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Abstract 

Speech comprehension relies on the ability to understand the meaning of words within a coherent 

context. Recent studies have attempted to obtain electrophysiological indices of this process by 

modelling how brain activity is affected by a word’s semantic dissimilarity to preceding words. While 

the resulting indices appear robust and are strongly modulated by attention, it remains possible that, 

rather than capturing the contextual understanding of words, they may actually reflect word-to-word 

changes in semantic content without the need for a narrative-level understanding on the part of the 

listener. To test this possibility, we recorded EEG from subjects who listened to speech presented in 

either its original, narrative form, or after scrambling the word order by varying amounts. This 

manipulation affected the ability of subjects to comprehend the narrative content of the speech, but not 

the ability to recognize the individual words. Neural indices of semantic understanding and low-level 

acoustic processing were derived for each scrambling condition using the temporal response function 

(TRF) approach. Signatures of semantic processing were observed for conditions where speech was 

unscrambled or minimally scrambled and subjects were able to understand the speech. The same 

markers were absent for higher levels of scrambling when speech comprehension dropped below 

chance. In contrast, word recognition remained high and neural measures related to envelope tracking 

did not vary significantly across the different scrambling conditions. This supports the previous claim 

that electrophysiological indices based on the semantic dissimilarity of words to their context reflect a 

listener’s understanding of those words relative to that context. It also highlights the relative 

insensitivity of neural measures of low-level speech processing to speech comprehension.  
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1. Introduction 

Understanding a word’s meaning following the coherent linguistic context in which it appears forms 

the basis for natural speech comprehension. Recent studies have attempted to obtain 

electrophysiological indices of this process by modelling how brain responses are affected by a word’s 

meaning relative to its context (Broderick, Anderson, Di Liberto, Crosse, & Lalor, 2018; Dijkstra, 

Desain, & Farquhar, 2020; Frank & Willems, 2017). One particular approach involved regressing 

electroencephalographic responses to natural speech against the semantic dissimilarity of words to their 

preceding context (Broderick et al., 2018). This produced neurophysiological model measures that 

appeared to be exquisitely sensitive to a listener’s speech understanding. This sensitivity was 

demonstrated by comparing the neural measures for forward speech and time-reversed speech; by 

investigating speech processing under different levels of perceived noise; and in tasks where speech 

was either attended or unattended (Broderick et al., 2018). In each of these experiments, speech 

understanding coincided with a neural model measure closely resembling the N400 component of the 

event related potential, which has long been associated with the processing of meaning (Kutas & 

Federmeier, 2011; Kutas & Hillyard, 1980). 

We have proposed that this neural model measure – known as a semantic temporal response function 

(TRF) – reflects the semantic processing of words in their context. However, given that the approach is 

based on calculating the semantic dissimilarity of words to their preceding context, it remains possible 

that the measure reflects a sensitivity to word-to-word changes in semantic content without the need for 

a narrative-level understanding on the part of the listener. Furthermore, the human brain processes 

speech at multiple linguistic levels, including the analysis of words’ phonological, lexical, and syntactic 

properties (Davis & Johnsrude, 2003; de Heer, Huth, Griffiths, Gallant, & Theunissen, 2017; Hickok & 

Poeppel, 2007; Poeppel, Emmorey, Hickok, & Pylkkänen, 2012; Price, 2010). As such, it is possible 

that the semantic TRF could also reflect processing at some level lower than semantics, where words 

are recognised but their true underlying meaning isn’t processed in relation to previous context. Indeed, 

as mentioned, the morphology and topographical distribution of the semantic TRF shared common 

characteristics with the N400. And the N400 component has been shown not only to be sensitive to 

semantic properties of words in context but also to lower-level lexical properties like word frequency 

and neighbourhood density (Kutas, 1993). Therefore, we wished to further examine the semantic TRF’s 

sensitivity to the processing of intelligible speech where all words were lexically identifiable, but the 

overall meaning of the speech narrative was not understood. In other words, we wanted to determine 

whether the recently derived semantic TRF was specifically sensitive to the processing of words 

following a coherent, predictive context, thus reflecting semantic levels of processing, or whether it 

could be elicited by the same speech where word order, and thus context, had been manipulated. 
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To manipulate the narrative coherence of our stimuli while still presenting each word with perfect 

intelligibility, we systematically randomised the order of words for a piece of narrative text to create 5 

different levels of randomisation, or scrambling. This text was then converted to a speech signal and 

presented to subjects while their EEG was recorded. Similar forms of linguistic degradation have been 

used in previous studies to investigate syntactic and combinatorial semantic processing (Humphries, 

Binder, Medler, & Liebenthal, 2006; Mollica et al., 2018). Inspired by previous studies, where local 

temporal information in the acoustic (Kiss, Cristescu, Fink, & Wittmann, 2008; Saberi & Perrott, 1999) 

or linguistic (Lerner, Honey, Silbert, & Hasson, 2011) speech stream was manipulated at gradually 

increasing temporal windows, we varied the number of consecutive words that could be scrambled to 

gradually increase the comprehension difficulty of the speech signal. This created graded levels of 

speech understanding with which we could test the sensitivity of the recently derived measures of 

semantic processing.  

