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MORITA EQUIVALENCE FOR RINGS WITHOUT IDENTITY

By

P.N. \’ANH and L. M\’ARKI

In the paper [1] Abrams made a first step in extending the theory of

Morita equivalence to rings without identity. He considered rings in which a

set of commuting idempotents is given such that every element of the ring

admits one of these idempotents as a two-sided unit, and the categories of all

left modules over these rings which are unitary in a natural sense. He proved

that two such module categories over the rings $R$ and $S$ , say, are equivalent

if and only if there exists a unitary left R-module $P$ which is a generator, the

direct limit of a given kind of system of finitely generated projective modules,

and such that $S$ is isomorphic to the ring of certain endomorphisms of $P$.

The aim of the present paper is to extend this theory in two ways: to

cover a wider range of rings, and to transfer more of the classical Morita

theory. Firstly, one can weaken the condition of commutativity of the idem-

potents in question: it suffices to require that any two of them have a common
upper bound under the natural partial order ( $i$ . $e.$ , any two elements of the

ring admit a common two-sided identity), a condition which is fulfilled by all

regular rings (regular in the sense of Neumann). Whenever one has such a

system of idempotents, then any larger system, in particular, the set of all

idempotents, is also such, which is not the case for the systems of Abrams.

Secondly, by a suitable modification of some homological lemmas we obtain also

the two-sided characterizations of Morita equivalence, arriving thus at a
complete analogy to the classical case of rings with identity. Our presentation

is a combination of those in Anderson-Fuller [2], \S \S 21-22, and Bass [5] (see

also [6], Chapter II). This machinery allows us to avoid the elaborate con-
struction of Abrams. As examples we describe, among others, those rings

with local units which are Morita equivalent to division rings and primary

rings, respectively. The Rees matrix rings studied in [4] turn out to have a

natural place in this theory.

The theory we present here is a counterpart of the theory of Morita

duality developed by Yamagata [10]. On the one hand, we shall use the same
modified Hom-functors but for projective and not injective modules, and on the
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other hand, it turns out that every Morita equivalence class of rings with local

units contains rings with enough idempotents, $i.e.$ , rings considered by Yamagata.

Notice also that the module categories we consider are full subcategories

of the categories of modules over unital overrings of the respective rings with
local units. Nevertheless, Sato’s [8] theory of equivalence does not apply

because he considers the usual Hom-functors, which does not work in our case.

1. Preparations.

DEFINITION 1. $R$ is a ring with local units if every finite subset of $R$ is

contained in a subring of the form $eRe$ where $e=e^{2}\in R$ .
We call a left module $M$ over $R$ unitary if $RM=M,$ $i.e.$ , for each $m\in M$

there are $r_{1},$
$\cdots$ , $r_{n}\in R$ and $m_{1},$ $\cdots,$ $m_{n}\in M$ such that $r_{1}m_{1}+\cdots+r_{n}m_{n}=m$ . If

$R$ is a ring with local units then this implies that for every finite subset
$M^{\prime}\subset M$ there is an idempotent $e\in R$ such that $em=m$ for all $m\in M^{\prime}$ By
$R$ Mod we denote the category of unitary left R-modules together with the

usual R-homomorphisms. Dually, Mod $R$ denotes the category of unitary right

R-modules. Similarly to the case considered in Abrams [1], $R$ Mod (or Mod $R$)

is a complete and cocomplete additive category. We call a bimodule unitary if

it is unitary on both sides.

In what follows, $R$ denotes a ring with local units. The most important

thing for us is to find those modules in $R$ Mod which play the role of the

progenerators in the case of rings with identity. Of course, projective gener-

ators make sense in $R$ Mod for this a categorical notion; however, $RR$ is

neither finitely generated nor projective if $R$ has no identity, and the notion

we need ought to include $RR$ , too. Therefore we define:

DEFINITION 2. $P\in R$ Mod is a locally projective module if there is a direct
system $(P_{i})_{i\in I}$ of finitely generated projective direct summands of $P$ together

with projections $\psi_{i}$ : $P\rightarrow P_{i}$ such that $\psi_{i}$ factors through $\psi_{j}$ whenever $i\leqq j$, and
such that $\lim_{\rightarrow}P_{i}=P$. Notice that $RR$ is locally projective if $R$ has local units,

as $Re$ is a projective direct summand of $R$ for every idempotent $e\in R$ , and
the multiplication maps $\psi_{e}$ : $R\rightarrow Re$ satisfy the condition on $\psi_{i}$ if we define
$e\leqq f\Leftarrow;ef=fe=e$.

The role of progenerators will be played by the locally projective gener-

ators in $R$ Mod. But before turning to them, we shall establish homological

properties of locally projective modules. In doing so, we shall need a more
restrictive notion instead of the Hom-sets. For the sake of convenience, homo-
morphisms of modules will be written opposite the scalars.
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Notice that the usual definition of tensor product makes no use of the

identity in the ring, hence it makes sense in our case, too.

The following Propositions 1.1-1.5 and 1.7 can be proved along the same

lines as in the case of rings with identity (see $e$ . $g$. Anderson-Fuller [2], \S 20),

therefore we present them without proof. Before stating Proposition 1.1,

observe the following. If $R$ and $S$ are rings with local units and $s^{N}$ and $sU_{R}$

are unitary then $Hom_{S}(U, N)$ is a left R-module by putting, for $\phi\in Hom_{S}(U, N)$

and $r\in R,$ $r\phi;u\in U\leftrightarrow(ur)\phi\in N$. The submodule $RHom_{S}(U, N)$ is the largest

unitary R-submodule of $Hom_{S}(U, N)$ . By $RHom_{S}(U$ , - $)$ we denote the functor

induced by the mapping $N\mapsto RHom_{S}(U, N)$ .

PROPOSITION 1.1. For all $M,$ $M^{\prime}\in R$ Mod, $m\in M,$ $\phi\in Hom_{R}(M, M^{\prime})$ , put

$m\rho_{M}$ : $r-mr$ $(r\in R)$ (thus $\rho$ : $M\rightarrow RHom_{R}(R,$ $M)$ )

and

$\rho_{\phi}$ : $\gamma-\gamma\circ\phi$ $(\gamma\in RHom_{R}(R, M))$ .

