant literature presents alternative modeling techniques for crop 

yield distributions. Gallagher (1987) utilized the Gamma distribution, Moss and Shonkwiler 

(1993) the inverse hyperbolic sine transformation, Goodwin and Ker (1998) demonstrate the 

usefulness of nonparametric models, and Ker and Coble (2003) develop a semi-parametric 

approach. More recently, Sherrick et al. (2004) considers several alternative parametric yield 

specifications that have been suggested as candidates by previous work or empirical evidence. 

Taken as whole, the main impetus of the crop modeling research is to minimize the possibility of 

ex ante specification errors, while maintaining empirical tractability and the ability to capture 

stylized features of the data. 

Previous research suggests that non-zero skewness should be considered when 

considering crop yield modeling assumptions (Hennessy 2009a, 2009b). Day (1965) found that 

Mississippi delta cotton yields exhibited positive skewness, and both Nelson and Preckel (1989) 

and Moss and Shonkwiler (1993) found evidence of negative skewness for corn. Ramirez, Misra, 

and Field (2003) concluded that Corn Belt corn and soybean yields are negatively skewed and 

that Texas dryland cotton data exhibit positive skewness. Sherrick et al. (2004) conclude that 

distributions that permit negative skewness like the Weibull and beta best fit their samples. Our 

approach is in line with Nelson and Preckel’s (1989) in that we model conditional distributions; 

however we provide a semi-parametric approach that does not require an ex ante distributional 



5 
 

assumption and admits both positive and negative skewness.  

We present a moment based model based on the reduced form natural experiment 

specification employed in Schlenker and Roberts (2009a), and extend the model in several 

dimensions. Similar in spirit to Antle’s (1983, 2010) FGLS estimation framework, we condition 

these moments on weather, irrigation, and technological change; however, we develop an 

approach that permits simultaneous identification of the moment functions and is robust to the 

type of specification errors that bias FGLS estimators. Upon identification of the yield moments 

under a variety of climate and irrigation regimes, we utilize maximum entropy techniques to 

analyze the distributional impacts from switching regimes. This information theoretic approach 

does not require an ex ante distributional assumption and to our knowledge has not been used in 

this context.  

The next two sections present our moment based maximum entropy model and the data 

used to estimate it. The following section presents the empirical results, and includes a 

comparison of our model with other moment based approaches. The last section concludes. 

 

Moment Based Maximum Entropy Model 

Our empirical model has two components, and each is described in the following two 

subsections. First, we develop an extension of Antle’s (1983) moment based approach to 

condition higher order moments of the yield distribution on weather and irrigation variables. The 

moment function specifications follow the reduced-form natural experiment approach laid out in 

Schlenker and Roberts (2006, 2009a), in which case these relationships can be considered causal. 

This model is then used to predict moments conditional on climate and irrigation regimes, which 

are in turn utilized as constraints within a maximum entropy framework. We refer to this 
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conditional distribution estimation technique as the Moment Based Maximum Entropy (MBME) 

approach.  

 

Conditional Higher Order Moments 

As with the Antle (1983, 2010) and Schlenker and Roberts (2006, 2009a) models, we begin by 

specifying some transformation of yield in period t , ( )tg y , as a parameterized function of 

conditioning variables tx , ( ; )tf x β , and a random error term,  

(1) ( ) ( ; ) .t t tg y f ε= +x β  

In our empirical application below, we utilize ( ; )t tf ′=x β x β  with tx  a vector of weather and 

irrigation variables, but the approach is easily generalized to other conditioning variables and 

functional forms for ( )f ⋅ .1 Under the assumption ( | ) 0t tE xε = , it follows that 

[ ]( ) | ( ; )t t tE g y f=x x β  which effectively links different types of conditional moments to the 

variables tx . For example, Antle (1983) utilized the identity function ( )t tg y y=  while Schlenker 

and Roberts (2006, 2009a) utilized the natural logarithm ( ) ln( )t tg y y= . In the former case, the 

model conditions the first raw moment on tx  while the later conditions the first logarithmic 

moment on tx . Other natural candidates for ( )g ⋅  include higher powers of the level, 

( ) ,j
j t tg y y j= ∈ , which would condition higher order raw moments on tx ; higher powers of 

the log, [ ]( ) ln( ) ,j
j t tg y y j= ∈ , which would condition higher order logarithmic moments on 

tx ; or more complicated transformations such as the partial moment formulations in Antle 

(2010). 

 As in Antle (1983, 2010), we extend (1) to a system of J equations  
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(2) ( ) ( ; ) , 1,...,j t t j jtg y f j Jε= + =x β  

which contains a different parameter vector jβ  for each moment equation and we do not impose 

restrictions on the jβ  either within or across equations. This insures that our modeling approach 

inherits the generality of the Antle (1983, 2010) approach with respect to the multiplicative error, 

additive error, and Just and Pope (1978) models. That is, equation (2) extends common 

approaches and is sufficiently general for testing restrictions on the moment function parameters 

within and across equations. 