We additionally wished to test the impact of speech comprehension on neural responses relating to the 

speech envelope. The amplitude envelope of the speech waveform has been highly emphasised in the 

literature (Luo & Poeppel, 2007; Obleser, Herrmann, & Henry, 2012) and is an important cue for speech 

perception (Drullman, Festen, & Plomp, 1994a, 1994b; Shannon, Zeng, Kamath, Wygonski, & Ekelid, 

1995). This has led researchers to use neural indices of envelope tracking as dependent measures of 

speech comprehension (Etard & Reichenbach, 2019; Verschueren, Somers, & Francart, 2019). 

However, reliable envelope tracking has also been shown for an array of signals that do not allow 

comprehension (Doelling & Poeppel, 2015; Howard & Poeppel, 2010; Lalor, Power, Reilly, & Foxe, 

2009; Peña & Melloni, 2012). Fewer studies have compared envelope tracking of speech that is entirely 

recognisable to the listener but varies in its degree of semantic comprehensibility. Here we do so by 

deriving TRFs to the speech envelope across our different scrambling levels, allowing us to compare 

semantic and envelope TRFs for the same speech and the same subjects.  

2. Methods 

2.1 Subjects 

15 subjects (7 female) aged between 19 and 29 participated in the study. All participants were native 

English speakers, had self-reported normal hearing, were free of neurological diseases, and provided 

written informed consent. All procedures were undertaken in accordance with the Declaration of 

Helsinki and were approved by the Ethics Committees of the School of Psychology at Trinity College 

Dublin, and the Health Sciences Faculty at Trinity College Dublin. 

2.2 Stimuli and Experimental Procedure 

Stimuli were acquired from a children’s novel (White, 1951). Text from chapters 3-10 of the novel were 

split into 60 segments corresponding to the 60 trials in the experiment. Each segment then underwent a 
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scrambling procedure to generate 5 different versions. This was done by grouping consecutive words 

into windows of length w and randomly permuting the words within each window. The window lengths 

were selected as w = 1 (unscrambled), 2, 4, 7, 11 so that the interval between window lengths increased 

by 1 with each w (i.e. 2 - 1 = 1, 4 – 2 =2, 7 – 4 =3 etc.). Audio versions of each text segment (including 

the unscrambled text segments) were then generated using Google’s Text-to-Speech. This software is 

powered by WaveNet (Oord et al., 2016), a generative model for raw audio based on a deep neural 

network. It generates realistic human-like sounding voices and has been rated significantly more natural 

sounding than the best parametric and concatenative systems for English (Oord et al., 2016). Each 

speech segment, or trial, lasted ~60 seconds and could be heard as one of the five scrambled versions.  

Two sets of questionnaires were generated for each trial. The first was a comprehension questionnaire 

that consisted of 6 questions with 2 possible answers, pertaining to the content of the trial. The second 

was a lexical identification questionnaire. 6 words were presented with yes/no choices as to whether 

the word appeared in the trial. 2-4 of these words were nouns/verbs which had appeared in the trial, and 

the remainder were nouns/verbs which were randomly selected from the rest of the text and did not 

appear in the trial. No subject reported listening to or reading the novel within at least 3 years of 

participating in the study. 

For the EEG experiment, trials were presented chronological to the story in 12 blocks of 5 trials. Each 

block contained one trial from each of the 5 different scrambling conditions. Condition order was 

randomised for each subject and for each block, so that, for example, subject 1 might hear trial 1 with 

a scrambling window of 11 whereas subject 2 might hear trial 1 with a scrambling window of 4. After 

each trial subjects were presented with a comprehension and lexical identification questionnaire. 

Subjects were encouraged to take breaks when needed between trials. Stimuli were presented diotically 

at a sampling rate of 44.1 kHz using HD650 headphones (Sennheiser) and Presentation software 

(Neurobehavioural Systems). Testing was performed in a dark, sound-attenuated room, and subjects 

were instructed to maintain visual fixation on a crosshair centred on the screen for the duration of each 

trial, and to minimize eye blinking and all other motor activities. 

2.3 Data Acquisition and Preprocessing 

128-channel EEG data were acquired at a rate of 512 Hz using an ActiveTwo system (BioSemi). 

Offline, the data were downsampled to 128Hz and bandpass filtered between 0.5 and 8Hz using a zero-

phase shift Butterworth 4th order filter. To identify channels with excessive noise, the standard deviation 

of the time series of each channel was compared with that of the surrounding channels. For each trial, 

a channel was identified as noisy if its standard deviation was more than 2.5 times the mean standard 

deviation of all other channels or less than the mean standard deviation of all other channels divided by 

2.5. Channels contaminated by noise were recalculated by spline interpolating the surrounding clean 

channels. Independent component analysis (Hyvarinen, 1999) was then performed on the EEG data in 
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order to remove eye blinks. EEG data was transformed into component space and components relating 

to eye-blinks were identified based on their topographical distribution and component time-series. 

