More Trigonometric Integrals

By Henry E. Fettis

Abstract. Integrals of the form

$$
\int_{0}^{\pi / 2} e^{i p \theta} \cos ^{q} \theta d \theta, \quad \int_{0}^{\pi / 2} e^{i p \theta} \sin ^{q} \theta d \theta
$$

(p real, $\operatorname{Re}(q)>-1$) are expressed in terms of Gamma and hypergeometric functions for integer and noninteger values of q and p. The results include those of [2] as special cases.

Introduction. The integrals considered here are

$$
\begin{align*}
& \int_{0}^{\pi / 2} e^{i p \theta} \cos ^{q} \theta d \theta \tag{1}\\
& \int_{0}^{\pi / 2} e^{i p \theta} \sin ^{q} \theta d \theta \tag{2}
\end{align*}
$$

where p is real, and $\operatorname{Re}(q)>-1$. Values for some of the above integrals are recorded in [1, art. 3.631], but only for special (or integer) values of " q ", and not always in closed form. The integrals (1) and (2) are, of course, related since, with the change of variable $\theta \rightarrow \pi / 2-\theta$, (2) becomes

$$
\begin{equation*}
\int_{0}^{\pi / 2} e^{i p \theta} \sin ^{q} \theta d \theta=e^{i p \pi / 2} \int_{0}^{\pi / 2} e^{-i p \theta} \cos ^{q} \theta d \theta \tag{3}
\end{equation*}
$$

resulting in the following relations:

$$
\begin{align*}
\int_{0}^{\pi / 2} \sin ^{q} \theta \cos p \theta d \theta= & \sin \frac{p \pi}{2} \int_{0}^{\pi / 2} \cos ^{q} \theta \sin p \theta d \theta \\
& +\cos \frac{p \pi}{2} \int_{0}^{\pi / 2} \cos ^{q} \theta \cos p \theta d \theta \tag{4}\\
\int_{0}^{\pi / 2} \sin ^{q} \theta \sin p \theta d \theta= & \sin \frac{p \pi}{2} \int_{0}^{\pi / 2} \cos ^{q} \theta \cos p \theta d \theta \\
& -\cos \frac{p \pi}{2} \int_{0}^{\pi / 2} \cos ^{q} \theta \sin p \theta d \theta \tag{5}
\end{align*}
$$

It is evident that, either with the aid of multiple angle formulae, or integration by parts, all of these integrals can be evaluated in finite form if either " p " or " q ", or both, are integers, see, e.g., [1, arts. $2.536-8]$. For this reason, it will be assumed in the remainder of the paper that " p " and " q " are arbitrary, noninteger quantities, subject to the conditions stated above.

[^0]1. Evaluation by Contour Integration. The integrals in question are evaluated by integrating the function

$$
\begin{equation*}
f(z)=\left(1+z^{2}\right)^{q}\left(z^{p-q-1}\right) \tag{6}
\end{equation*}
$$

in the complex $z\left(=\rho e^{i \theta} \equiv x+i y\right)$ plane around the contour consisting of the portion of the real axis from $x=0$ to $x=1$, the quarter arc of the unit circle from $\theta=0$ to $\theta=\pi / 2$, and the portion of the imaginary axis from $y=1$ to $y=0$. The total line integral is zero, provided the contour is modified by small circular arcs about the branch points at $z=0$ and $z=i$, since there is no contribution to the total value of the integral from these arcs when their radii approach zero, provided $\operatorname{Re}(q)>-1$ and $\operatorname{Re}(p-q)>0$. The total line integral thus becomes a linear combination of the real integrals

$$
\begin{gather*}
\int_{0}^{\pi / 2} \cos ^{q} \theta \sin p \theta d \theta, \tag{7}\\
\int_{0}^{\pi / 2} \cos ^{q} \theta \cos p \theta d \theta \\
\int_{0}^{1}(1+t)^{q} t^{(p-q-2) / 2} d t \\
\int_{0}^{1}(1-t)^{q} t^{(p-q-2) / 2} d t .
\end{gather*}
$$