If we consider the specific case where ( ) , 1,...,j
j t tg y y j J= =  and ( ; )t j t jf ′=x β x β , then 

the system reduces to 

(3) , 1,...,j
t t j jty j Jε′= + =x β  

which is essentially Antle’s (1983) Linear Moment Model (LMM) except that j
ty  replaces 1

j
tε  as 

the dependent variable in equations 2.j >  This highlights a weakness of the LMM approach as 

identification of the higher order moments crucially relies on the error term of the first (mean) 

equation. This insures that any specification errors related to the mean equation will bias the 

other equations within the system. While the LMM focused on identifying centered moments 

versus the raw moments modeled here, this is a trivial distinction as any set of J  centered 

moments can be expressed as functions of their raw moment counterparts, and vice versa. This 

implies that equation (3) is equivalent to the LMM in terms of characterizing the underlying 

probability function, and has the added feature of being robust to misspecification of the mean 

equation. 

We include similar conditioning variables as in Schlenker and Roberts (2006, 2009a), and 

we directly control for the effect of irrigation. In discussing the research design proposed in 
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Mendelsohn, Nordhaus, and Shaw (1994), Schlenker, Hanemann, and Fisher (2005) note that 

pooling dryland and irrigated counties can produce bias in the coefficient estimates for 

precipitation since the structural relationship between precipitation and yield likely differs across 

irrigated versus dryland acreage.1 Although Schlenker and Roberts (2009b) note that their results 

do not differ substantially when pooling cotton data across the 100th meridian, we directly 

control for irrigation and allow for the relationship between precipitation and yield to differ 

across irrigated and dryland acreage.  

Our empirical model for the raw moments of the cotton yield distribution is, 

(4) 
2

1 2 3 4 5 6

2 2
7 8 9 10    ,

j
it ij j it j it j it j it j it ij it

j it it j it it j j ijt

y low med high p p irr

irr p irr p t t

α β β β β β β

β β β β ε

= + + + + + +

+ + + + +
 

where the dependent variable j
ity  is the thj  power of the yield variable ity  for county i  in period 

t , ijα  is a county-by-equation fixed effect, itlow  captures the intensity of low temperatures, 

itmed  captures the intensity of medium temperatures, ithigh  captures the intensity of high 

temperatures, and itp  and 2
itp  capture a quadratic effect of precipitation. We include a dummy 

variable itirr  to control for dryland ( 0itirr = ) and irrigated ( 1itirr = ) acreage, and account for 

differential irrigation effects across space by allowing the irrigation effect parameter to differ 

across counties. In addition, we allow for the effect of precipitation to differ across dryland 

versus irrigated acreage within a state by including interactions of the precipitation variables 

with the irrigation dummy. Finally, we also allow for equation specific quadratic trends that 

account for technological change over time.  

Using the data discussed in the following section, we consistently estimate these 

conditional moments using ordinary least squares with standard errors clustered by year to 

control for spatial correlations within each state. After reporting the empirical results, we 
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demonstrate how these equations can be used to trace out the effects of climate and irrigation on 

the distribution of cotton yields using maximum entropy. 

 

Shape Implications for Cotton Yield Distributions 

While the parameters in the previous section capture the relationship between weather, irrigation, 

and technological change with the higher order moments of the yield distribution, it is not 

immediately clear how these variables affect the overall shape of the distribution. The ability to 

predict the moments under different weather, irrigation, and technological change regimes does 

not in and of itself allow us to measure the effect of these regimes on the distribution of yield 

outcomes.  

 The inability of a finite set of moments to determine the entire density is referred to as the 

moments problem (Shohat and Tamarkin 1943), which arises as the result of trying to invert the 

mapping that takes a probability measure F  to the sequences of moments 

(5) ( ), 1,..., .j
j y dF y j Jµ = =∫  

A practical solution to this problem is to apply the method of maximum entropy as in Stohs 

(2003) and Stohs and LaFrance (2004), who utilized this technique to generate de-trended 

unconditional yield distributions from sample moments for the purpose of premium 

determination. These studies identify the shape of the distribution through the error of the mean 

equation, thus our approach generalizes theirs in the same sense that our moment based approach 

generalizes the Antle (2003) framework. This section provides details of this procedure and 

considers some representative cases. 
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A brief review of the classical maximum entropy density estimation can be found in Wu 

and Wang (2011).2 We follow the authors’ discussion here. Given a continuous random variable 

Y  with a density function f , the associated entropy is 

(6) ( ) ( ) ln ( ) .H f f y f y dy= −∫  

The principle of maximum entropy provides a method of constructing a density from known 

moment conditions. Suppose the density function f  is unknown but a small number of moments 

of Y  are given. There might exist an infinite number of densities satisfying the given moment 

conditions, however, Jaynes’ (1957) Principle of Maximum Entropy suggests selecting the 

density, among all candidates satisfying the moment conditions, that maximizes the entropy.  