Then $\rho$ : $1_{RMod}\rightarrow RHom_{R}(R$ , - $)$ is a natural isomorphism.

PROPOSITION 1.2. For all $M,$ $M^{\prime}\in R$ Mod and $\phi\in Hom_{R}(M, M^{\prime})$ , put

$(r\otimes m)\mu_{M}=rm$ $(r\in R, m\in M)$ (thus $\mu_{M}$ : $R\otimes M\rightarrow M$ )

and

$\mu_{M}$ : $ R\otimes\phi->\phi$ .

Then $\mu:R\bigotimes_{R}-\rightarrow 1_{R}$ Mod is a natural isomorphism.

COROLLARY 1.3. For all $e^{2}=e\in R$ and $M\in R$ Mod, $eR\otimes M\cong eM$.

PROPOSITION 1.4. Let $\theta$ : $RU_{s}\rightarrow_{R}V_{s}$ be a bimodule homomorphism between
unitary bimodules $RUS$ and $RVS$ where $R$ and $S$ are rings with local units. Put,

for all $M,$ $M^{\prime}\in R$ Mod and $\phi\in Hom_{R}(M, M^{\prime})$ ,

$\eta_{M}$ : $\gamma\leftrightarrow\theta\circ\gamma$ $(\gamma\in SHom_{R}(V, M))$ ,

$\eta_{\phi}$ : $\delta\leftrightarrow\theta\circ\delta$ $(\delta\in SHom_{R}(V, \phi))$ .

Then $\eta$ : $SHom_{R}(V, -)\rightarrow SHom_{R}(U$ , - $)$ is a natural transformation between two

functors from $R$ Mod to $S$ Mod. Moreover, if $\theta$ is an isomorphism then $\eta$ is a
natural isomorphism.

Before stating the next proposition, observe the following. If $N_{S}$ and
$RU_{s}$ are unitary, then $Hom_{S}(N, U)$ is a left R-module if we put, for all
$\phi\in Hom_{S}(N, U)$ and $r\in R,$ $r\phi:n\in N\leftrightarrow r(\phi n)$ . Then $RHom_{S}(N, U)$ is a unitary
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left R-module. Similarly, if $RM$ is any unitary left R-module then $Hom_{R}(M, U)$

is naturally a right S-module and hence $Hom_{R}(M, U)S$ is a unitary right

S-module. Further, notice that $s(K\bigotimes_{R}M)\in S$ Mod whenever $s^{K_{R}}$ and $RM$ are
unitary modules.

PROPOSITION 1.5. For every triple (${}_{R}P,U,$ $s^{M)}$ such that ${}_{R}P$ is a finitely

generated projective module, there is an isomorphism of abelian groups

$\eta$ : $Hom_{R}(P, U)\Phi^{M\rightarrow Hom_{R}(P,U}\Phi^{M)}$

defined via

$\eta(\gamma\otimes m);p\leftrightarrow p\gamma\otimes m$

that is natural in each of the three variables $P,$ $U,$ $M$.

COROLLARY 1.6. For every triple of unitary modules ( ${}_{R}P_{S,R}U_{S},$ $s^{M)}$ such

that ${}_{R}P$ is locally projective and $Pf$ is a finitely generated left R-module for all

$f^{2}=f\in S$ , there is an isomorphism of left S-modules

$\eta$ : $SHom_{R}(P, U)S\mathfrak{H}^{M}\rightarrow SHom_{R}\{P,$ $U\ovalbox{\tt\small REJECT}^{M)}$

defined via
$(\gamma\otimes m)\eta:p\leftrightarrow p\gamma\otimes m$

that is natural in each of the three variables $P,$ $U,$ $M$.

PROOF. It is routine to verify that $\eta$ is a homomorphism which is natural

in each variable. Next we show that $\eta$ is injective. In fact, assume
$(\Sigma\gamma_{i}\otimes m_{i})\eta=0$ . Since $\gamma_{i}\in SHom_{R}(P, U)S$ , there is an idempotent $f^{2}=f\in S$ with
$f\gamma_{i}f=\gamma_{i}$ for all $i$ . By assumption the left R-submodule $Pf$ is finitely generated,

hence it is contained in a finitely generated projective direct summand $P^{\prime}$ of
$P$. By $P^{\prime}=P^{\prime}f\oplus P^{\prime}(1-f)=Pf\oplus P^{\prime}(1-f)$ , where $P^{\prime}(1-f)=\{p\in P^{\prime}|P^{\prime}f=0\}$ ,

we obtain that $Pf$ is also projective. By $(\Sigma\gamma_{i}\otimes m_{i})\eta=0$ , the homomorphism

$\phi^{\prime}$ : $Pf\rightarrow U\otimes^{M:pf-\Sigma p\gamma_{i}\otimes m_{i}}$ is trivial. Therefore by Proposition 1.5 we have

$\Sigma_{\gamma_{i}}\otimes m_{i}=0$ in $Hom_{R}(Pf, U)\otimes^{M}$, but $Hom_{R}(Pf, U)=fHom_{R}(P, U)S$, hence

$\Sigma\gamma_{i}\otimes m_{i}$ must be zero in $ SHom(P, U)S\otimes^{M}\cdot$ For proving the surjectivity of $\eta$ ,

if $\phi$ is any element in $SHom_{R}(P,$ $U\otimes^{M)}$ , then there is an idempotent $f^{2}=f\in S$

with $ f\phi=\phi$ . Consider the restriction $\phi^{\prime}$ of $\phi$ to $Pf$ which is a finitely generated

projective direct summand of ${}_{R}P$. By Proposition 1.5, there is an element

$\Sigma\gamma_{i}^{\prime}\otimes m_{i}$ of $Hom_{R}(Pf, U)\otimes^{M}$ which corresponds to $\phi^{\prime}$ . Extend $\gamma_{i}^{\prime}$ to a $\gamma_{i}$

defined on $P$ by putting $(P(1-f))\gamma_{i}=0$. Now it is clear that $(\Sigma\gamma_{i}\otimes m_{i})\eta=f\phi=\phi$ ,

and we are done.
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PROPOSITION 1.7. Let Ps, $RU_{s}$ and $RM$ be unitary modules such that Ps is

finitely generated and projective. Then there is an isomorphism of abelian groups

$\eta$ : $P\otimes^{SHom_{R}(U},$
$M$ ) $\rightarrow Hom_{R}(Hom_{S}(P, U),$ $M$ )

defined via
$\eta(p\otimes\gamma);\delta\in Hom_{S}(P, U)\leftrightarrow(\delta p)\gamma$

that is natural in each of the three variables $P,$ $U,$ $M$.

