## SHORT COMMUNICATION

# MORE WITH THE LEMKE COMPLEMENTARITY ALGORITHM* 

Joseph J.M. EVERS<br>Twente University of Technology, Netherlands

Received 25 July 1977
Revised manuscript received 26 April 1978


#### Abstract

In the case that the matrix of a linear complementarity problem consists of the sum of a positive semi-definite matrix and a co-positive matrix a general condition is deduced implying that the Lemke algorithm will terminate with a complementarity solution. Applications are presented on bi-matrix games, convex quadratic programming and multi-period programs.


Key words: Linear Complementarity, Bi-matrix Games, Multi-period Programs.

## 1. Introduction

We consider a linear complementarity problem where, given an $n$-vector $c$ and an $n \times n$-matrix $A, m$-vectors $\hat{z}, \hat{w}$ are to be determined satisfying:

$$
\begin{equation*}
A z-w=c, \quad z, w \geqq 0, \quad\langle z, w\rangle=0 . \tag{1}
\end{equation*}
$$

( $\geqq$ refers to the natural ordering on $\mathbf{R}^{n}$ and $\langle z, w\rangle$ is the inner product of $z$ and $w$ ). Such a pair ( $\hat{z}, \hat{w}$ ) is called a complementary solution. Solving the problem with the Lemke-algorithm, a positive auxiliary vector is introduced, transforming the system into:

$$
\begin{equation*}
A z+\theta h-w=c, \quad z, w, \theta \geqq 0, \quad\langle z, w\rangle=0, \tag{2}
\end{equation*}
$$

$h$ being any fixed positive $n$-vector and $\theta$ being a scalar. A combination ( $\tilde{z}, \tilde{w}, \tilde{\theta})$ satisfying (2) is called an almost-complementary solution, abbreviated ac-solution.
Clearly, defining $\bar{\theta}:=\max _{i}\left\{c_{i}\left|h_{i}\right| c_{i}>0\right\}$, an almost-complementary basic solution is available by $\left(z^{0}, w^{0}, \theta^{0}\right):=(0, \bar{\theta} h-c, \bar{\theta})$, together with a ray of ac-solutions $\left.\left(z^{0}, w^{0}, \theta^{0}\right)+\lambda(0, h, 1) \mid \lambda \geqq 0\right\}$. Starting from this particular basic solution ( $z^{0}, w^{0}, \theta^{0}$ ) the Lemke-algorithm constructs a series of pairwise adjacent basic solutions of the system $A z+\theta h-w=c, z, w, \theta \geqq 0$, which are all ac-solutions (cf. [11], [2]).

Concerning the termination of the algorithm there are three possibilities:
(a) because of cycling the algorithm will not stop,

[^0](b) the algorithm stops at a basic ac-solution $\left(z^{*}, w^{*}, \theta^{*}\right)$ with $\theta^{*}>0$, or,
(c) stops with a basic ac-solution with $\theta^{*}=0$;
clearly, in the latter case a complementarity solution is identified. If system (2) is non-degenerate, cycling is impossible; otherwise, it is possible to endow the Lemke-algorithm with an anti-cycling procedure. Further, the standard theory concerning the Lemke-algorithm shows that stopping at basic ac-solution $\left(z^{*}, w^{*}, \theta^{*}\right)$ with $\theta^{*}>0$ implies the existence of a ray of ac-solutions
$$
\left\{\left(z^{*}, w^{*}, \theta^{*}\right)+\lambda(\underline{z}, \underline{w}, \underline{\theta}) \mid \lambda \geqq 0\right\}, \quad \text { with } \underline{z} \neq 0 .
$$

Evidently, any condition imposed on the linear complementarity problem which rules out the existence of such a ray of ac-solutions, implies that the Lemkealgorithm will terminate with a complementary solution and proves the existence of a complementary solution in a constructive manner.

In the main theorem such a general condition is deduced with respect to complementarity problems where the matrix can be written as the sum of a symmetric positive semi-definite matrix and a co-positive matrix (note: a square matrix B is called co-positive if for every non-negative vector $x:\langle x, B x\rangle \geqq 0$ ). Accordingly, (2) is written:

$$
\begin{equation*}
(M+N) z+\theta h-w=c, \quad z, w, \theta \geqq 0, \quad\langle z, w\rangle=0, \tag{3}
\end{equation*}
$$

where $M$ is a symmetric positive semi-definite $n \times n$-matrix, $N$ a co-positive matrix, $c$ an $n$-vector, and where $h$ is any positive auxiliary vector with dimension $n$.