Formally, the maximum entropy density is defined as 

(7) * arg max ( )
f

f H f=  

subject to the moment constraints 

(8) ( ) 1, ( ) , 1,..., ,j
jf y dy y f y dy j Jµ= = =∫ ∫  

where ( )j
j E Yµ = . The J  constraints given in (8) can be thought of as moment constraints, 

with jµ  being the population mean of the jY  random variable. The associated Lagrangian is 

(9) 0
1

( ) ln ( ) ( ) 1 ( ) .
J

j
j j

j
L f y f y dy f y dy y f y dyγ γ µ

=

   = − − − − −   ∑∫ ∫ ∫  

The necessary conditions for an interior solution are given by 

(10) 0
0

ln ( ) 1 0

1 ( ) 0

( ) 0, 1,..., .j
j

j

L f y
f
L f y dy

L y f y dy j J

γ
γ

µ
γ

∂
= − − =

∂
∂

= − =
∂
∂

= − = =
∂

∫

∫
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The implied solution is the maximum entropy density and takes the form 

(11) * *
* 1

1( ) exp ,
( )

J j
jj

f y yγ
ψ γ =

 = − ∑  

where * *
1

( ) exp J j
jj
y dyψ γ γ

=
 = − ∑∫  is the normalizing factor that insures the density integrates 

to unity. 

The density in equation (11) is the well-known exponential family, which includes the 

normal, exponential, gamma, chi-square, beta, Dirichlet, Poisson, and many others as members. 

Given a specific set of moments, we estimate the γ  parameters using predicted moments from 

equation (4) as the constraints.4 We estimate these maximum entropy distributions under 

alternative climate and irrigation regimes, thus allowing us to trace out distributional effects. 

 

Data 

Descriptive statistics for the data are reported in table 1. We include any county that has a full set 

of yield observations from 1972 to 2005.5 The reason for the relatively short time-period is 

discussed below. The data is a balanced panel of 84 counties across Arkansas (9 counties), 

Mississippi (11 counties) and Texas (64 counties). We have a total of 4,284 observations 

comprised of 476 observations from Arkansas counties, 612 from Mississippi, and 3,196 from 

Texas. 

Yields for county-level upland cotton are collected from NASS, and are measured as 480 

lb. bales per acre. We construct our yield measure as county-level production divided by planted 

acres. In 1972, NASS began distinguishing between irrigated and non-irrigated yields in 

Arkansas, Mississippi, and Texas. Since one of our main goals is to determine the effect of 

irrigation on the cotton yield distribution, we only include years in which this distinction is 
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made. Figure 1 demonstrates that there is significant spatial and temporal variation of the yield 

data within each state. 

We use the same weather data as in Schlenker and Roberts (2009a), which spans 1950-

2005 and is based on the rectangular grid system underling PRISM that covers the contiguous 

United States. The authors construct a distribution of temperatures within each day using a 

sinusoidal curve between minimum and maximum temperatures. They then estimate time in each 

1oC temperature interval between -5 oC and 50 oC. The area-weighted average time at each 

degree over all PRISM grid cells within a county is constructed, which are then summed over the 

seven month cotton growing period from April through October. 

The low  measure of temperature is constructed as the number of degree days above 0oC 

minus the number of degree days above 14 oC, thus capturing the number of degree days within 

the interval. The med  measure of temperature is constructed in the same way but with the 

bounds 15 oC and 31 oC. From table 1 we see that all three states have relatively similar exposure 

to low and medium temperatures on average, but the variation of these measures is much larger 

for Texas. Indeed, results from Bartlett tests of equal variance imply that variances of the 

weather variables are different across all pairwise combinations of states (all p-values less than 

0.05). The high measure is the number of degree days above 32 oC. While relatively similar to 

Arkansas and Mississippi regarding low and medium temperature exposure, Texas cotton has 

twice the number of degree days within the high temperature category. In addition, Texas 

receives substantially less precipitation during the cotton growing season, both of which help 

explain the relatively low average yield compared to Arkansas and Mississippi. Figures 2 

through 5 demonstrate that there is significant spatial and temporal variation of the weather data 

within each state. Interestingly, the intra-annual variation in all three temperature categories is 
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much larger for Texas suggesting a relatively large amount of weather variability across 

counties. 

 

Empirical Results 

Antle (1983) provides a convincing argument that focusing on the first three or four moments 

will provide a good approximation of the underlying distribution. We follow his approach and 

model the first three moments.  

Since yield data is measured in per acre units, we include frequency weights based on 

planted acreage to control for differences across counties and irrigated versus dryland practices. 

One might suspect this approach introduces endogeneity, but we feel this is a minor concern for 

two reasons. First, the NASS distinction between irrigated and non-irrigated upland cotton data 

is determined by whether the acreage receives at least one application of water during the 

growing season (T. Gregory, Director of the MS NASS, personal communication, June 7, 2011). 

Thus, our dummy variable more reasonably controls for the availability of irrigation technology 

rather than the intensity of usage. Since installing this technology involves significant cost, the 

amount of irrigated acreage in a given year is likely uncorrelated with annual yield shocks. 

Second, even if a confluence of rare events led to wide spread non-usage of irrigation by farmers 

that had the technology available, the precipitation and weather variables included in the model 

would control for this type of event. 