These components were removed, and the data were then transformed back to EEG channel space. Data 

were then referenced to the average of the 2 mastoid channels and were normalized to zero mean and 

unit SD (z units).  

2.4 Stimulus Characterisation 

We wished to test the effect of scrambling condition on the neural encoding of low-level and high-level 

properties of the speech signal. For the low-level representation we chose the speech envelope, an 

approach that has been widely used in recent years (e.g., (Kubanek, Brunner, Gunduz, Poeppel, & 

Schalk, 2013; Lalor & Foxe, 2010). We calculated it by taking the absolute value of the Hilbert 

transform of the broadband (80 to 3000Hz) speech signal, and passing that through a zero phase-shift 

low pass filter with a cutoff at 30 Hz.  

We represented the context-based meaning of the words in the speech using semantic dissimilarity. 

Semantic dissimilarity quantifies the semantic relationship between words and their previous context. 

GloVe – a word embedding model (GloVe; (Pennington, Socher, & Manning, 2014)) - was used to 

represent each content word in the stimulus as a vector or coordinate in high dimensional space. Vectors 

were derived by factorizing the word co-occurrence matrix of a large text corpus - in this case Common 

Crawl (https://commoncrawl.org/). The output is a 300-dimensional vector for each word, where each 

dimension can be thought to reflect some latent linguistic context. A word’s semantic dissimilarity was 

estimated as 1 minus the Pearson’s correlation of the word’s vector and the average vector of words 

from the preceding context. Previous studies have chosen this preceding context to be all previous words 

in the same sentence (Broderick et al., 2018; Broderick, Di Liberto, Anderson, Rofes, & Lalor, 2020). 

However, given that, for scrambled speech, sentence boundaries were randomised, we chose to instead 

estimate semantic dissimilarity by comparing a word vector with the averaged vector of its 10 preceding 

words. This window was chosen somewhat arbitrarily, however, choosing different context window 

lengths of 5, 8 and 12 did not qualitatively alter the overall results. The semantic dissimilarity measure 

was quantified as a vector of impulses, the same length as the presented trial, with impulses at the onset 

of each content word whose heights was scaled according to their semantic dissimilarity value. Finally, 

we included an additional feature of word onset as input to the TRF. This is an impulse vector, with 

impulses at the beginning of each content word, whose height is a constant value of the average of the 

semantic dissimilarity values in the same trial. The purpose of including this feature was to try to soak 

up additional variance in the EEG response related to the acoustic processing of the word onset.   

Speech waveforms for each trial and each scrambling condition (60 trials x 5 conditions) were generated 

first (using WaveNet) before the speech envelope or semantic dissimilarity features were estimated.  
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2.5 TRF Estimation and Evaluation 

To test the encoding of the lower and higher-level properties of the speech signal we used the temporal 

response function (TRF). The TRF estimates a linear mapping between some continuous speech 

feature(s), S(t), and the continuous neural response, R(t).  𝑅(𝑡) = 𝑇𝑅𝐹 ∗ 𝑆(𝑡) 
Where ‘*’ represents the convolution operator. S(t) can be a single speech feature, i.e. univariate, or 

multiple speech features, i.e. multivariate. The TRF for each feature is calculated over a series of time 

lags between the stimulus and the response, producing a set of temporal TRF weights for each EEG 

channel. To estimate the TRF we used ridge regression (see Crosse et al., 2016 for details on the TRF) 𝑇𝑅𝐹 = (𝑆𝑇𝑆 + 𝜆𝐼)−1𝑆𝑇𝑟 

where λ is a regularization parameter that controls for overfitting. A range of TRFs were constructed 

using different λ values between 0.1 and 1000. The λ value corresponding to the TRF that produced the 

highest EEG prediction accuracy (see below), averaged across trials and channels, was selected as the 

regularisation parameter for all trials per subject.  TRFs were estimated separately for each scrambling 

condition by grouping trials from each condition (12 trials per condition) together. Separate envelope 

TRFs and semantic dissimilarity TRFs were estimated using the envelope and semantic dissimilarity 

speech representations, respectively. For the semantic dissimilarity TRF, a range of time-lags from 0-

700ms was selected (although see below). For the envelope TRF, the time-lag range was selected 

between -100 and 400ms. 

TRFs were evaluated in two ways. First, the TRF weights themselves, across time and across channels, 

were used as dependent measures. And, second, we used a leave-one-out, cross validation analysis to 

predict unseen EEG using TRFs fit on other data. The type of approach – known as a forward encoding 

model – is commonly used to assess whether or not brain responses are sensitive to specific stimulus 

features (Naselaris, Kay, Nishimoto, & Gallant, 2011). Specifically, for each condition and speech 

representation, we fit TRFs on 11 out of 12 trials and used those TRFs to predict the EEG data of the 

held-out trial. And we rotated which trial was held out until all the data had been used. Predicted EEG 

was compared with the actual recorded EEG data to obtain prediction accuracy, measured using 

Pearson’s correlation. For the semantic dissimilarity TRF some additional steps were implemented in 

order to directly test how well semantic dissimilarity captured the semantic processing of words relative 

to their context. First, TRFs were trained and tested on a narrower window of time-lags, from 200-