COROLLARY 1.8. Let ${}_{R}P_{S,R}U_{S}$ and $RM$ be unitary modules such that Ps is

locally projective and $eP$ is a finitely generated right S-module for all idempotents

$e^{2}=e\in R$ . Then there is an isomorphism of left R-modules

$\eta$ : $P\otimes^{SHom_{R}(U},$
$M$ ) $\rightarrow RHom_{R}(RHom_{S}(P, U)R,$ $M$ )

defined via
$(p\otimes\gamma)\eta;\delta\in RHom_{S}(P, U)R-\rangle(\delta p)\gamma$

that is natural in each of the three variables $P,$ $U,$ $M$.

PROOF. It is routine to verify that $\eta$ is a homomorphism which is natural

in $P,$ $U$ and $M$. Assume now $(\Sigma p_{i}\otimes\gamma_{i})\eta=0$. Since ${}_{R}P$ is unitary, there is an
idempotent $e\in R$ with $ep_{i}=p_{i}$ for all $i$. From our assumption it follows that
$eP$ is a finitely generated projective direct summand of $P_{S}$ . Since $(\Sigma p_{i}\otimes\gamma_{i})\eta=0$,

the element $\phi$ of $Hom_{R}(Hom_{S}(eP, U),$ $M$ ) defined by $\delta\phi=\Sigma(\delta p_{i})\gamma_{i},$ $\delta\in Hom_{S}(eP, U)$ ,

is zero. Hence we can apply Proposition 1.7 and obtain that the element
$\Sigma p_{i}\otimes\gamma_{i}$ is zero in $eP\otimes^{SHom_{R}(U},$

$M$ ) and therefore it must be zero in

$P\otimes^{SHom_{R}(U},$
$M$ ), too. The surjectivity of $\eta$ is seen as in the proof of

Corollary 1.6.

COROLLARY 1.9. Let ${}_{R}P_{S}$ and $s^{N}$ be unitary modules such that Ps is locally

projective and $eP$ is a finitely generated right S-module for every idempotent

$e\in R$ . Then there is an isomorphism of left R-modules

$\eta$ : $P\Phi^{N\rightarrow RHom_{S}(Hom_{S}(P},$
$S$) $R,$ $N$ )

defined via
$(p\otimes n)\eta$ : $\delta\in Hom_{S}(P, S)R-\rangle$ $(\delta p)n$

that is natural in $P$ and $N$.

PROOF. Putting $R=S,$ $U=S$ and $N=M$ in Proposition 1.7, we obtain that

$\eta$ : $P\bigotimes_{S}N\rightarrow Hom_{S}(Hom_{S}(P, S),$
$N$) is an isomorphism of abelian groups which is
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natural in $P$ and $N$, provided that $P_{S}$ is finitely generated and projective. In the

general case, it is straightforward to check that $\eta$ is a homomorphism of left

R-modules which is natural in $P$ and $N$. Next we show that $\eta$ is injective.

In fact, assume $(\Sigma p_{i}\otimes n_{i})\eta=0$. Since ${}_{R}P$ is unitary, there is an idempotent

$e\in R$ such that $ep_{i}=p_{i}$ for all $i$, and $eP$ is a projective right S-module for $P_{S}$

is locally projective. Now the element $\phi$ of $Hom_{S}(Hom_{S}(eP, S),$ $N$ ) defined by

$\delta\phi=\Sigma(\delta p_{i})n_{i}$ is zero since $(\Sigma p_{i}\otimes n_{i})\eta=0$, and by the remark made at the

beginning of the proof we have that $\Sigma p_{i}\otimes n_{i}$ is the zero element in $eP\mathfrak{H}^{N}$,

hence it is the zero in $P\mathfrak{H}^{N}$, too. The surjectivity of $\eta$ is seen as in the proof

of $Corollary\cdot 1.6$.

LEMMA 1.10. Let ${}_{R}P$ be a locally projective generator, and let $S$ be a subring

of $End_{R}P$ having local units such that $P\in ModS,$ $SEnd_{R}P=S$ , and $Pf$ is a finitely

generated submodule of ${}_{R}P$ for every idempotent $f\in S$ . Then

1) $P_{S}$ is a locally projective generator,

2) the mapping $\lambda:R\rightarrow End{}_{S}P:r-\succ\lambda_{r}$, where $\lambda_{r}$ : $p\mapsto rp$ , is an embedding of $R$

into $End_{s}P$ such that $(End{}_{S}P)(\lambda(R))=\lambda(R)$ .

PROOF. By the assumption, $P$ can be considered as a unitary R-S-bimodule.

Since ${}_{R}P$ is a generator, it generates $Re$ for any idempotent $e\in R$ , $i$ . $e.$ , there

are a natural number $n$ and a unitary left R-module $P^{\prime}$ such that $P^{n}\cong Re\oplus P^{\prime}$ .
Theh it follows

$(End_{R}P)^{n}\cong Hom_{R}(P^{n}, P)\cong Hom_{R}(Re, P)\oplus Hom_{R}(P^{\prime}, P)\cong eP\oplus Hom_{R}(P^{\prime}, P)$ .