Another issue is whether the data can be pooled across states. To formally test this we 

estimate a version of equation (4) that allows for state specific parameters, 

(12) 
2

1 2 3 4 5 6

2 2
7 8 9 10    ,

j
ist ij js it js it js it js it js it ij it

js it it js it it js js ijt

y low med high p p irr

irr p irr p t t

α β β β β β β

β β β β ε

= + + + + + +

+ + + + +
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where the dependent variable j
isty  is now the thj  power of the yield variable isty  for county i  in 

states s  during period t . Using 1,2,3s =  to index the three states in our dataset, we pooled the 

data and tested null hypotheses of the form 0 1 2 3: j k j k j kH β β β= =  for the first three moment 

equations 1,2,3j = .  

We utilize the non-parametric block bootstrap p-value approach for testing multiple 

hypotheses outlined in Wooldridge (2010) to test whether the precipitation, temperature, and 

trend variables are the same across states. We re-sample whole years at a time to preserve 

correlation structures both within and across states. We construct 999 bootstrap samples and 

tested the null hypotheses  

(13) 0 1,1 2,1 3,1 1,2 2,2 3,2 1,10 2,10 3,10: , ,...,j j j j j j j j jH β β β β β β β β β= = = = = =  

for each equation 1,2,3j = . The p-values for the three equations were 0.028, 0.022, and 0.086 

respectively, suggesting that the model parameters should not be held constant across states.6 

Thus, we estimate the parameters of the moment based model for each state separately. 

Tables 2-4 reports parameter estimates of the first three moments of the yield distribution 

for Arkansas, Mississippi, and Texas using OLS with standard errors clustered by year to control 

for spatial correlation across counties. As in Schlenker and Roberts (2009a), exposure to low and 

medium temperatures have relatively minor effects on mean yields compared to temperatures 

above 32 oC. Extending their finding, we see that extreme heat continues to have a statistically 

significant effect on the higher order moments as well. 

We find that irrigation is an important conditioning variable for all three of the moments. 

Of the eighty counties in our data, forty-two have both irrigated and dryland acreage. Using the 

average level of precipitation within each county, the county-level effect of irrigation on mean 

yield ranges from 0.39 to 0.52 bales per acre in Arkansas, 0.23 to 0.54 in Mississippi, and 0.33 to 
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0.78 in Texas. The associated p-values for the null hypothesis of a zero effect are all below 0.01. 

This pattern of statistical significance continues for the higher order moments, with the 

maximum p-value being 0.037. 

The importance of the other conditioning variables is location and equation specific. For 

example, precipitation for dryland acreage does not appear to be an important conditioning 

variable in either Arkansas or Mississippi, but is for all three moments in Texas. Precipitation for 

irrigated acreage is important for only the first moment in Arkansas, but is important for all three 

in Mississippi. Again, technological change only appears to affect the first moment in Arkansas, 

but this finding does not generalize to Mississippi or Texas. 

These findings have two immediate implications for modeling cotton yields. First, it is 

not sufficient to only allow the mean of the distribution to vary with weather, irrigation, and 

technological change; rather, a more holistic approach that takes into account the effects of these 

variables on higher order moments is warranted. Second, climate change research that focuses 

solely on the effect of climate on mean yields might not capture risk management implications. 

 

Shape Implications under Maximum Entropy Distribution 

To demonstrate the flexibility of this approach for generating county level yield distributions, we 

utilize the MBME approach to construct yield distributions under four different climate and 

irrigation regimes. The first two regimes represent historical climate conditions and distinguish 

between irrigated and dryland cotton acreage. These are referred to as the baseline distributions. 

The next two regimes consider the impact of a 1 oC uniform increase in temperature on the 

baseline distributions.  



16 
 

We report results for the two counties with the largest averages of dryland and irrigated 

acreage within each state. These counties are Craighead, AR, Mississippi, AR, Leflore, MS, 

Washington, MS, Dawson, TX, and Hale, TX. The baseline distributions are constructed for 

dryland and irrigated acreage by predicting the first three moments using the sample average of 

the data within each particular county and the estimated coefficients from tables 2-4. For each 

county-regime pair, this generates three predicted moments ( 1m , 2m , and 3m ) which are then 

used in place of ( 1µ , 2µ , and 3µ ) as constraints for the maximum entropy estimation.  

We simulate the uniform shift in climate by creating new minimum and maximum daily 

temperature variables in the Schlenker and Roberts Stata do-file 

(http://www.columbia.edu/~ws2162/dailyData/degreeDays.do) that reflect a 1 oC increase. We 

do this for all years in the dataset and construct the corresponding degree day measures. The 

average of these new degree day measures across years of the simulated data represent the shift 

in climate. We do not consider a change in precipitation, but this could easily be accomplished in 

a similar manner. To be consistent with the baseline regimes, we hold all other variables constant 

at their sample averages. 