600ms, rather than the full 0-700ms time-lag window. This was done to ensure that EEG prediction 

accuracy reflected only neural activity relating to higher level linguistic processing. Although the 

plotted TRFs (figure 2) show the entire time-lag window (0-700), prediction accuracies (figure 3) were 

obtained from this narrower window. Second, we wished to establish a stringent baseline against which 
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EEG prediction accuracies from the semantic dissimilarity TRF could be tested. For each stimulus trial 

and scrambling condition, 5 null semantic dissimilarity representations were generated. This was done 

by randomly permuting the heights of the impulses in the semantic dissimilarity vectors. In the testing 

phase of the cross-validation procedure, trained TRFs were used to predict EEG based on the 5 null 

representations for every recorded trial. The predicted EEG of these 5 null representations was then 

compared to the actual EEG with Pearson’s correlation. The EEG prediction accuracies of these null 

representations formed a baseline against which the accuracy of the true representation was compared. 

Specifically, true EEG prediction accuracy was then calculated by subtracting the mean prediction 

accuracies from the 5 null representations from the prediction accuracy obtained for the true semantic 

dissimilarity representation. EEG prediction accuracy for semantic dissimilarity, therefore, refers to the 

prediction accuracy difference between the true speech feature and the average of the 5 null speech 

feature representations. 

2.6 Statistical Analysis.  

For the comprehension and lexical identification questionnaires, above-chance performance was 

estimated using the binomial inverse cumulative distribution function in MATLAB (Combrisson & 

Jerbi, 2015), which determines the 95% confidence interval for exceeding chance level based on the 

number of trials (n = 60) and significance threshold (α = 0.05). Comprehension and lexical identification 

scores and EEG prediction accuracies were compared using one-way ANOVAs. TRF waveforms (i.e., 

weights) were tested as being significantly less than zero using a running t-test across subjects. The 

resulting p values were FDR corrected (Benjamini & Hochberg, 1995). Average TRF waveform 

differences were measured using a running ANOVA, where TRF weights at each time lag were 

compared across scrambling conditions. This produced F-values as a function of time-lag.  P values 

corresponding to the running F-values were FDR corrected.  
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3. Results 

3.1 Scrambling window impacts comprehension despite stability of attention 

Subjects were required to answer comprehension and lexical identification questionnaires after each 

experimental trial. The purpose of these questionnaires was to test subject’s understanding of the speech 

segment and attention levels during each trial. Figure 1 shows the comprehension and lexical 

identification questionnaire scores for each condition. Comprehension accuracy was significantly 

greater than the 95% confidence interval exceeding chance across subjects for scrambling windows of 

1 (unscrambled; t14 = 13.6, p = 8.94 x 10-9) and 2 (t14 = 4.2, p = 2.3 x 10-3), but not for windows of 4 (t14 

= 0.78, p = 0.54), 7 (t14 = -0.3, p = 0.77) or 11 (t14 = -0.86, p = 0.55; one-sample t-test, corrected for 

multiple comparisons). While the above comparison was designed to test if the group was doing better 

than a chance level determined by the number trials each subject undertook, we also directly compared 

the group against 50% (i.e., chance) for completeness. Population performance was significantly greater 

than chance level (50%) for all scrambling windows (1: t14 = 18.8, p = 1.2 x 10-10, 2: t14 = 7.8, p = 4.6 x 

10-6, 4: t14 = 3.9, p = 2.1 x 10-3, 7: t14 = 3.5, p = 3.3 x 10-3, 11: t14 = 3.9, p = 2.1 x 10-3; one-sample t-test, 

corrected for multiple comparisons). A one-way ANOVA revealed a main effect of scrambling 

condition on comprehension question score; F(4, 70) = 20.79, p = 2.5 x 10-11, one-way ANOVA. 

Pairwise comparisons using Tukey’s Honestly Significant Difference (HSD) procedure indicated that 

scores for a scrambling window of 1 were significantly higher compared to all other scrambling 

windows (p < 0.05). Scores for a scrambling window of 2 were significantly higher for windows of 7 

and 11 (p < 0.05) but not for 4 (p = 0.1). Comprehension scores for all other windows were not 

significantly different from each other (p > 0.05).  

In contrast to the fall off in comprehension with increased scrambling window length, lexical 

identification accuracy was significantly greater than the 95% confidence interval exceeding chance for 

all windows (1: t14 = 11.6, p = 7.4 x 10-8, 2: t14 = 9.1, p = 6.6 x 10-7, 4: t14 = 7.4, p = 3.2 x 10-6, 7: t14 = 