## 2. The main theorem

Theorem 2.0. If there exist vectors $x, y \in \mathbf{R}^{n}, y \geqq 0$, satisfying $M x-N^{\prime} y \geqq c\left(N^{\prime}\right.$ being the transpose of $N$ ), then, with respect to complementarity problem (3), there is no ray of ac-solutions $\left\{\left(z^{*}, w^{*}, \theta^{*}\right)+\lambda(\underline{z}, \underline{w}, \underline{\theta}) \mid \lambda \geqq 0\right\}$ with simultaneously $\theta^{*}>0$ and $\underline{z} \neq 0$.

In the light of the preceding remarks the consequence of the theorem is obvious:

Corollary 2.1. If the system $M x-N^{\prime} y \geqq c, y \geqq 0$, is solvable ( $M$ symmetric pos. semi-def., $N$ co-positive), then Lemke's algorithm applied to (3) (with $h>0$ ) terminates in a complementary solution.

The proof of our theorem is based on two auxiliary properties:
Proposition 2.2. Let $M, N$ be $n \times n$-matrices, $M$ symmetric positive semi-definite, $N$ co-positive. Let $c \in \mathbf{R}^{n}$. If the system $(M+N) z \geqq 0,\langle c, z\rangle>0,\langle z,(M+N) z\rangle=$ $0, z \in \mathbf{R}_{+}^{n}$ is solvable, then the system $M x-N^{\prime} y \geqq c, x \in \mathbf{R}^{n}, y \in \mathbf{R}_{+}^{n}$ is nonsolvable.

Proof. If $z \in \mathbf{R}_{+}^{n}$ satisfies $\langle z,(M+N) z\rangle=0$, then the assumptions on $M$ and $N$ imply: $\langle z, N z\rangle=0,\langle z, M z\rangle=0$. The latter implies $M z=0$. Consequently, we may conclude that every $z \in \mathbf{R}_{+}^{n}$ with $\langle z,(M+N) z\rangle=0,(M+N) z \geqq 0$, satisfies $N z \geqq$ 0 , as well. Now, suppose $\bar{z} \in \mathbf{R}_{+}^{n}$ and $\bar{x} \in \mathbf{R}^{n}, \bar{y} \in \mathbf{R}_{+}^{n}$ are solutions of the first and the second system resp. Then, with $N z \geqq 0, M \bar{z}=0, \bar{z}, \bar{x}, \bar{y} \geqq 0$, we have

$$
0 \leqq\langle\bar{y}, N \bar{z}\rangle=-\langle\bar{x}, M \bar{z}\rangle+\langle\bar{y}, N \bar{z}\rangle=-\left\langle\bar{z}, M \bar{x}-N^{\prime} \bar{y}\right\rangle \leqq-\langle\bar{z}, c\rangle<0
$$

Contradiction: at least one of the systems has to be non-solvable.
Proposition 2.3. If, with respect to (2), A being co-positive and $h$ being positive, there is a ray of ac-solutions $\left(z^{*}, w^{*}, \theta^{*}\right)+\lambda(\underline{z}, \underline{w}, \underline{\theta}), \lambda \geqq 0$, with $\theta^{*}>0, x \neq 0$, then $A \underline{z} \geqq 0,\langle c, \underline{z}\rangle>0,\langle\underline{z}, A \underline{z}\rangle=0, \underline{z} \geqq 0$.

Proof. With respect to such a ray, we have:
(i) $A \underline{z}+\underline{\theta} h-\underline{w}=0, \underline{z}, \underline{w}, \underline{\theta} \geqq 0$,
(ii) $\langle\underline{z}, \underline{w}\rangle=0,\left\langle z^{*}, w^{*}\right\rangle=0,\left\langle\underline{z}, w^{*}\right\rangle=0,\left\langle z^{*}, \underline{w}\right\rangle=0$.

Further, the assumptions imply:
(iii) $\langle\underline{z}, A \underline{z}\rangle \geqq 0$ (by co-positivity of $A$ and $\underline{z} \geqq 0$ ).
(iv) $\langle\underline{z}, h\rangle>0$ (by positivity of $h$ and by $\underline{z} \geqq 0, \neq 0$ ).

Multiplying (i) by $\underline{z}$, equality $\langle\underline{z}, \underline{w}\rangle=0$ implies $\langle\underline{z}, A \underline{z}\rangle+\underline{\theta}\langle\underline{z}, h\rangle=0$, and hence by (iii) and (iv):
(v) $\underline{\theta}=0$,
(vi) $\langle\underline{z}, A \underline{z}\rangle=0$.