Table 5 reports the estimated moments ( 1m , 2m , and 3m ) under the four climate and 

irrigation regimes. Note that asterisks under the climate change regimes denote whether the 

predicted moment is statistically significantly different from its baseline counterpart. Similar to 

Schlenker and Roberts (2009b, see Table A5), we do not find strong statistical evidence of non-

zero impacts under the 1 oC warming scenario for either dryland or irrigated cotton. The 

exception is Dawson, TX, where the effect is a reduction in mean yield of 0.101 bales (or 48 lbs) 

per acre and is significant at a five percent level. It is interesting to note that a significant effect 

on mean yield does not generally translate into a significant effect on the second and third 

http://www.columbia.edu/~ws2162/dailyData/degreeDays.do
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moments. For example, the climate change impacts suggest a mean-preserving spread for both 

Craighead and Mississippi, AR, as well as Washington, MS.    

Figures 6-8 plot the associated maximum entropy distributions for the moments reported 

in Table 5, and several patterns emerge.7 First, the flexibility of the maximum entropy approach 

to capture mass points around zero is clearly demonstrated, especially with regard to Texas 

(Figure 8) where both dryland and irrigated acreage are susceptible to large scale crop losses. All 

baseline distributions in Texas have a non-zero probability of total crop loss, and the effect of 

climate change increases the probability of this outcome dramatically. Some of the shapes are 

peculiar and could be suggestive of distributional bimodality, in which case incorporating more 

higher order moments into MBME model could be warranted. 

While the issue of an increased mass around zero does not appear to be a serious concern 

for Arkansas (Figure 6), there are distributional shape implications. Here, climate change has the 

effect of concentrating outcomes below the mean of the baseline distribution, but the 

implications for shallow versus deep losses are different. Specifically, the probability of 

outcomes just below the mean increases (more shallow loss events) but the probability of 

outcomes in the far left tail (deep losses) decreases. To what extent this trade-off actually effects 

producer welfare is not straightforward and warrants further consideration, however it should be 

noted that the overall trend is an exchange of upside risk for downside risk. 

The results for dryland cotton in Mississippi (Figure 7) are interesting. Here we see that 

the effect of climate change on yields is indeed a mean preserving spread as suggested above, but 

the spread is in reverse as the outcomes become more concentrated around the mean of the 

distribution. While a more thorough analysis of the potential impact is surely warranted, the 

implication here is that if a producer values a reduction in downside risk substantially more than 
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an equivalent increase in upside risk, then Mississippi dryland producers might actually benefit 

from a 1 oC uniform increase in temperature. The results for Mississippi irrigated acreage are 

similar to the findings in Arkansas.  

 

Comparison to other Approaches 

A potential concern is whether the MBME approach developed here is preferable to other, 

simpler approaches. For example, one might consider combining the mean equation for each 

state s , 

(14) 
2

1 2 3 4 5 6
2 2

7 8 9 10    ,
ist i s it s it s it s it s it i it

s it it s it it s s ist

y low med high p p irr
irr p irr p t t

α β β β β β β

β β β β ε

= + + + + + +

+ + + + +
 

with the distributional assumption 2(0, )ist sNε σ . This would generate county-level conditional 

normal distributions that are homoskedastic within states, and the required parameters are easily 

estimated using a single OLS step. We will call this approach the Mean Based Gaussian (MBG) 

model. Alternatively, one could relax the homoskedasticity restriction and assume that 

2(0, ( ))ist s itNε σ x , in which case the likely second stage FGLS specification for 2 ( )s itσ x  is the 

same as (14). We refer to this approach as the Mean Based Gaussian Heteroskedastic (MBGH) 

model, and note that it is essentially Antle’s (1983) LMM model under a Gaussian distributional 

assumption. 

 Figures 9-14 compare the MBME, MBG, MBGH models under the four climate and 

irrigation regimes for each county. Looking at Figures 9 and 10, it is immediately clear that the 

Gaussian models do not have the flexibility to capture fat tails or skewness relative to the MBME 

model. Interestingly, when comparing the Baseline Dryland to the 1C Shift Dryland panels we 

see that the MBME model is capable of shifting from a non-normal distribution (Baseline panel) 
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to something very similar to a normal distribution (1C Shift Dryland) under the climate change 

scenario. Indeed, the Maximum Entropy approach essentially nests the entire exponential family 

of distributions, a very desirable property for modeling distributional impacts of climate change.    

 The strength of the MBME model to essentially nest the MBG and MBGH models is 

again displayed by the distributional plots for Mississippi (Figures 11 and 12). Interestingly, for 

the 1C Shift Dryland panels, we see that the MBG and MBGH tails are actually too thick relative 

to the MBME model. Not surprisingly, the MBG and MBGH models get the lower tails wrong 

for Texas yield distributions (Figures 13 and 14). The ability of the MBME model to include a 

bounded support insures that negative yields are probabilistically impossible, a convenient 

feature where large scale crop losses are not uncommon. 

 

Conclusion  

The proposed research provides a flexible method for linking weather and irrigation variables to 

the moments of yield distributions. The estimated moments can be used to construct estimates of 

the maximum entropy distributions, which allow one to trace weather and irrigation effects 

through to the shape of the distribution. We considered the case of Arkansas, Mississippi, and 

Texas upland cotton yields to demonstrate how climate change and irrigation affect the shape of 

the yield distribution. We illustrated several advantages of our moment based maximum entropy 

approach, including flexibility of the distributional tails across alternative irrigation and climate 

regimes. 