This fact implies, since $End_{R}P$ is a ring with identity, that $eP$ is a finitely

generated right $End_{R}P$-module, $i.e.$ , there are finitely many elements $p_{1},$ $\cdots$ , $p_{k}$

$\in eP$ such that every element $p\in eP$ can be expressed as $p=p_{1}\phi_{1}+\cdots+p_{k}\phi_{k}$

where $\phi_{1},$
$\cdots,$

$\phi_{k}\in End_{R}P$. On the other hand, we know that $P\in ModS$ , hence

there is an idempotent $f\in S$ with $p_{i}f=p_{i}$ for all $i$ and then $p=p_{1}(f\phi_{1})+\cdots+$

$p_{k}(f\phi_{k})$ . Since $f\phi_{1},$
$\cdots,$

$f\phi_{k}$ are contained in $S$ by the assumption, we see that

$eP$ is a finitely generated right S-module. Since $eP$ is a projective right

$End_{R}P$-module and every right S-module can be considered as a right $End_{R}P-$

module, we deduce immediately that $eP$ is a projective right S-module, too.

Furthermore, if $e_{1},$ $e_{2}\in R$ are idempotents such that $e_{1}\leqq e_{2}$ , then the map

$\psi_{e_{1}}$ : $P\rightarrow e_{1}P:p\leftrightarrow e_{1}p$ factors through the corresponding map $\psi_{e_{2}}$ . All this shows

that $P_{S}$ is locally projective.

For any idempotent $f\in S,$ $Pf$ is a finitely generated projective left R-module

by the assumptions, hence there is an idempotent $e\in R$ with $Pf\oplus T\cong(Re)^{n}$ for

a natural number $n$ and a unitary left R-module $T$. Therefore
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$(eP)^{n}\cong[Hom_{R}(Re, p)]^{n}\cong Hom_{R}((Re)^{n}, P)\cong Hom_{R}(Pf, P)\oplus Hom_{R}(T, P)$

$\cong fS\oplus Hom_{R}(T, P)$

which implies, since $S$ has local units, that $P_{S}$ is a generator.

Since ${}_{R}P$ is a generator, $RR$ is a sum of homomorphic images of ${}_{R}P$, but $R$

as a ring has local units, and so $ann_{R}(P)=0$ must hold. This implies that the
mapping $\lambda$ , which is clearly a homomorphism, is an embedding. In what fol-
lows we shall identify $R$ with the subring $\lambda(R)$ of $End_{S}P$.

In order to see $(End_{S}P)R=R$ , take any $\rho\in(End_{S}P)R$ . Since $R$ has local

units, there is an idempotent $e\in R$ such that $\rho e=\rho$ . As $eP$ is a finitely

generated right S-module, we have $eP=p_{1}S+\cdots+p_{n}S$. Let $K$ denote the

submodule of ${}_{R}P^{n}$ generated by $(p_{1}, \cdots , p_{n})$ . Since ${}_{R}P$ is a generator, $K$ is a
sum of homomorphic images of ${}_{R}P^{n},$ $i.e.$ , $(p_{1}, \cdots , p_{n})=x_{1}\phi_{1}+\cdots+x_{k}\phi_{k}$ where
$x_{1},$ $\cdots,$ $x_{k}\in P^{n}$ and $\phi_{1},$

$\cdots,$
$\phi_{k}$ : $P^{n}\rightarrow K$. As $P\in ModS$ and $S$ has local units,

each $x_{i}$ is contained in a $(Pf)^{n},$ $f^{2}=f\in S$ , so we can replace each $\phi_{i}$ by $f\phi_{i}$ .
Now $f\phi_{i}$ : $P^{n}\rightarrow K$ can be considered as an $n\times n$ matrix with entries from
$fEnd_{R}P$, by one of our assumptions we have $SEnd_{R}P=S$ , hence each $f\phi_{i}$ can
be considered as an element of $S_{n}$ , the ring of $n\times n$ matrices over $S$ . All this

shows that $\rho=\rho e$ can be considered as an endomorphism of $(P^{n})_{S_{n}}$ and there-

fore we have

$\rho(p_{1}, \cdots, p_{n})=\rho(x_{1}(f\phi_{1})+\cdots+x_{k}(f\phi_{k}))=(\rho x_{1})(f\phi_{1})+\cdots+(\rho x_{k})(f\phi_{k})$ ,

and here $(\rho x_{i})(f\phi_{i})\in P^{n}f\phi_{i}\subseteqq K$ for $i=1,$ $\cdots,$
$k$ . Hence $\rho(p_{1}, \cdots, p_{n})\in K=$

$R(p_{1}, \cdots, p_{n})$ , thus we have that $\rho=\rho e=re$ for some $r\in R$ .

2. The Morita equivalence.

THEOREM 2.1. Let $R$ and $S$ be equivalent rings with local units via inverse

equivalences $G:RMod\rightarrow S$ Mod and $H:SMod\rightarrow R$ Mod. Set

$P=H(s^{S)}$ and $Q=G(RR)$ .

Then $P$ and $Q$ are naturally unitary bimodules ${}_{R}P_{S}$ and $sQ_{R}$ such that

1) ${}_{R}P,$ $P_{S},$ $SQ,$ $Q_{R}$ are locally projective generators and

$SEnd_{R}P=S=(End_{R}Q)S,$ $(End_{S}P)R=R=REnd_{S}Q$ ;

2) ${}_{R}P_{S}\cong Hom_{R}(Q, R)S\cong RHom_{S}(Q, S),$ $sQ_{R}\cong Hom_{S}(P, S)R\cong SHom_{R}(P, R)$ ;

3) $G\cong SHom_{R}(P$, - $)$ , $H\cong RHom_{S}(Q$ , - $)$ ;

4) $G\cong Q\ovalbox{\tt\small REJECT}-,$ $H\cong P\otimes^{-;}$

5) identifying $sQ_{R}$ with $SHom_{R}(P, R)$ and $S$ with $SHom_{R}(P, P)$ (see 2 and

1 above), consider the bilinear products
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$(-, -):P\times Q\rightarrow R:(p, q)=pq\in R$ ,

$\langle-, -\rangle:Q\times P\rightarrow S;\langle q, p\rangle=(-, q)p\in S$ ;

then $P\otimes^{Q}$ and $Q\mathfrak{H}^{P}$ become rings if we put $(p_{1}\otimes q_{1})(p_{2}\otimes q_{2})=p_{1}\otimes\langle q_{1}, p_{2}\rangle q_{2}$ and
$(q_{1}\otimes p_{1})(q_{2}\otimes p_{2})=q_{1}\otimes(p_{1}, q_{2})p_{2}$ , and we have $R\cong P\otimes^{Q}$ and $s\cong Q\Phi^{P}$.