7.6, p = 3.2 x 10-6, 11: t14 = 8.9, p = 6.6 x 10-7; one-sample t-test, corrected for multiple comparisons) 

and for chance level performance (1: t14 = 16.2, p = 9.2 x 10-10, 2: t14 = 13.5, p = 3.4 x 10-9, 4: t14 = 12.7, 

p = 5.8 x 10-9, 7: t14 = 12.7, p = 5.8 x 10-9, 11: t14 = 13.9, p = 3.4 x 10-9; one-sample t-test, corrected for 

multiple comparisons). These behavioural results suggest that, although subjects failed to understand at 

higher scrambling windows, they remained engaged with the stimulus and were able to successfully 

identify words that appeared in the trial. There was an additional effect of scrambling condition on 

lexical identification questionnaire score; F(4, 70) = 3.6, p = 0.01, one-way ANOVA. Pairwise 

comparisons revealed significant differences between a scrambling window of 1 and scrambling 

windows of 4 and 7 (p < 0.05). There were no other significant differences between scrambling 

conditions (p > 0.05).   
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Figure 1. Behavioural effects for each scrambling condition. Box plots indicate comprehension (light) and lexical 

identification (dark) questionnaire scores for each scrambling window. The 95% confidence interval (CI) exceeding chance 

level accuracy is indicated by the dashed horizontal line. Stars indicate the scrambling condition where average subject score 

was significantly above the 95% CI. Lexical identification scores were significantly greater than the 95% CI across subjects 

for all scrambling windows. Conversely only scrambling windows of 1 and 2 had comprehension scores that were significantly 

above chance across subjects. Boxplots show median, and first and third quartiles. Whiskers show 1.5 × IQR. Dots indicate 

outliers. 

3.2 Semantic TRF weights pattern with comprehension 

We next tested whether the semantic dissimilarity TRF was sensitive to a subject’s understanding of 

the speech narrative they were hearing or whether the measure reflected the more temporally local, low-

level processing of word-to-word changes in semantic content. We first examined the weights of the 

TRF over time-lags, averaged over parietal channels. Figure 2A-B show the time course of TRF 

weights. TRFs relating to conditions with less scrambling (w = 1 and 2) showed a morphology highly 

consistent with previous studies investigating the semantic dissimilarity measure (Broderick et al., 

2018; Broderick et al., 2020). Weights for these scrambling windows (W = 1 and 2) were significantly 

greater than zero across subjects for a range of time lags between 400 and 600 ms (Fig. 2B horizontal 

line, running one-sample t-test, FDR corrected). No such significant difference was found for 

scrambling windows of W = 4, 7, or 11 (Fig 2B). A running one-way ANOVA was conducted on each 
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time-lag, comparing TRF weights across scrambling conditions. Plotted below figure 2A is the time 

series of F-values corresponding to each comparison. TRF weights were significantly different across 

scrambling conditions between 400 and 500ms (p<0.01). However, these F-values did not survive 

significance testing after correcting for multiple comparisons (0.05<p<0.1). The topographical 

distribution of the TRF weights averaged over later time-lags (300-600ms; Figure 2C) further reveal 

responses that shared similar characteristics of the N400 component. Crucially, this pattern of responses 

was weaker or absent for TRFs derived from conditions with higher word scrambling. This indicates 

that semantic dissimilarity TRFs do not simply show responses to the semantic difference between a 

word and previously heard words, but that they rely on the subject’s ability to relate a word to its 

narrative context.  

 

Figure 2 Semantic dissimilarity TRFs for speech at each scrambling window (A) TRF weights averaged over parietal 

electrodes and across subjects for each scrambling condition. Inset topographical plot shows the selected parietal electrodes 

Plotted below are the F-values of a running one-way ANOVA, comparing weights across conditions at each individual time-

lag. Significant differences across scrambling conditions were observed over time-lags between 400 and 500ms (shaded 

region; p < 0.01; not corrected for multiple comparisons) (B) The same TRF weights plotted in A in separate plotting windows. 

Horizontal lines in each window indicate the time points where TRF weights were significantly different from zero (FDR-

corrected). (C) Topographical plots show weight values averaged over later time-lags (300-600ms) and across subjects.  

Next, we tested how well TRFs trained on data for each scrambling condition could predict neural 

responses from held out trials, above a permuted null baseline. Figure 3 shows EEG prediction 

accuracies averaged over the same set of parietal electrodes for each scrambling window. Below the 

box plots are topographical plots showing prediction accuracy, averaged across subjects, for each 

individual channel. The unscrambled speech condition was the only one in which trained TRFs could 

accurately predict EEG above the null baseline (t14 = 3.32, p = 0.025; one-sample t-test, corrected for 

multiple comparisons). Although the TRF weights for a scrambling window of 2 were significantly 

greater than zero over later time-lags (Figure 2B), they were unable to significantly predict EEG above 

the null baseline (t14 = 0.67 p = 0.71; one-sample t-test, corrected for multiple comparisons). EEG 

prediction accuracies for the other scrambling conditions were also not significantly greater than the 
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null baseline (4: t14 = 0.43, p = 0.71; 7: t14 = 1.7 p = 0.26; 11: t14 = -0.37 p = 0.71; one-sample t-test, 

corrected for multiple comparisons). A one-way ANOVA was used to test the difference in prediction 

accuracy between scrambling conditions where a significant effect was found; F(4, 70) = 3.83, p = 

0.007. Pairwise comparisons using Tukey’s HSD procedure indicated that prediction accuracy for a 

scrambling window of 1 was significantly higher compared to a scrambling window of 2, 4 and 11 (p 

< 0.05) but not 7 (p = 0.17). There were no other significant differences between scrambling conditions 

(p > 0.05).  