Future extensions of this work should include forecasting the moments of the yield 

distribution under a variety of climate and irrigation scenarios. For example, one could use our 

empirical framework and results to forecast expected changes in yield variability under current 
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climate conditions and a, say, twenty percent reduction in irrigated acreage. Alternatively, once 

could forecast changes using climate predictions from the Hadley III model and hold current 

irrigated acreage constant. Finally, and perhaps most interestingly, one could forecast the long 

run effects of simultaneously changing both irrigation acreage and climate.  
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Footnotes 

1. One can view our simple approach as providing a first order approximation of the relationship 

between the moment(s) and the conditioning variables. Perhaps a more exhaustive approach 

would consider nonlinearities in this relationship, in which case generalized additive models 

(Hastie and Tibshirani, 1986), multivariate adaptive regression splines (MARS) (Friedman, 

1991), neural networks (Richards, Patterson, and Van Ispelen, 1998 apply this approach to 

tomato marketing margins), and projection pursuit regression (Friedman and Stuetzle, 1981) 

might prove useful.  

 

2. The work of Schlenker, Hanemann, and Fisher (2005) contributed to a line of research 

debating the potential impact of global climate change on U.S. Agriculture. Related studies 

include Adams (1989); Kaiser et al. (1993); Mendelsohn, Nordhaus, and Shaw (1994); Adams et 

al. (1995); Schlenker and Roberts (2006); Schlenker, Hanemann, and Fisher (2006); Deschenes 

and Greenstone (2007); Schlenker and Roberts (2009a); Ashenfelter and Storchmann (2010); and 

Hertel and Rosch (2010). 

 

3. Additional descriptions of the method of maximum entropy can be found in Jaynes (1982); 

Zellner and Highfield (1988); Golan, Judge, and Miller (1996), Mittelhammer, Judge, and Miller 

(2000), Ormoneit and White (1999), and Tagliani (1993). 

 

4. To estimate the univariate maximum entropy distributions, we utilize the sequential updating 

method developed in Wu (2003). Matlab code for this approach is available on Ximing Wu’s 

web page at http://agecon2.tamu.edu/people/faculty/wu-ximing/ 

http://agecon2.tamu.edu/people/faculty/wu-ximing/
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5. The use of county-level data is common in the literature as it is the most disaggregate level 

where long time series are available. One could use farm-level data but then would have to 

confront issues related to the limited number of time series observations. On average, farm level 

variability will be greater than county variability. 

 

6. To be fair to Schlenker and Roberts (2009a, 2009b), we did find evidence in favor of pooling 

the low, medium, and high temperature parameters across states for the mean equation (which is 

line with their approach). 

 

7. An important caveat to note is that we do not include standard errors for the distributions. 

Since this is a two stage approach that combines both regression and maximum entropy 

estimators, and is applied to panel data, one must be very careful in identifying the appropriate 

sources of error when constructing estimates of the underlying conditional distributions. Perhaps 

block bootstrapping the underlying sample data by year and carrying each bootstrap iteration 

through to the maximum entropy distribution estimation would prove useful. As is, our findings 

in this section are merely suggestive. 
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Table 1. Yield, Weather, and Irrigation Data: 1972-2005 

Variable Sample Mean (s.d.) Min Max 
# of 
obs 

Arkansas 
    Upland Cotton Yield (480 lb. bales per acre) 1.263(0.4183) 0.2689 2.517 476 

Low Temperature (degree days) 3063(38.27) 2947 3147 476 
Medium Temperature (degree days) 1666(126.9) 1339 2127 476 
High Temperature (degree days) 27.23(19.15) 4.000 118.5 476 
Precipitation (10 centimeters) 6.905(1.320) 4.336 11.19 476 
Irrigation (Yes = 1) 0.3571(0.4796) 0 1 476 
Mississippi     
Upland Cotton Yield (480 lb. bales per acre) 1.541(0.3874) 0.4832 2.550 612 
Low Temperature (degree days) 3095.5(30.50) 3013 3152 612 
Medium Temperature (degree days) 1789(122.4) 1446 2154 612 
High Temperature (degree days) 29.58(18.81) 4.177 94.01 612 
Precipitation (10 centimeters) 7.354(1.596) 4.191 11.66 612 
Irrigation (Yes = 1) 0.3888(0.4878) 0 1 612 
Texas     
Upland Cotton Yield (480 lb. bales per acre) 0.7972(0.4780) 0.006599 3 3196 
Low Temperature (degree days) 3052(84.94) 2808 3209 3196 
Medium Temperature (degree days) 1760(304.0) 1139 2694 3196 
High Temperature (degree days) 61.70(34.97) 4.118 207.2 3196 
Precipitation (10 centimeters) 4.436(1.616) 0.9259 15.71 3196 
Irrigation (Yes = 1) 0.4042(0.4908) 0 1 3196 
Overall     
Upland Cotton Yield (480 lb. bales per acre) 0.9554(0.5381) 0.006599 3 4284 
Low Temperature (degree days) 3059(76.84) 2808 3209 4284 
Medium Temperature (degree days) 1754(271.9) 1139 2694 4284 
High Temperature (degree days) 53.28(34.82) 4.000 207.2 4284 
Precipitation (10 centimeters) 5.127(1.980) 0.9259 15.71 4284 
Irrigation (Yes = 1) 0.3968(0.4892) 0 1 4284 