The integral (10), as is well known, can be expressed by Gamma functions:

$$
\begin{equation*}
\int_{0}^{1}(1-t)^{q} t^{(p-q-2) / 2} d t=\frac{\Gamma(1+q) \Gamma\left(\frac{p-q}{2}\right)}{\Gamma\left(\frac{2+p+q}{2}\right)} \tag{11}
\end{equation*}
$$

while (9) can be evaluated as a hypergeometric function:

$$
\begin{equation*}
\int_{0}^{1}(1+t)^{q} t^{(p-q-2) / 2} d t=\frac{2}{p-q}{ }_{2} F_{1}\left(-q, \frac{p-q}{2} ; \frac{1+p-q}{2} ;-1\right) \tag{12}
\end{equation*}
$$

(see, e.g., [1, art 9.111], or [4, p. 12]).
Equating the real and imaginary parts of the resulting integrals gives
(a) $2^{1+q} \int_{0}^{\pi / 2} \cos ^{q} \theta \cos p \theta d \theta=\sin \left(\frac{p-q}{2} \pi\right) \frac{\Gamma(1+q) \Gamma\left(\frac{p-q}{2}\right)}{\Gamma\left(\frac{2+p+q}{2}\right)}$,
(b) $2^{1+q} \int_{0}^{\pi / 2} \cos ^{q} \theta \sin p \theta d \theta=\frac{2}{(p-q)}{ }_{2} F_{1}\left(-q, \frac{p-q}{2} ; \frac{2+p-q}{2} ;-1\right)$

$$
\begin{equation*}
-\cos \left(\frac{p-q}{2} \pi\right) \frac{\Gamma(1+q) \Gamma\left(\frac{p-q}{2}\right)}{\Gamma\left(\frac{2+p+q}{2}\right)} \tag{13}
\end{equation*}
$$

and using the relations (4) and (5),

$$
\begin{align*}
& \text { (a) } \begin{aligned}
& 2^{1+q} \int_{0}^{\pi / 2} \sin ^{q} \theta \cos p \theta d \theta \\
&= \frac{2 \sin (p \pi / 2)}{p-q}{ }_{2} F_{1}\left(-q, \frac{p-q}{2}, \frac{2+p-q}{2} ;-1\right) \\
&-\sin \left(\frac{q \pi}{2}\right) \cdot \frac{\Gamma(1+q) \Gamma\left(\frac{p-q}{2}\right)}{\Gamma\left(\frac{2+p+q}{2}\right)}, \\
& \text { (b) } 2^{1+q} \int_{0}^{\pi / 2} \sin ^{q} \theta \sin p \theta d \theta \\
&= \frac{-2 \cos (p \pi / 2)}{p-q}{ }_{2} F_{1}\left(-q, \frac{p-q}{2} ; \frac{2+p-q}{2} ;-1\right) \\
&+\cos \left(\frac{q \pi}{2}\right) \cdot \frac{\Gamma(1+q) \Gamma\left(\frac{p-q}{2}\right)}{\Gamma\left(\frac{2+p+q}{2}\right)} .
\end{aligned}
\end{align*}
$$

(It may be noted that, of the four relations in (13) and (14), only (13a) is given in [1] for arbitrary values of " p " and " q ", and also that, although these relations were established under the assumption that $\operatorname{Re}(p-q)>0$, the various functions on the right of (13) and (14) are defined for all values of " p " and " q ", provided $(p-q) \neq 0,-2,-4, \ldots,-2 n$, and therefore the results may be extended to the wider range $\operatorname{Re}(q)>-1$ by analytic continuation.)
2. Expressions When $\frac{1}{2}(p-q)$ is a Negative Integer or Zero. From principles of continuity, it follows that all of the results given by Eqs. (13) and (14) must hold if " p " is replaced by " $-p$ ". In particular, from (13), we get, after some obvious transformations of the Gamma function:

$$
\begin{aligned}
& \text { (a) } 2^{1+q} \int_{0}^{\pi / 2} \cos ^{q} \theta \cos p \theta d \theta=\pi \frac{\Gamma(1+q)}{\Gamma\left[1+\frac{1}{2}(p+q)\right] \Gamma\left[1-\frac{1}{2}(p-q)\right]} \\
& \text { (b) } 2^{1+q} \int_{0}^{\pi / 2} \cos ^{q} \theta \sin p \theta d \theta
\end{aligned}
$$