PROOF. By Proposition 1.1, $R\cong RHom_{R}(R, R)$ , moreover, this is also an
isomorphism of rings; furthermore, $G$ yields the isomorphism of rings

$End_{R}(RR)\cong End_{s}(SQ)$ , and therefore $Q$ can be considered as a right R-module.

In order to show that $Q_{R}$ is unitary, take an arbitrary element $q\in Q$ . Since
$Q=\cup\{G(Re);e^{2}=e\in R\}$ , there is an idempotent $e\in R$ such that $q\in G(Re)$ . Now

the right translation $\rho_{e}\in End_{S}Q$ induced by $e$ acts as an identity on $G(Re)$ ,

hence $qe=q$. Similarly, $P$ is a unitary right S-module. It is clear that

$Qe=G(Re)$ is a finitely generated left S-module.

Since $RR$ is a locally projective generator, the same holds for $SQ$ , too. In

the same way, ${}_{R}P$ is a locally projective generator. Now we can apply Lemma

1.10 and obtain that $P_{S}$ and $Q_{R}$ are also locally projective generators and it

holds $REnd_{S}Q=R=(End_{S}P)R$ and $S=SEnd_{R}P=(End_{R}Q)S$ , and our first claim

is proven.

Next we turn to the proof claim 3). Since $G$ and $H$ are equivalences, for

every $M\in R$ Mod we have the left S-isomorphism

$Hom_{S}(S, G(M))\cong Hom_{R}(H(S), M)=Hom_{R}(P, M)$ .
Furthermore, by Proposition 1.1, $G(M)\cong SHom_{s}(S, G(M))$ is a natural iso-

morphism in $M$. All this shows that $G\cong SHom_{R}(P$, - $)$ and similarly

$H\cong RHom_{S}(Q$ , - $)$ , and claim 3) is proven.

Now we have

$sQ_{R}=sG(R)_{R}\cong SHom_{R}(P, R)\cong SHom_{R}(P, Hom_{S}(P, P)R)$ ,

and there is also an S-R-bimodule isomorphism $\eta$ between $SHom_{R}(P, Hom_{S}(P, P)R)$

and $Hom_{S}(P, SHom_{R}(P, P))R\cong Hom_{S}(P, S)R$ defined by

$\eta(\gamma)\in Hom_{S}(P, SHom_{R}(P, P))R:a\mapsto\eta(\gamma)a\in SHom_{R}(P, P):b\in P\leftrightarrow(a\gamma)b$

for every element $\gamma\in SHom_{R}(P, Hom_{s}(P, P)R)$ . (For proving that $\eta$ is an
isomorphism, notice that its inverse is $b\eta^{-1}(\alpha):a\in P-a(\alpha b).)$ Hence we get

$sQ_{R}\cong Hom_{S}(P, S)R$ . Similarly we have ${}_{R}P_{S}\cong Hom_{R}(Q, R)S\cong RHom_{S}(Q, S)$ .
Now Proposition 1.4 and Corollary 1.9 together with claims 2) and 3) proven

just above yield
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$H\cong RHom_{S}(Q, -)\cong RHom_{S}(Hom_{S}(P, S)R,$ $-$ ) $\cong P\otimes^{-}$

and similarly $G\cong Q\ovalbox{\tt\small REJECT}-$ .
To prove 5), consider the mapping

$\lambda:P\otimes^{Q}\rightarrow R:\sum p_{i}\otimes q_{i}\leftrightarrow\sum(p_{i}, q_{i})$ .

It is clear that $\lambda$ is a homomorphism of abelian groups. Next,

$\lambda[(p_{1}\otimes q_{1})(p_{2}\otimes q_{2})]=\lambda[p_{1}\otimes\langle q_{1}, p_{2}\rangle q_{2}]=(p_{1}, \langle q_{1}, p_{2}\rangle q_{2})=(p_{1}\langle q_{1}, p_{2}\rangle, q_{2})$

$=((p_{1}, q_{1})p_{2},$ $q_{2}$) $=(p_{1}, q_{1})(p_{2}, q_{2})=\lambda(p_{1}\otimes q_{1})\lambda(p_{2}\otimes q_{2})$ ,

hence $\lambda$ is a ring homomorphism. Since ${}_{R}P$ is a generator, $RR$ is a sum of

homomorphic images of $P$, so every $r\in R$ can be written as a finite sum
$r=\sum p_{i}\phi_{i},$ $p_{i}\in P,$ $\phi_{i}\in Hom_{R}(P, R)$ . Now $P_{S}$ is unitary and $S$ has local units,

hence there is an idempotent $f\in S$ such that $p_{i}=p_{i}f$ for all $i$. Therefore we
can replace $\phi_{i}$ by $f\phi_{i}=q_{i}\in Q$ , and then $r=\sum p_{i}q_{i}=\lambda(\sum p_{i}\otimes q_{i})$ . Thus the

mapping $\lambda$ is surjective. Finally, suppose that $\sum(p_{i}, q_{i})=0$. Since QR is unitary,

there is an $e\in R$ such that $q_{i}e=q_{i}$ for all $i$ , and by the surjectivity of $\lambda$ ,

$e$ can be written as $\sum(p_{j}^{l}, q_{j}^{\prime})$ . Now we have $\sum p_{i}\otimes q_{i}=\sum p_{i}\otimes q_{i}(\sum p_{j}^{\prime}, q_{j}^{\prime})=$