Combining (i) and (v), we have:
(vii) $A \underline{z} \geqq 0$.

Multiplying $A\left(z^{*}+\lambda \underline{z}\right)+\left(\theta^{*}+\lambda \underline{\theta}\right) h-\left(w^{*}+\lambda \underline{w}\right)=c$ by $\left(z^{*}+\lambda \underline{z}\right)$, combining the result with (ii) en (v), we find:

$$
\left\langle z^{*}+\lambda \underline{z}, A\left(z^{*}+\lambda \underline{z}\right)\right\rangle+\theta^{*}\left\langle z^{*}+\lambda \underline{z}, h\right\rangle=\left\langle z^{*}+\lambda \underline{z}, c\right\rangle .
$$

Since the first term is non-negative, we have for every $\lambda \geqq 0$ the inequality $\theta^{*}\left\langle z^{*}+\lambda \underline{z}, h\right\rangle \leqq\left\langle z^{*}+\lambda \underline{z}, c\right\rangle$. With $\theta^{*}>0, z^{*} \geqq 0, h>0, \underline{z} \geqq 0$, the latter implies: (viii) $\langle c, \underline{z}\rangle>0$.

Thus, (i), (vi), (vii) and (viii) prove the proposition.
Clearly, our theorem is a simple consequence of Propositions 2.2 and 2.3. Namely, the sum of a positive semi-definite matrix and a co-positive matrix is a co-positive matrix. Thus, if there is an ac-ray, as mentioned in Theorem 2.0, then (by Proposition 2.3) there is a $z \in \mathbf{R}_{+}^{n}$ satisfying $(M+N) z \geqq 0,\langle c, z\rangle>0,\langle z,(M+$ $N) z\rangle=0$, and consequently (by 2.2) the system $M x+N^{\prime} y \geqq c, x \in \mathbf{R}^{n}, y \in \mathbf{R}_{+}^{n}$ is non-solvable.

An interesting consequence of Corollary 2.1 can be found by putting $M:=0$, $c:=-N^{\prime} u-v$, with $u, v \in \mathbf{R}_{+}^{n}$.

Corollary 2.4. Let $N$ be a co-positive $n \times n$-matrix. Then, for every $u, v \in \mathbf{R}_{+}^{n}$, there is a $z, w \in \mathbf{R}_{+}^{n}$ satisfying $N z-w=-N^{\prime} u-v,\langle z, w\rangle=0$.

A simple sufficient condition for matrix $N$ to be co-positive, is the criterion $\left(N+N^{\prime}\right) \geqq 0$, being the consequence of the equality $\langle y, N y\rangle=\frac{1}{2}\left\langle y,\left(N+N^{\prime}\right) y\right\rangle$, for every $y \in \mathbf{R}^{n}$. In this context, the result published by Jones [10] might be considered as a special case of Corollary 2.1. Independently, he found in a similar manner that the Lemke algorithm applied on (2) terminates in a complementary solution, provided $A+A^{\prime} \geqq 0, h>0$, and, in addition, the system $-A^{\prime} y \geqq c, y \in \mathbf{R}_{+}^{n}$ is solvable. In order to illustrate the unifying power of our main theorem, we shall discuss some applications.

## 3. Bi-matrix games

We consider a bi-matrix game defined by $m \times n$-matrices $A, B$. Let

$$
U:=\left\{u \in \mathbf{R}_{+}^{m} \mid \sum_{i=1}^{m} u_{i}=1\right\}, \quad X:=\left\{x \in \mathbf{R}_{+}^{n} \mid \sum_{j=1}^{n} x_{j}=1\right\} .
$$

Then the Nash-equilibrium is defined as a pair $(\hat{u}, \hat{x}) \in U \times X$ such that, for every $u \in U, x \in X:\langle u, A \hat{x}\rangle \leqq\langle\hat{u}, A \hat{x}\rangle,\langle\hat{u}, B \hat{x}\rangle \leqq\langle\hat{u}, B x\rangle$. It is well known (see [2]) that, in case the matrices are positive, all Nash-equilibria can be deduced from solutions of the complementarity problem: $B^{\prime} u-v=s^{n},-A x-y=-s^{m},\langle x, v\rangle=$ $0,\langle y, u\rangle=0, \quad x, y, u, v \geqq 0$, where $s^{m} \in \mathbf{R}^{m}, s^{n} \in \mathbf{R}^{n}$ are vectors with all components one. Namely, for $A, B>0$, a combination $(\bar{x}, \bar{y}, \bar{u}, \bar{v})$ is a solution of the complementarity problem if and only if $\hat{u}, \hat{x}$ defined by $\hat{u}:=\left\langle s^{m}, \bar{u}\right\rangle^{-1} \bar{u}$, $\hat{x}:=\left\langle s^{n}, \bar{x}\right\rangle^{-1} \bar{x}$, is a Nash-equilibrium. Evidently, putting:

$$
\begin{aligned}
& M:=0, \quad N:=\left(\begin{array}{rr}
0 & B^{\prime} \\
-A & 0
\end{array}\right), \\
& c:=\left(s^{n},-s^{m}\right), \quad z:=(x, u), \quad w:=(v, y),
\end{aligned}
$$

the problem can be written in our standard form (3). Observing that $N+N^{\prime}$ is non-negative in the case that $B \geqq A$ (affirming co-positivity), Corollary 2.1 implies that, for $B \geqq A>0$, the Lemke algorithm will find a complementary solution. Note: in fact no restriction on $A, B$ is needed. Because, defining $\bar{A}:=A+\alpha S, \bar{b}:=B+\beta S, S$ being an $m \times n$-matrix all elements one, Nashequilibria are independent with respect to the scalars $\alpha, \beta$.

## 4. Concave quadratic programming

Let $Q$ be a symmetric positive semi-definite $n \times n$-matrix, let $A$ be an $m \times n$-matrix, let $p \in \mathbf{R}^{n}, r \in \mathbf{R}^{m}$. Consider the quadratic max-problem: $\hat{\phi}:=\sup \langle p, x\rangle-\frac{1}{2}\langle x, Q x\rangle$, over $x \in \mathbf{R}_{+}^{n}, y \in \mathbf{R}_{+}^{m}$, such that $A x+y=r$. With respect
to the standard Lagrangian $\langle p, x\rangle-\frac{1}{2}\langle x, Q x\rangle-\langle u, A x-r\rangle$, straightforward methods lead to the following properties:
(i) $(x, y)$ is optimal and ( $u, v$ ) is a Lagrange vector, if and only if $Q x+A^{\prime} u-$ $v=p, A x+y=r,\langle x, v\rangle=0,\langle y, u\rangle=0, x, y, u, v \geqq 0$, and
(ii) the system $Q x+A^{\prime} u \geqq p, A x \leqq r, x, u \geqq 0$ is solvable, if and only if the max-problem is feasible and $\hat{\phi}<+\infty$. Now, writing the complementarity problem of (i) in our standard form (3),

$$
\begin{aligned}
& M:=\left(\begin{array}{ll}
Q & 0 \\
0 & 0
\end{array}\right), \quad N:=\left(\begin{array}{rr}
0 & A^{\prime} \\
-A & 0
\end{array}\right), \\
& c:=(p,-r), \quad z:=(x, u), \quad w:=(v, y),
\end{aligned}
$$

implying $M$ is symmetric positive semi-definite, $N$ is co-positive (note, $N+N^{\prime}$ $=0$ ), we may conclude:
(iii) there exists an optimal solution ( $x, y$ ) and a Lagrange vector ( $u, v$ ), if and only if the max-problem is feasible and $\hat{\phi}<+\infty$; in that case these quantities can be calculated by Lemke's algorithm.

An approach like this is well-known; see for instance [1, 2, 11].

## 5. Invariant optimal solutions in concave quadratic multi-period problems

We consider a multi-period allocation max-problem with a discounted concave quadratic objective function and with a linear valuation on the terminal state

$$
\hat{\phi}:=\sup (\pi)^{h}\left\langle u_{h+1}, B x_{h}\right\rangle+\sum_{t=1}^{\omega}(\pi)^{t}\left(\left\langle p, x_{t}\right\rangle-\frac{1}{2}\left\langle x_{t}, Q x_{t}\right\rangle\right),
$$

over $\left\{x_{t}\right\}_{1}^{h} \subset \mathbf{R}_{+}^{n},\left\{y_{t}\right\}_{1}^{h} \subset \mathbf{R}_{+}^{m}$, such that: $A x_{1}+y_{1}=B x_{0}+r, A x_{t}-B x_{t-1}+y_{t}=r$, $t=2, \ldots, h$, where: $0<\pi<1, p \in \mathbf{R}^{n}, Q$ symmetric positive semi-definite, $A$ and $B m \times n$-matrices, $r \in \mathbf{R}^{m}, h$ the planning horizon, $x_{0}$ given initial state, and where $u_{h+1} \in \mathbf{R}_{+}^{m}$ is the terminal valuation vector. Defining the Lagrangian