 

Figure 3 EEG prediction accuracy for semantic 

dissimilarity. Prediction accuracy was estimated as 

a trained TRF’s ability to predict EEG from a true 

semantic dissimilarity representation over its ability 

to predict EEG for null semantic dissimilarity 

representation. EEG prediction accuracies averaged 

over parietal electrodes are given for each 

scrambling window (1, 2, 4, 7, 11). Asterisk 

indicates prediction accuracies that were 

significantly greater than zero. Below are 

topographical plots of prediction accuracies at each 

channel averaged across subjects for each 

scrambling window.  

 

 

3.3 Envelope tracking is unaffected by speech understanding.  

We tested whether the envelope-based TRF would show a similar sensitivity to scrambling condition 

and, hence, also reflect narrative speech understanding. Figure 4A shows the TRF weights averaged 

over temporal electrodes and across subjects for each scrambling window. The weights show a 

morphology characteristic of speech envelope-based TRFs from previous studies (Di Liberto, 

O’Sullivan, & Lalor, 2015; Lalor & Foxe, 2010). Unlike the semantic dissimilarity TRF weights, the 

morphology of TRF weights for all scrambling conditions shared common characteristics. As before, a 

running one-way ANOVA was conducted on each time time-lag separately, comparing envelope based 

TRF weights across scrambling conditions. Plotted below figure 4A is the time series of F-values 

corresponding to each comparison. TRF weights were significantly different across scrambling 

conditions in a short window between 200 and 220ms (p < 0.05). These F-values did not survive 

significance testing after correcting for multiple comparisons (p > 0.05). 

We tested each trained TRF’s ability to predict unseen EEG. Figure 4B shows prediction accuracy, 

averaged across temporal electrodes. Below the boxplots shows the topographical distribution of 
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prediction accuracies, average across subjects. TRFs from all 5 scrambling conditions were able to 

significantly predict EEG (1: t14 = 8.9, p = 8.2 x 10-7, 2: t14 = 8.7, p = 8.2 x 10-7, 4: t14 = 6.2, p = 2.2 x 

10-5, 7: t14 = 10.9, p = 1.6 x 10-7, 11: t14 = 8.4, p = 9.9 x 10-7; one-sample t-test, corrected for multiple 

comparisons). Differences in prediction accuracy between scrambling conditions were tested using a 

one-way ANOVA. No significant differences were found for mean prediction accuracy across 

scrambling conditions; F(4, 70) = 0.8, p = 0.53. This indicates that, although subjects could not grasp 

the meaning of the speech they were hearing, their EEG still reliably tracked the acoustic properties of 

the speaker.  

EEG prediction accuracies of envelope based TRF were estimated based on a broad window of time-

lags (-100 to 400ms). However, we observed small differences between scrambling conditions at peaks 

in the TRF for later time-lags (200-220ms). Therefore, it is possible that this window could represent 

some locus of comprehension and, thus, training and testing TRFs in this window might reveal 

differences in EEG prediction accuracies relating to speech understanding. We trained envelope TRF 

using a time-lag window centred around the P2 peak (175 to 225ms) and found that this was not the 

case. Prediction accuracies for all scrambling conditions were reduced but significantly greater than 

zero (p < 0.05; corrected for multiple comparisons). There was no significant effect of scrambling 

condition on EEG prediction accuracy; F(4,70) = 1.7, p =0.16, one-way ANOVA.  

 

 

Figure 4 Envelope TRFs for speech at each scrambling window.  (A) TRF weights averaged over temporal electrodes and 

across subjects for each scrambling condition. Overlaid topographical plot shows the selected temporal electrodes. Plotted 

below is the F-values of a running one-way ANOVA, comparing weights across conditions at each individual time-lag. Shaded 

regions indicate significant (uncorrected F-values). (B) EEG prediction accuracies for TRF trained on the envelope. Asterisk 

indicates prediction accuracies that were significantly greater than zero. Below are topographical plots of prediction accuracies 

at each channel averaged across subjects for each scrambling window. 
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3.4 Semantic Dissimilarity TRF predicts comprehension scores 

Finally, we wished to test whether the TRF measures could reliably predict an individual’s 

comprehension score for each scrambling condition. As seen above, the averaged weights and 

prediction accuracies for the semantic dissimilarity TRF indeed reveal responses that patterned with 

scrambling condition. However, we wished to examine whether comprehension scores at the level of 

individual subjects and individual trials could be predicted using our neural measures. We therefore 

generated linear mixed effect (LME) models, which took prediction accuracies from the semantic 

dissimilarity based TRFs and envelope based TRFs as independent variables and comprehension scores 

as dependent variables, with random effects of individual subjects. One of the LME models predicted 

comprehension scores averaged across trials for each scrambling condition and the other predicted 

comprehension scores at the level of individual trials. Predictor variables were normalized before being 

inputted to the model. Table 1 shows the predictor variable coefficients for the first model. There was 

a significant main effect of average semantic dissimilarity prediction accuracy on comprehension score 

(t = 2.93, p = 0.005) and no main effect of average envelope prediction accuracy (t = - 0.76, p = 0.44). 