$\sum_{i.j}p_{i}\otimes q_{i}(p_{j}^{\prime}, q_{j}^{\prime})$ . At this point, notice that for any $p^{\prime}\in P$ and $q,$ $q^{\prime}\in Q,$ $q(p^{\prime}, q^{\prime})$

$\in Q\subseteqq Hom(P, R)$ and $\langle q, p^{\prime}\rangle q^{\prime}\in Q\subseteqq Hom(P, R)$ , and for all $p\in P$ it holds

$p(q(p^{\prime}, q^{\prime}))=(p, q)(p^{\prime}, q^{\prime})=((p, q)p^{\prime},$ $q^{\prime}$ ) $=(p\langle q, p^{\prime}\rangle, q^{\prime})=(p, \langle q, p^{r}\rangle q^{\prime})$ , hence $q(p^{r}, q^{\prime})$

$=\langle q, p^{J}\rangle q^{\prime}$. Therefore we can continue:

$\sum p_{i}\otimes q_{i}=\sum_{i.j}p_{i}\otimes\langle q_{i}, p_{j}^{\prime}\rangle q_{j}^{\prime}=\sum_{i,j}p_{i}\langle q_{i}, p_{j}^{l}\rangle\otimes q_{j}^{\prime}=\sum_{i.j}(p_{i}, q_{i})p_{j}^{\prime}\otimes q_{j}^{\prime}$

$=\sum_{j}(\sum_{i}p_{i}, q_{i})p_{j}^{\prime}\otimes q_{j}^{\prime}=0$ ,

which proves that $\lambda$ is injective.

Finally we consider $\rho:Q\bigotimes_{R}P\rightarrow S:\sum q_{i}\otimes p_{i}-\rangle$
$\sum\langle q_{i}, p_{i}\rangle$ . It is clear that $\rho$ is

a homomorphism of abelian groups. The fact that $\rho$ is a ring homomorphism

and the injectivity of $\rho$ are proven in the same way as was done for $\lambda$ above.

To prove the surjectivity, consider first an idempotent $f\in S$ . Since $Pf$ is a
finitely generated projective left R-module, there are a $P^{\prime}\in R$ Mod, an idem-

potent $e\in R$ , and a natural number $n$ such that $Pf\oplus P^{\prime}\cong(Re)^{n}$ . Denote by

$p_{1},$ $\cdots$ , $p_{n}$ the canonical image of the basis $(e)_{1},$ $\cdots$ , $(e)_{n}$ of $(Re)^{n}$ . Then every

element $p\in Pf$ admits a unique decomposition $p=(r_{1}e)p_{1}+\cdots+(r_{n}e)p_{n}$ . Denote
by $q_{i}$ ($i=1,$ $\cdots$ , n) the mapping which assigns to each $p\in Pf$ the corresponding

element $r_{i}e$ . Clearly, this $q_{i}$ is a homomorphism from $Pf$ to $Re\subseteqq R$ . We

extend $q_{i}$ to the whole of $P$ by putting $(P(1-f))q_{i}=0$ (here $1-f$ makes sense
for $f$ is an endomorphism of ${}_{R}P$ ) and denote this extended mapping also by $q_{i}$ .
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By the definition of $q_{i}$ we have, for every $p\in P$, $(p, q_{i})=(pf, q_{i})$ and $pf=$

$\sum(pf, q_{i})p_{i}$ . Therefore $p\sum\langle q_{i}, p_{i}\rangle=\sum(p, q_{i})p_{i}=pf$ for all $p\in P$, hence $f=$

$\sum\langle q_{i}, p_{i}\rangle$ . Finally, if $s\in S$ and $p\in P$ are arbitrary, then $s=fs$ for an idempotent
$f=\langle q_{i}, p_{i}\rangle\in S$, and then $ps=pfs=p(\sum\langle q_{i}, p_{i}\rangle s)=\sum(p, q_{i})(p_{i}s)=p\sum\langle q_{i}, p_{i}s\rangle,$ $i.e.$ ,

$ s=\sum\langle q_{i}, p_{i}s\rangle$ , and we are done.

The usual definition of a Morita context makes no use of the identities of

the rings, hence it makes sense in our case. Now we have:

THEOREM2.2. Let $R,$ $S,{}_{R}P_{S}$ , $sQ_{R}$ , $(, ):P\times Q\rightarrow R,$ $\langle, \rangle:Q\times P\rightarrow S$ be a
Morita context where $R,$ $S$ are rings with local units and $P,$ $Q$ are unitary

bimodules. Then $P\otimes^{-}:$
$SMod\rightarrow R$ Mod and $Q\mathfrak{H}^{-:RMod\rightarrow S}$ Mod are equiva-

lences inverse to each other if and only if both $(, )$ and $\langle, \rangle$ are surjective.

PROOF. If $P\Re-$ and $Q\mathfrak{H}^{-}$ are inverse equivalences then the surjectivity

of $(, )$ and $\langle, \rangle$ follows from 5) in Theorem 2.1. Conversely, if these mappings

are surjective then they induce surjective bimodule homomorphisms from

$R(P\Phi^{Q})_{R}$ to $R$ and from $s(Q\otimes P)_{S}$ to $S$. Next we see that these homomorphisms

are also injective. Indeed, let $\sum(p_{i}, q_{i})=0$. Since $Q_{R}$ is unitary, there is an
$e\in R$ such that $q_{i}e=q_{i}$ for all $i$, and by the surjectivity of $(, )$ , $e$ can be

written as $\Sigma(p_{J}^{\prime}, q_{j}^{\prime})$ . Now we have $\sum p_{i}\otimes q_{i}=\Sigma p_{i}\otimes q_{1}(\Sigma p_{j}^{\prime}, q_{J}^{\prime})=\sum_{i.j}p_{i}\otimes q_{i}(p_{f}^{\prime}, q_{j}^{\prime})$