Notes: Values reported for temperature and precipitation variables correspond to the April through October 
growing season. Low temperature measures degree days between 0C and 14C; medium temperature measures 
degree days between 15C and 31C; and high temperature measures degree days above 32C. 
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Table 2. Effect of Weather and Irrigation on Cotton Yield Moments, Arkansas 

 
1 2 3 

Dependent variable: Yield Yield2 Yield3 
Low Temperature -0.000648 -0.000538 0.00103 

 [0.00183] [0.00581] [0.0148] 
Medium Temperature 0.000754 0.000791 -0.000153 

 [0.000645] [0.00193] [0.00470] 
High Temperature -0.0109*** -0.0227** -0.0399 

 [0.00309] [0.0102] [0.0252] 
Precipitation 0.112 0.184 0.280 

 [0.164] [0.428] [0.920] 
Precipitation Squared -0.00882 -0.0162 -0.0283 

 [0.0103] [0.0271] [0.0586] 
Irrigation*Precipitation -0.458* -1.171 -2.569 

 [0.247] [1.086] [3.504] 
Irrigation*Precipitation Squared 0.0304* 0.0761 0.161 

 [0.0170] [0.0744] [0.239] 
Trend 0.0297** 0.0395 0.00162 

 [0.0143] [0.0407] [0.101] 
Trend Squared -0.000285 0.000361 0.00314 

 [0.000424] [0.00130] [0.00336] 
County Fixed Effects Y Y Y 
County Specific Irrigation Effects Y Y Y 
Mean of Dependent Variable 1.263882 1.772074 2.702048 
N 476 476 476 
R-sq 0.749 0.711 0.654 

Notes: Table shows results of regressing yield, yield2, and yield3 on weather, trend, and 
irrigation variables. Weather variables are aggregated for the months April-October. Planted 
acre frequency weights are included. Clustered standard errors by year are in brackets. *, **, 
and *** denote significance at the 10%, 5%, and 1% levels. 

  



30 
 

Table 3. Effect of Weather and Irrigation on Cotton Yield Moments, Mississippi 

 1 2 3 
Dependent variable: Yield Yield2 Yield3 
Low Temperature -0.000941 -0.00322 -0.00835 

 [0.00210] [0.00662] [0.0165] 
Medium Temperature 0.00167** 0.00402** 0.00800 

 [0.000655] [0.00193] [0.00473] 
High Temperature -0.0121*** -0.0331*** -0.0727*** 

 [0.00283] [0.00902] [0.0229] 
Precipitation 0.252 0.701 1.564 

 [0.158] [0.447] [1.035] 
Precipitation Squared -0.0156 -0.0432 -0.0958 

 [0.00953] [0.0268] [0.0615] 
Irrigation*Precipitation -0.424** -1.267* -2.943 

 [0.192] [0.634] [1.740] 
Irrigation*Precipitation Squared 0.0266** 0.0819* 0.196* 

 [0.0123] [0.0414] [0.115] 
Trend 0.0315** 0.0772** 0.149* 

 [0.0127] [0.0356] [0.0851] 
Trend Squared -0.000634 -0.00138 -0.00226 

 [0.000399] [0.00120] [0.00302] 
County Fixed Effects Y Y Y 
County Specific Irrigation Effects Y Y Y 
Mean of Dependent Variable 1.541315 2.525506 4.348466 
N 612 612 612 
R-sq 0.641 0.606 0.559 
Notes: Table shows results of regressing yield, yield2, and yield3 on weather, trend, and 
irrigation variables. Weather variables are aggregated for the months April-October. Planted 
acre frequency weights are included. Clustered standard errors by year are in brackets. *, **, 
and *** denote significance at the 10%, 5%, and 1% levels. 
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Table 4. Effect of Weather and Irrigation on Cotton Yield Moments, Texas 

 1 2 3 
Dependent variable: Yield Yield2 Yield3 
Low Temperature -0.000362 -0.000697 -0.00110 

 [0.00120] [0.00211] [0.00354] 
Medium Temperature 0.000244 0.000576 0.00117 

 [0.000660] [0.00111] [0.00177] 
High Temperature -0.00449** -0.00663** -0.0102** 

 [0.00169] [0.00283] [0.00471] 
Precipitation 0.221*** 0.303*** 0.439** 

 [0.0659] [0.102] [0.174] 
Precipitation Squared -0.0216*** -0.0292*** -0.0414*** 

 [0.00507] [0.00732] [0.0120] 
Irrigation*Precipitation -0.360*** -0.447** -0.494 

 [0.105] [0.200] [0.385] 
Irrigation*Precipitation Squared 0.0301*** 0.0342 0.0314 