Furthermore, we tested the interaction between predictor variables which had no effect on 

comprehension score (t = - 0.39, p = 0.7) 

 Coefficient S.E. t statistic p 

Sem. Dissim.  4.62 1.59 2.93 0.005 

Env. - 2.1 2.75 - 0.76 0.44 

Sem. Dissim. * Env. - 0.56 1.45 - 0.39 0.7 

Table 1 Subjects LME Model. Model weights for the linear mixed effects model predicting comprehension scores at the 

level of subjectsNext, we looked at the TRF output measures of individual trials and their ability to 

predict comprehension success. Table 2 shows the predictor variable coefficients from this model. A 

significant main effect of semantic dissimilarity prediction accuracy was found at the level of 

individual trials (t = 2.08, p = 0.04). These results indicate that an individual’s performance on the 

comprehension task overall and at the level of individual trials could be predicted from their neural 

responses to speech.  

 Coefficient S.E. t statistic p 

Sem. Dissim.  0.098 0.047 2.08 0.04 

Env. 0.063 0.052 1.22 0.22 

Sem. Dissim. * Env. - 0.013 0.044 -0.27 0.77 

Table 2 Trial LME model. Model weights for the linear mixed effects model predicting comprehension scores at the level 

of individual trials.  
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4. Discussion 

In this study we examined whether TRFs derived using semantic dissimilarity related specifically to the 

semantic processing of words following coherent, narrative context. For the unscrambled speech 

condition, we found reliable neural indices that were similar to those derived in previous experiments 

(Broderick et al., 2018). Like the previous findings, components of the TRF to unscrambled speech 

shared characteristics with the N400 ERP component. These neural indices of speech processing 

became weaker as soon as any scrambling of the speech signal was introduced. This pattern of neural 

responses was largely consistent with speech comprehension accuracy. As a group, the subjects tended 

to do better than 50%, which was not surprising given that they were hearing all of the words necessary 

to intuit some answers. However, at higher levels of scrambling their ability to meaningfully 

comprehend the narrative was significantly reduced and they failed to exceed the 95% confidence 

interval on the multiple choice comprehension questions. Meanwhile, lexical identification 

questionnaire scores were similar across scrambling conditions, allowing us to confidently rule out the 

possibility of large changes in subject engagement across scrambling conditions. Subjects were able to 

accurately identify words that appeared in a presented trial, indicating that they could recognise the 

words despite a drop in their overall understanding.  

Our findings give further support to the idea that the semantic dissimilarity derived TRF reflects the 

semantic processing of words relative to their preceding context. When listening to speech, we 

incrementally build an internal representation of the current event, discourse, or context (Eberhard, 

Spivey-Knowlton, Sedivy, & Tanenhaus, 1995; W. Marslen-Wilson, 1973; W. D. Marslen-Wilson, 

1975; Tanenhaus, Spivey-Knowlton, Eberhard, & Sedivy, 1995) that will influence how subsequent 

information is processed (Obleser, 2014). Such is the basis for language understanding. Our behavioural 

results are consistent with previous studies which observed a drop in behavioural performance with the 

introduction of scrambling (Bautista & Wilson, 2016; Humphries et al., 2006; Mollica et al., 2020). 

Together, these findings outline the importance of a coherent context for the comprehension of words 

and full speech excerpts. Crucially, our semantic dissimilarity measure was sensitive to speech 

comprehension, giving further support to the conclusion that the neural measure reflects contextual 

effects on language understanding (see Fig S1 (Broderick et al., 2018)) and refuting the recent 

suggestions that the semantic dissimilarity TRF may reflect the processing of content words more 

generally (Dijkstra et al., 2020). In addition, output measures from the semantic dissimilarity TRF were 

correlated with behavioural scores at the level of individual subjects and individual trials. These results 

represent a promising direction for future objective biomarkers of language comprehension that may be 

used in practical and clinical settings.  

Unlike the semantic dissimilarity TRF, TRFs based on the speech envelope were unable to distinguish 

between scrambling conditions despite the behavioural difference in speech comprehension across 
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conditions. Previous work has indicated that neural tracking of the speech envelope is foundational for 

speech comprehension (Peelle & Davis, 2012). However, our findings further highlight the fact that 

there is not a one-to-one mapping between the two measures (Brodbeck & Simon, 2020), and suggest 

that there is a limit to the stages of higher-level linguistic processing that envelope tracking measures 

can reliably index. The speech envelope is an important cue for intelligibility (Drullman et al., 1994a, 

1994b; Shannon et al., 1995) and its clear from previous research that envelope tracking represents 

more than basic acoustic processing and is influenced by some speech-specific component (Peelle, 

Gross, & Davis, 2013; Prinsloo & Lalor, 2020).  However, the speech envelope is a fundamentally low-

level, impoverished representation of speech that measures amplitude fluctuations in acoustic energy. 