$=\sum_{i.j}p_{i}\otimes\langle q_{i}, p_{j}^{\prime}\rangle q_{j}^{\prime}=\sum_{l}p_{i}\langle q_{i}, p_{j}^{\prime}\rangle\otimes q_{J}^{\prime}=\sum_{ij.j}(p_{i}, q_{i})p_{j}^{\prime}\otimes q_{j}^{\prime}=\sum_{j}(\sum_{l}(p_{i}, q_{i}))p_{j}^{\prime}\otimes q_{f}^{\prime}=0$. The

injectivity of $\langle, \rangle$ is proved dually. Now we obtain, for every $M\in R$ Mod and
$N\in S$ Mod, $P\Re^{(Q}\mathfrak{H}^{M)\cong(P}\ovalbox{\tt\small REJECT}^{Q)}\mathfrak{H}^{M\cong R}\mathfrak{H}^{M\cong M}$ and similarly $ Q\otimes(P\otimes^{N)\cong N}\cdot$

REMARK. In Taylor [9] Morita contexts with surjective mappings are
shown to yield Morita equivalence, and vice versa, for central separable algebras

over a commutative ring with identity. However, central separable algebras

need not have local units and the converse implication does not hold either.

COROLLARY 2.3. For any rings $R,$ $S$ with local units, $R$ Mod and $S$ Mod

are equivalent if and only if Mod $R$ and Mod $S$ are equivalent.

Next we proceed to characterize Morita equivalence in a way similar to

the case of rings with identity. Conform to that terminology, call a unitary

bimodule $RM_{s}$ balanced if the canonical homomorphisms $S\rightarrow End_{R}M$ and $R\rightarrow End_{S}M$

are injective and, identifying $R$ and $S$ with the corresponding subrings of

endomorphisms of $M$, it holds $SEnd_{R}M=S$ and $(End_{s}M)R=R$ .

THEOREM 2.4. Let $R,$ $S$ be rings with local units and $G:RMod\rightarrow S$ Mod,

$H:SMod\rightarrow R$ Mod be additive functors. Then $G$ and $H$ are equivalences inverse
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to each other if and only if there exists a unitary bimodule ${}_{R}P_{S}$ such that

1) both ${}_{R}P,$ $P_{S}$ are locally projective generators,

2) ${}_{R}P_{S}$ is balanced,

3) $G\cong SHom_{R}(P,$ $\rightarrow andH\cong P\Phi^{-}\cdot$

Moreover, if $P$ satisfies these conditions then, putting $Q=SHom_{R}(P, R)$ , $sQ_{R}$

is a balanced bimodule, both $sQ$ and $Q_{R}$ are locally projective generators,

$H\cong RHom_{S}(Q$ , - $)$ and $G\cong Q\ovalbox{\tt\small REJECT}-$ .

PROOF. The necessity of the conditions as well as the final assertion

follow from Theorem 2.1. To prove the sufficiency, let $M\in R$ Mod be arbitrary.

Then we have

Cor. 1.8 Prop. 1.3
$HG(M)\cong P\mathfrak{H}^{sH_{0}m_{R}(P},$

$M$ ) $\cong$ $RHom_{R}(RHom_{S}(P, P)R,$ $M$ ) $\cong$

Prop. 1. 1
$\cong RHom_{R}(R, M)$ $\cong$ $M$ .

On the other hand, for any $N\in S$ Mod,

Cor. 1.6 Prop. 1.2
$GH(N)\cong SHom_{R}(P,$

$P\ovalbox{\tt\small REJECT}^{N)}$

$\cong$

$SHom_{R}(P, P)s\mathfrak{H}^{N\cong S}\Phi^{N}$
$\cong$ $N$ .

Following Abrams [1], now we present a concrete way to construct rings

with local units Morita equivalent to a given ring $R$ of this kind.

For a locally projective module $P$, the endomorphisms of each $P_{i}$ extend

to endomorphisms of $P$ when composed by $\psi_{i}$ , and in this way the endo-

morphism rings of the components $P_{i}$ form a direct system of subrings of

$End_{R}P$. Their limit $S=\lim_{\rightarrow}End_{R}P_{i}$ consists exactly of those endomorphisms of
$P$ which factor through one of the projections $\psi_{i}$ . The ring $S$ has local units

because if the endomorphism $s\in S$ factors through $\psi_{i}$ then, choosing a $P_{j}$ which

contains $P_{i}$ and the image of $s$ (notice that the latter is finitely generated

hence such a $P_{j}$ exists), the projection $\psi_{j}$ is a unit to $s$ . Now it is clear that

$P\in ModS$ and $SEnd_{R}P=S$ . If, in addition, ${}_{R}P$ is a generator then by Lemma

1.10 we obtain that $P_{S}$ is also a locally projective generator and ${}_{R}P_{S}$ is

balanced. Then Theorem 2.4 says that the functors $SHom_{R}(P$, - $)$ and $P\otimes^{-}$

are inverse equivalences between $R$ Mod and $S$ Mod. Furthermore, it is also

clear from the above that, for any $M\in R$ Mod, $SHom_{R}(P, M)$ consists exactly

of those R-homomorphisms from $P$ to $M$ which factor through one of the $\psi_{i}$ .
Therefore $SHom_{R}(P, M)$ is, as an abelian group, just the direct limit of the
$Hom_{R}(P_{i}, M)$ . Thus we have:
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THEOREM 2.5 (cf. Abrams [1]). Two rings $R,$ $S$ with local units are Morita
equivalent if and only if $th_{2}re$ exists a locally projective generator ${}_{R}P$ such that,

using the notation above, $S\cong\lim_{\rightarrow}End_{R}P_{i}$ .

REMARK. Let $R$ be an arbitrary ring with local units, and consider the

module ${}_{R}P=_{e^{2}}\bigoplus_{=e\in R}Re$. (Notice that if $e,$ $f$ are idempotents with $Re=Rf$ then this

left ideal appears (at least) twice in the decomposition of $P.$ ) Clearly, ${}_{R}P$ is a
locally projective module. By Theorem 2.5, the ring $S=\lim_{\rightarrow}End_{R}Re$ is Morita
equivalent to $R$. To every idempotent $e\in R$ we can assign the endomorphism
$\theta_{e}$ of $P$ defined to act identically on the direct component $Re$ and as a zero on
all other components. Clearly, the $\theta_{e}$ are orthogonal idempotents in $S$ , and by

the definition of $S$ we have

$S=_{e^{2}}\bigoplus_{=e\in R}\theta_{e}S=_{e^{2}}\bigoplus_{=e\in R}S\theta_{e}$ .