$$
\begin{align*}
& =\frac{2}{p+q}{ }_{2} F_{1}\left(-q,-\frac{1}{2}(p+q) ; 1-\frac{1}{2}(p+q) ;-1\right) \tag{15}\\
& -\pi \cot (p+q) \frac{\pi}{2} \frac{\Gamma(1+q)}{\Gamma\left[1+\frac{1}{2}(p+q)\right] \Gamma\left[1-\frac{1}{2}(p-q)\right]}
\end{align*}
$$

and the above equations now yield determinate expressions when $\frac{1}{2}(p-q)$ is a negative integer or zero. Specifically if we set $p=q+2 k$, and make use of the relation

$$
{ }_{2} F_{1}(a, b ; c ; z)=(1-z)^{-b} F_{1}\left(c-a, b ; c ; \frac{z}{z-1}\right),
$$

(15b) becomes

$$
\begin{align*}
2^{1+q} \int_{0}^{\pi / 2} \cos ^{q} \theta \sin (q+2 k) \theta d \theta= & \frac{2^{k+q}}{k+q}{ }_{2} F_{1}\left(1-k,-k-q ; 1-k-q ; \frac{1}{2}\right) \\
& -\pi \cot q \pi \frac{\Gamma(1+q)}{\Gamma(1+k+q) \Gamma(1-k)} \tag{16}
\end{align*}
$$

and if " k " is a positive integer, the second term vanishes, while the hypergeometric series terminates. The result then becomes equivalent to formula 3.632(3) of [1]. On the other hand, if " k " is a negative integer or zero, the second term remains, and the series is no longer finite.

As a special result in the second case, we obtain the following closed form expression for the integral

$$
\begin{equation*}
\int_{0}^{\pi / 2} \cos ^{q} \theta \sin q \theta d \theta=\frac{1}{2 q}{ }_{2} F_{1}\left(1,-q ; 1-q ; \frac{1}{2}\right)-\frac{\pi}{2^{q+1}} \cot q \pi \tag{17}
\end{equation*}
$$

which has not been given previously, except for integer " q ", in which case the above expression is indeterminate [see Eq. (20) below].
3. Alternative Integral Representations When $p-q$ is an Even Integer. A different, and much simpler representation for the integrals in (16) and (17) can be obtained by re-expressing (13b) in terms of (11) and (12):

$$
\begin{align*}
& 2^{1+q} \int_{0}^{\pi / 2} \cos ^{q} \theta \sin p \theta d \theta \\
& \quad=\int_{0}^{1}\left[(1+t)^{q}-1\right] t^{(p-q) / 2-1} d t \tag{18}\\
& \quad+2 \frac{1-\cos \frac{\pi}{2}(p-q)}{p-q}+\cos \frac{\pi}{2}(p-q) \int_{0}^{1}\left[1-(1-t)^{q}\right] t^{(p-q) / 2-1} d t
\end{align*}
$$

In the limit, as $p \rightarrow q$, this gives, for arbitrary " q " >-1,

$$
\begin{align*}
2^{1+q} \int_{0}^{\pi / 2} \cos ^{q} \theta \sin q \theta d \theta & =\int_{0}^{1} \frac{(1+t)^{q}-1}{t} d t+\int_{0}^{1} \frac{1-(1-t)^{q}}{t} d t \tag{19}\\
& =\int_{0}^{2} \frac{u^{q}-1}{u-1} d u
\end{align*}
$$

and if " q " is a positive integer, " n ", the following result quoted in [1, formula 3.631(16)]:

$$
\begin{equation*}
2^{1+n} \int_{0}^{\pi / 2} \cos ^{n} \theta \sin n \theta d \theta=\int_{0}^{2} \frac{u^{n}-1}{u-1} d u=2+\frac{2^{2}}{2}+\frac{2^{3}}{3}+\cdots+\frac{2^{n}}{n} \tag{20}
\end{equation*}
$$