Although dominant frequencies in this signal correspond to the rate of important linguistic units on 

multiple time-scales (Ding et al., 2017), the represented linguistic features are conflated into a single 

univariate measure. Thus, it is unclear which features of speech are being tracked by the brain using the 

envelope-based TRF. In addition, dissociating the neural processes (for example acoustic processing, 

speech perception or speech comprehension) that underlie envelope tracking has been a major challenge 

(Ding & Simon, 2014). From our results, it seems clear however, that envelope tracking measures do 

not strongly index the context-based semantic processing that underlies natural speech comprehension. 

In contrast, TRFs based on semantic dissimilarity show a closer correspondence with behavioural 

measures of comprehension. This is unsurprising, given that the measure directly reflects the 

relationship between a word’s semantic features and those of its preceding words.  

Previous work examining the relationship between envelope tracking and comprehension have found 

stronger tracking when speech is comprehended (Ahissar et al., 2001; Ding, Chatterjee, & Simon, 2014; 

Peelle et al., 2013; Vanthornhout, Decruy, Wouters, Simon, & Francart, 2018). However, these studies 

typically manipulate a listener’s understanding by changing the acoustics of the signal. Applying noise 

vocoding or lower SNR to a signal affects a listener’s ability to understand speech but also affects their 

ability to recognise words (Shannon et al., 1995). Therefore, as well as the confound of acoustically 

manipulating the signal, it has been challenging to dissociate processes of speech recognition and 

language comprehension using this type of experimental paradigm. Of course, neural indices of 

envelope tracking have provided great insight into how speech is processed from early acoustic stages 

(Ding et al., 2014; Ding & Simon, 2013; Drennan & Lalor, 2019) to stages of lexical identification 

(Ding, Melloni, Zhang, Tian, & Poeppel, 2016; Peelle et al., 2013). However, our results cast doubt on 

the utility of such measures as indices of higher-level processes such as comprehension. Researchers 

should take care when choosing this measure if their main goal is to investigate language understanding.  

One additional observation for the envelope TRF was the significant (only when uncorrected) difference 

between weights at a time lag of ~200ms. This finding corresponds with results from Power and 

colleagues who estimated envelope TRF weights for individuals participating in a dichotic listening 

paradigm (Power, Foxe, Forde, Reilly, & Lalor, 2012). They found a late locus of selective attention at 
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a time-lag of 200ms, where TRF weights for the attended speaker’s envelope were more positive than 

the unattended speaker’s envelope. The difference between weights for attended and unattended 

speakers in this study seems more pronounced than the difference between weights for our scrambling 

conditions. Furthermore, later studies using the same dataset could effectively distinguish between 

attended and unattended speakers using the TRF approach (O'Sullivan et al., 2015), whereas our 

envelope based TRF could not distinguish between scrambling conditions. Nevertheless, it’s possible 

that the differences between the envelope TRF weights across scrambling conditions in this window 

could reflect a filtering process located at the level of early semantic analysis (Treisman, 1964) that is 

better facilitated by higher contextual support. We remain circumspect on this though given that our 

effect did not survive correction for multiple comparisons. Future work should more directly investigate 

the relationship between output TRF measures and the speech representations they are based on.  

Finally, while we have discussed the difficulties that come with acoustically modifying speech in order 

to affect its comprehensibility, the paradigm we have used here comes with its own challenges. 

Specifically, scrambling word order, as we have done, will not only disrupt the semantic flow of the 

narrative, but it will also profoundly disrupt the syntactic structure of the speech. As such, we cannot 

definitively rule out that syntactic processing may substantially contribute to our semantic dissimilarity 

measure, which would make it less of a pure measure of semantic speech comprehension than we have 

been arguing. However, we are somewhat sceptical of the idea of a large contribution from syntactic 

processing. The main reason for our scepticism is that syntactic processing has far more commonly 

been linked with the so-called P600 component (Kaan, Harris, Gibson, & Holcomb, 2000), a positive 

component that typically onsets around 500 ms and peaks at around 600 ms. The fact that the semantic 

dissimilarity TRF displays a much earlier negative peak makes us much more inclined to link it to 

semantic processing that has long been associated with the classic N400 component. That said, for years 

researchers have highlighted the challenges of dissociating semantic and syntactic processing in 

neurophysiological research, with some work linking syntactic processing to the N400 (Hagoort, 2003) 

and some suggesting semantic processing contributions to the P600 (Kuperberg, 2007). As such, we 

must remain at least somewhat circumspect in our interpretation of the semantic dissimilarity TRF. 

Future work presenting word lists with limited syntactic structure that still convey some form of 

narrative might help in further elucidating precisely what kinds of processing are indexed by this 

measure.  

In conclusion, our results give further support that TRFs based on a semantic dissimilarity 

representation of speech reflect the processing of word meaning in context. The neural measure shows 

higher correspondence with speech comprehension than the much more commonly used measure of 

envelope tracking. We propose that the adoption of the relatively new semantic dissimilarity TRF 

approach may be beneficial for researchers wishing to investigate language processing using naturalistic 

stimuli.  
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