 [0.0109] [0.0220] [0.0447] 
Trend -0.0122 -0.0286 -0.0621 

 [0.0148] [0.0260] [0.0450] 
Trend Squared 0.000646 0.00151* 0.00311** 

 [0.000436] [0.000820] [0.00149] 
County Fixed Effects Y Y Y 
County Specific Irrigation Effects Y Y Y 
Mean of Dependent Variable 0.797274 0.8641389 1.153844 
N 3196 3196 3196 
R-sq 0.553 0.519 0.450 
Notes: Table shows results of regressing yield, yield2, and yield3 on weather, trend, and 
irrigation variables. Weather variables are aggregated for the months April-October. 
Planted acre frequency weights are included. Clustered standard errors by year are in 
brackets. *, **, and *** denote significance at the 10%, 5%, and 1% levels. 
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Table 5. Distributions for Climate and Irrigation Scenarios 
Scenario m1 m2 m3 
Baseline Dryland      Craighead, AR 1.125590 1.430990 2.017554 
  Mississippi, AR 1.239172 1.707981 2.555988 
  Leflore, MS 1.396610 2.080046 3.281212 
  Washington, MS 1.568801 2.561124 4.333720 
  Dawson, TX 0.5531182 0.3960293 0.324448 
  Hale, TX 0.5478938 0.4068280 0.3861314 
Baseline Irrigated      Craighead, AR 1.593657 2.808411 5.278339 
  Mississippi, AR 1.617925 2.819924 5.121613 
  Leflore, MS 1.764068 3.274664 6.286099 
  Washington, MS 1.799910 3.419940 6.750760 
  Dawson, TX 1.256312 1.801851 2.864571 
  Hale, TX 1.090115 1.383261 1.917055 
Climate Change Dryland      Craighead, AR 1.026941 1.124128* 1.290311* 
  Mississippi, AR 1.157627 1.435100 1.885012* 
  Leflore, MS 1.381632 1.934819 2.792643 
  Washington, MS 1.546785 2.397130 3.804814* 
  Dawson, TX 0.4519883** 0.2738109 0.1774388 
  Hale, TX 0.4807599 0.3331543 0.3134910 
Climate Change Irrigated      Craighead, AR 1.495009 2.501549* 4.551096* 
  Mississippi, AR 1.536380 2.547043 4.450636* 
  Leflore, MS 1.749090 3.129437 5.797530 
  Washington, MS 1.777894 3.255946 6.221853* 
  Dawson, TX 1.155182** 1.679633 2.717562 
  Hale, TX 1.022982 1.309588 1.844415 
Notes: This table reports the estimated moments for the Maximum Entropy estimator of 
the yield distribution for under baseline climate and a 1 C uniform increase in daily 
temperature. For the climate change regimes, we include asterisks to denote statistically 
significant differences relative to each county's baseline counterpart. *, **, and *** 
denote significance at the 10%, 5%, and 1% levels. 
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Figure 1. County Level Variation in Yield, by State 
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Figure 2. County Level Variation in Low Temperature, by State 
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Figure 3. County Level Variation in Medium Temperature, by State 
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Figure 4. County Level Variation in High Temperature, by State 
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Figure 5. County Level Variation in Precipitation, by State 
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Figure 6. Maximum Entropy Distributions under Four Climate and Irrigation Regimes, 
Arkansas 
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Figure 7. Maximum Entropy Distributions under Four Climate and Irrigation Regimes, 
Mississippi 
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Figure 8. Maximum Entropy Distributions under Four Climate and Irrigation Regimes, 
Texas 
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Figure 9. Distributions from the Moment Based Maximum Entropy (MBME), Mean Based 
Gaussian (MBG), and Mean Based Gaussian Heteroskedastic (MBGH) Models for 
Craighead, Arkansas 
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Figure 10. Distributions from the Moment Based Maximum Entropy (MBME), Mean 
Based Gaussian (MBG), and Mean Based Gaussian Heteroskedastic (MBGH) Models for 
Mississippi, Arkansas 
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Figure 11. Distributions from the Moment Based Maximum Entropy (MBME), Mean 
Based Gaussian (MBG), and Mean Based Gaussian Heteroskedastic (MBGH) Models for 
Leflore, Mississippi 
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Figure 12. Distributions from the Moment Based Maximum Entropy (MBME), Mean 
Based Gaussian (MBG), and Mean Based Gaussian Heteroskedastic (MBGH) Models for 
Washington, Mississippi 
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Figure 13. Distributions from the Moment Based Maximum Entropy (MBME), Mean 
Based Gaussian (MBG), and Mean Based Gaussian Heteroskedastic (MBGH) Models for 
Dawson, Texas 
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Figure 14. Distributions from the Moment Based Maximum Entropy (MBME), Mean 
Based Gaussian (MBG), and Mean Based Gaussian Heteroskedastic (MBGH) Models for 
Hale, Texas 