The result of Eq. (19) is significant in that it shows that the integral on the left can be evaluated in terms of elementary functions whenever " q " is a rational number, (n / m), since then, with the change of variable

$$
u=v^{n}
$$

on the right-hand side, the integrand becomes the quotient of two polynomials. For example,

$$
\begin{align*}
\int_{0}^{\pi / 2} \cos ^{1 / 2} \theta \sin \frac{1}{2} \theta d \theta & =2^{-1 / 2} \int_{0}^{2^{+1 / 2}} \frac{v d v}{1+v}=1-2^{-1 / 2} \ln \left(2^{1 / 2}+1\right) \\
\int_{0}^{\pi / 2} \cos ^{1 / 4} \theta \sin \frac{1}{4} \theta d \theta & =2^{+3 / 4} \int_{0}^{2^{1 / 4}} \frac{v^{3} d v}{(1+v)\left(1+v^{2}\right)} \tag{21}\\
= & 2-2^{-1 / 4}\left[\ln \left(2^{1 / 4}+1\right)=\frac{1}{2} \ln \left(2^{1 / 2}+1\right)+\tan ^{-1}\left(2^{1 / 4}\right)\right]
\end{align*}
$$

Application of the same transformation to the integral in (16) gives, for $k>0$,

$$
\begin{equation*}
2^{1+q} \int_{0}^{\pi / 2} \cos ^{q} \theta \sin (q+2 k) \theta d \theta=\int_{0}^{2} u^{q}(u-1)^{k-1} d u \tag{22}
\end{equation*}
$$

and after expanding the term $(u-1)^{k-1}$ by the binomial theorem and integrating term-by-term, we obtain the expansion of formula 3.632(3) of [1]. On the other hand, successive integrations by parts applied to the right-hand side of (22) leads to a different representation:

$$
\begin{align*}
& \int_{0}^{\pi / 2} \cos ^{q} \theta \sin (q+2 k) \theta d \theta \\
& \quad=\frac{1}{q+1}\left[1-\frac{k-1}{q+2} \cdot 2+\frac{(k-1)(k-2)}{(q+2)(q+3)} \cdot 2^{2}+\cdots\right] \tag{23}
\end{align*}
$$

When " k " is negative, similar, but more complex, expressions can be obtained for the integral in (16), by first subtracting from the integrands on the right side of (18) the first $(|k|+1)$ terms of the Taylor series for $(1+t)^{q}$ and $(1-t)^{q}$. For example, if $k=-1$, we get

$$
\begin{aligned}
& 2^{1+q} \int_{0}^{\pi / 2} \cos ^{q} \theta \sin (q-2) \theta d \theta \\
& =\lim _{p-q \rightarrow-2}\left\{\int_{0}^{1}\left[(1+t)^{q}-1-q t\right] t^{(p-q) / 2-1} d t\right. \\
& \\
& \quad+\cos \frac{\pi}{2}(p-q) \int_{0}^{1}\left[1-q t-(1-t)^{q}\right] t^{(p-q) / 2-1} d t \\
& \\
& \left.\quad+2 \frac{1-\cos \frac{\pi}{2}(p-q)}{p-q}+2 q \frac{1+\cos \frac{\pi}{2}(p-q)}{p-q+2}\right\} \\
& = \\
& =\int_{0}^{1} \frac{(1+t)^{q}-1-q t}{t^{2}} d t-\int_{0}^{1} \frac{\left(1-q t-(1-t)^{q}\right)}{t^{2}} d t-2 \\
& =
\end{aligned} \int_{0}^{2} \frac{u^{q}-1-q(u-1)}{(u-1)^{2}} d u-2 . \quad .
$$