$$
(\pi)^{h}\left\langle u_{h+1}, B x_{h}\right\rangle+\sum_{t=1}^{h}(\pi)^{t}\left(\left\langle p, x_{t}\right\rangle-\frac{1}{2}\left\langle x_{t}, Q x_{t}\right\rangle-\left\langle u_{t}, A x_{t}-B x_{t-1}-r\right\rangle+\left\langle v_{t}, x_{t}\right\rangle\right)
$$

similar properties as (i)-(iii) of Section 4 hold with respect to the complementarity problem: $Q x_{t}+A^{\prime} u_{t}-\pi B^{\prime} u_{t+1}-v_{t}=p, \quad A x_{b} \mp B x_{t-1}+y_{t}=r, \quad\left\langle x_{t}, v_{t}\right\rangle=0$, $\left\langle y_{t}, u_{t}\right\rangle=0, x_{t}, y_{t}, u_{t}, v_{t} \geqq 0$, for all $t=1, \ldots, h$. In that context $(\hat{x}, \hat{y}, \hat{u}, \hat{v})$ is called an invariant optimal solution if $Q \hat{x}+(A-\pi B)^{\prime} \hat{u}-\hat{v}=p,-(A-B) \hat{x}-\hat{y}=-r$, $\langle\hat{x}, \hat{v}\rangle=0,\langle\hat{y}, \hat{u}\rangle=0, \hat{x}, \hat{y}, \hat{u}, \hat{v} \geqq 0$; namely, putting $x_{0}:=\hat{x}, u_{n+1}:=\hat{u}$, one may verify that $\left(x_{t}, y_{t}\right):=(\hat{x}, \hat{y}), t=1, \ldots, h,\left(\hat{u}_{t}, \hat{v}_{t}\right):=(u, v), t=1, \ldots, h$ resp. are an optimal solution and a Lagrange sequence, indeed. Writing the definition of the invariant optimal solution concept in our standard form (3), where

$$
\begin{aligned}
& M:=\left(\begin{array}{cc}
Q & 0 \\
0 & 0
\end{array}\right), \quad N:=\left(\begin{array}{cc}
0 & (A-\pi B)^{\prime} \\
-(A-B) & 0
\end{array}\right), \\
& c:=(p,-r), \quad z:=(x, u), \quad w:=(v, y)
\end{aligned}
$$

one may verify that the conditions of Corollary 2.1 are satisfied, in the case that $0<\pi \leqq 1, B \geqq 0$ (implying $N+N^{\prime} \geqq 0$ ), and, in addition the system ( $\left.A-B\right)^{\prime} u \geqq$ $p,(A-\pi B) x \leqq r, u, x \geqq 0$ is solvable. Recently, studies concerning invariant optimal solutions for multi-period problem are published by several authors [3,4], and [6-10]. We studied the problem independently of Jones [10]. A recent study on linear complementarity and its applications in O.R. is published by Bastian [1]. The author is indebted to J.F. Benders for helpful suggestions.

## References

[1] M. Bastian, Lineare Komplementärprobleme im O.R. und in der Wirtschaftstheorie (Verlag Anton Hain, Meisenheim am Glan, 1976).
[2] R. Cottle and B. Dantzig, "Complementarity pivot theory of mathematical programming", in: G. Dantzig, ed., Mathematics of the decision sciences (Stanford Univ. 1968).
[3] B. Dantzig, and A. Manne, Research Report '73, I.I.A.S.A., Austria.
[4] T.G.M. De Beer, "An economic growth model with an infinite horizon", Masters Thesis, Tilburg Univ. (1975).
[5] B.C. Eaves, "The linear complementary problem", Management Science 17 (1971).
[6] J.J.M. Evers, Linear programming over an infinite horizon (Tilburg University Press, 1973).
[7] J.J.M. Evers, "The Lemke-Howson algorithm and linear infinite horizon programming", Res. Memorandum 56, Tilburg University (1973).
[8] J.J.M. Evers, "On the existence of balanced solutions in optimal economical growth and investment problems", Res. Memorandum 51, Tilburg University (1974).
[9] T. Hansen and T. Koopmans "On the definition and computation of a capital stock invariant under optimization", Journal of Economic Theory 5 (1972).
[10] Philip C. Jones, "Computation of an optimal invariant capital stock", ORC 77-9, University of California, Berkeley (April 1977).
[11] C. Lemke, "On complementary pivot theory", in: G. Dantzig, ed., Mathematics of the decision sciences (Stanford University 1968).


[^0]:    * Contributed to the XXIII TIMS Meeting, Athens, July 1977.