For integer values of $q=n$, this again becomes a terminating series, since

$$
\begin{aligned}
\frac{u^{n}-1-n(u-1)}{(u-1)^{2}} & =0 ; \quad n=0,1 \\
& =u^{n-2}+2 u^{n-3}+\cdots+(n-1) ; \quad n>1
\end{aligned}
$$

and hence

$$
\begin{align*}
& 2^{1+n} \int_{0}^{\pi / 2} \cos ^{n} \theta \sin (n-2) \theta d \theta \\
& \quad=\left[\frac{2^{n-1}}{n-1}+2 \cdot \frac{2^{n-2}}{n-2}+\cdots+(n-1) \cdot 2\right]-2 ; \quad n>1 \tag{25}\\
& \quad=-2 ; \quad n=0,1
\end{align*}
$$

Similarly,

$$
\begin{align*}
& 2^{1+q} \int_{0}^{\pi / 2} \cos ^{q} \theta \sin (q-4) \theta d \theta \\
& \quad=\int_{0}^{2} \frac{u^{q}-1-q(u-1)-\frac{1}{2} q(q-1)(u-1)^{2}}{(u-1)^{3}} d u-2 q \tag{26}
\end{align*}
$$

and

$$
\begin{align*}
& 2^{1+n} \int_{0}^{\pi / 2} \cos ^{n} \theta \sin (n-4) \theta d \theta \\
& \quad=\left[\frac{2^{n-2}}{n-2}+3 \frac{2^{n-3}}{n-3}+6 \frac{2^{n-4}}{n-4}+\cdots+\frac{(n-1)(n-2)}{2} \cdot 2\right] \tag{27}\\
& \quad-2 n ; \quad n>2, \\
& \\
& =-2 n ; \quad n=0,1,2 .
\end{align*}
$$

Alternatively, integration by parts leads to
(28) $\int_{0}^{\pi / 2} \cos ^{q} \theta \sin p \theta d \theta=\frac{1}{q-p}\left\{1-q \int_{0}^{\pi / 2} \cos ^{q-1} \theta \sin (p+1) \theta d \theta\right\}$,
which, when applied successively k times gives, for $k>0, q>k-1$,

$$
\begin{align*}
& \int_{0}^{\pi / 2} \cos ^{q} \theta \sin (q-2 k) \theta d \theta \\
& \quad=\frac{q(q-1) \cdots(q-k+1)}{2^{k} k!} \\
& \quad \times\left\{\int_{0}^{\pi / 2} \cos ^{q-k} \theta \sin (q-k) \theta d \theta\right. \tag{29}\\
& \quad-\left[\frac{1}{(q-k+1)}+\frac{2 \cdot 1!}{(q-k+1)(q-k+2)}\right. \\
& \left.\left.\quad+\cdots+\frac{(2)^{k-1}(k-1)!}{(q-k+1)(q-k+2) \cdots q}\right]\right\}
\end{align*}
$$

with the second integral in (29) given by (19). If $q=k$, the above result reduces to that of (20).
4. The Special Case: $q=1$. In the case of Eq. (14b), the condition

$$
\operatorname{Re}(q)>-1
$$

may be modified to

$$
\operatorname{Re}(q) \geqslant-1
$$

For $q=-1$, the first term on the right becomes

$$
\begin{align*}
& -2 \frac{\cos \frac{1}{2} p \pi}{p+1}{ }_{2} F_{1}\left(1, \frac{1}{2}(1+p) ; \frac{1}{2}(3+p) ;-1\right) \tag{30}\\
& \quad=-\cos \frac{1}{2} p \pi \int_{0}^{1}(1+t)^{-1} t^{(p-1) / 2} d t=-\cos \frac{1}{2} p \pi \beta\left(\frac{1+p}{2}\right)
\end{align*}
$$

where

$$
\beta(x)=\frac{1}{2}\left[\Psi\left(\frac{1+x}{2}\right)-\Psi\left(\frac{x}{2}\right)\right]
$$

(see [1, formula 8.371(1)], or [3, formula 15.1.23]), while the second term reduces to $\pi / 2$. Hence we obtain

$$
\begin{equation*}
\int_{0}^{\pi / 2} \frac{\sin p \theta}{\sin \theta} d \theta=\frac{\pi}{2}-\frac{1}{2} \cos \frac{1}{2} p \pi\left[\Psi\left(\frac{3+p}{4}\right)-\Psi\left(\frac{1+p}{4}\right)\right] \tag{31}
\end{equation*}
$$

a result given previously by the author [2, Eq. (11)]. In a similar manner, by subtracting the result of Eq. (14a) from the corresponding one when $p=0$, and taking the limit as $q \rightarrow-1$, we get the expression for

$$
\begin{align*}
\int_{0}^{\pi / 2} \frac{1-\cos p \theta}{\sin \theta} d \theta= & \Psi\left(\frac{1+p}{2}\right)-\Psi\left(\frac{1}{2}\right) \tag{32}\\
& -\frac{1}{2} \sin \frac{1}{2} p \pi\left[\Psi\left(\frac{3+p}{4}\right)-\Psi\left(\frac{1+p}{4}\right)\right]
\end{align*}
$$

as given by Eq. (11) of the above reference.
5. Watson's Integral. In [5, p. 313], the following value is given for the integral

$$
\begin{equation*}
\int_{0}^{\pi} \cos ^{m} \theta \cos p \theta d \theta=\frac{(-)^{m} \sin p \pi}{2^{m}(p+m)}{ }_{2} F_{1}\left(-m,-\frac{p+m}{2} ; 1-\frac{p+m}{2} ;-1\right) \tag{33}
\end{equation*}
$$

where the sign of the second parameter has been corrected (cf. Math. Comp., v. 14, 1960, p. 221). The above result has been reproduced with the incorrect sign in [4, p. 16], as well as in [1, art. 3.631(18)], with reference to the wrong page of [5], but is given correctly in art. 9.114 of [1].

The relation (33) is easily derived from (13a) and (14b) by bisecting the range of integration, and it can also be shown that the restriction $p \neq 0, \pm n$ is not necessary, since from elementary considerations, the integral is, in this case, zero except when $m \geqslant n$ and $m-n$ is even, in which instance it is equal to

$$
\begin{equation*}
\frac{\pi}{2^{m}}\left(\frac{m-n}{2}\right) \tag{34}
\end{equation*}
$$

On the other hand, after replacing p by $-p$ in the right side of (33), the latter expression becomes

$$
\begin{equation*}
\frac{(-)^{m} \sin p \pi}{2^{m}(p-m)^{2}} F_{1}\left(-m, \frac{p-m}{2} ; 1+\frac{p-m}{2} ;-1\right) \tag{35}
\end{equation*}
$$

while the hypergeometric series may be written in the form

$$
\begin{equation*}
\left(\frac{1}{p-m}\right)_{2} F_{1}\left(-m, \frac{p-m}{2} ; 1+\frac{p-m}{2} ;-1\right)=\sum_{k=0}^{m} \frac{\binom{m}{k}}{p-m+2 k} \tag{36}
\end{equation*}
$$

which will be finite unless $(p-m)$ is a negative even integer, or zero. It follows that, since

$$
\lim _{p \rightarrow m-2 k}\left(\frac{\sin p \pi}{p-m+2 k}\right)=\pi(-1)^{m}
$$

the expression (35) will attain the value given by (34) when p is an integer: $n \leqslant m$, and $m-n$ is even, but will vanish otherwise.

1885 California, Apt. 62
Mountain View, California 94041

1. I. S. Gradshteyn \& I. M. Ryzhik, Table of Integrals, Series and Products, corrected and enlarged edition, Academic Press, New York, 1980.
2. H. E. Fettis, "On some trigonometric integrals," Math. Comp., v. 35, 1980, pp. 1325-1329.
3. M. Abramowitz \& I. Stegun, Handbook of Mathematical Functions, Dover, New York, 1965.
4. W. Magnus \& F. Oberhettinger, Formeln und Sätze für die speziellen Funktionen der mathematischen Physik, Springer-Verlag, Berlin, 1948.
5. G. N. Watson, A Treatise on the Theory of Bessel Functions, 2nd ed., reprinted, Cambridge Univ. Press, New York and London, 1966.

[^0]: Received May 24, 1983.
 1980 Mathematics Subject Classification. Primary 33A15, 33A10.
 Key words and phrases. Integrals, definite integrals, Gamma functions, hypergeometric functions, Psi functions.