This shows that $S$ is a ring with enough idempotents in the sense of Fuller

[7]. Thus every Morita equivalence class of rings with local units contains
rings with enough idempotents (which are even more special than the rings

considered in Abrams [1]). A theory of Morita duality for rings with enough

idempotents is presented in Yamagata [10].

3. Examples and applications

Of course, all the examples given in Abrams [1] are examples for our
theory, too; we are not going to list them again.

EXAMPLE 1. Every regular ring is a ring with local units (but not neces-
sarily in the sense of Abrams [1]). Indeed, let $a_{1},$ $\cdots,$ $a_{n}$ be arbitrary elements

of a regular ring $R$. Then there is a $g=g^{2}\in R$ such that $a_{i}g=a_{i},$ $i=1,$ $\cdots,$ $n$ ,

further there is an $f=f^{2}\in R$ such that $fa_{i}=a_{i},$ $i=1,$ $\cdots,$ $n$ , and $fg=g$. Putting

$e=:g+f-gf$, it is straightforward to check that $e^{2}=e$ and $a_{i}e=a_{t}=ea_{i}$ ,

$i=1,$ $\cdots,$ $n$ .

PROPOSITION 3.1. If $R$ and $S$ are Morita equivalent rings with local units

and $R$ is regular then $S$ is also regutar.

PROOF. By Theorem 2.5, $S$ is a direct limit of endomorphism rings of

finitely generated projective R-modules. Since $R$ is regular, all these rings are
regular, too, and the same holds for $S$ , being the union of these endomorphism

rings.
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EXAMPLE 2. Let $R$ be a ring with identity, $S$ be a Rees matrix ring over
$R$ with canonical decomposition $s\cong s_{e_{e}}\otimes_{e}^{eS},$

$e^{2}=e\in S,$ $eSe\cong R$ (for the definitions

of the notions occurring in this example, see Anh-M\’arki [4]). If $S$ is finitely

orthogonal with respect to $e$ , then $S$ is obviously a ring with local units. Now
$Se$ is a finitely generated projective left S-module. For any $M\in S$ Mod and
$m\in M$, consider the mapping $\rho_{m}$ : $ Se\rightarrow M;se-\rangle$ $sem$ . These $\rho_{m}\prime s$ together define

a homomorphism from $(Se)^{(M)}$ to $M$ whose image is $SeM=Se(SM)=(SeS)M=$

$SM=M$. This proves that $Se$ is a generator for $S$ Mod. By Theorem 2.5, $S$

is then Morita equivalent to $End_{S}(Se)\cong eSe\cong R$ .
In what follows, a ring $S$ as in Example 2 will be called a finitely orthog-

onal Rees matrix ring.

Next, observe that \S 21 in Anderson-Fuller [2] makes no use of the identity

in the given rings, all the results (and proofs) presented there are valid for

our module categories, too. Thus we have:

PROPOSITION 3.2 (cf. [2], Corollary 21.9). Let $R$ and $S$ be equivalent rings

with local units. Then $R$ is primitive or a ring with zero Jacobson radical if and

only if $S$ is such.

PROPOSITION 3.3 (cf. [2], Proposition 21.11). Equivalent rings with local

units have isomorphic lattices of ideals; in particular, one of them is simple if
and only if so is the other.

We cail also prove the following.

PROPOSITION 3.4. Let $R$ and $S$ be equivalent rings with local units. If both
$R$ and $S$ are commutative then they are isomorphic.

PROOF. Consider the unitary bimodule ${}_{R}P_{S}$ given in Theorem 2.1. Since
$R$ is commutative, for any idempotent $e\in R,$ $R$ is the direct sum of the rings

$eR$ and $(1-e)R$ , and we have $P\cong ReP\oplus_{R}(1-e)P=_{eR}eP\oplus_{(1-e)R}(1-e)P$. Now $S$ ,

being a ring of certain endomorphisms of ${}_{R}P$, also decomposes into a direct

sum $S_{1}\oplus S_{2}$ , and again by Theorem 2.1, $S_{1}$ and $S_{2}$ are equivalent to $eR$ and

$(1-e)R$ , respectively. By the construction of $P,$ $eP$ is finitely generated as an

S-module, hence also as an $S_{1}$-module. Then $eR\cong EndeP_{S_{1}}$ , and since $S_{1}$ is

commutative, we obtain an embedding of $S_{1}$ into $eR$ , but then $eP$ is finitely

generated as an $eR$-module, hence also as an R-module. Herefrom we conclude

that $rP$ is a finitely generated R-module for every $r\in R$ , hence by the com-

mutativity of $R,$ $r$ can be considered as an element of $S$ , and similarly, every

element of $S$ can be considered as an element of $R$ , whence the assertion
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follows.

Contrary to the case of unital rings, it is not true that if $R$ and $S$ are
equivalent rings with local units then their centres must be isomorphic. In

fact, if $R$ is any ring with local units, $N$ is a countably infinite set and $R_{N}^{f}$

denotes the ring of $N\times N$ matrices over $R$ with finitely many non-zero entries,

the $R_{N}^{f}$ is a finitely orthogonal Rees matrix ring over $R$ (see [4]), hence it is

Morita equivalent to $R$ by Example 2, and $R_{N}^{f}$ is centreless. (We thank Dr. G.

Abrams for calling our attention to this simple example.)

Now we characterize rings which are Morita equivalent to rings of certain
‘ nice’ kinds. The first result is essentially Corollary 4.3 in Abrams [1].

PROPOSITION 3.5. A ring $R$ with local units is Morita equivalent to a ring

with identity if and only if there exists an idempotent $e\in R$ with $R=ReR$ . If this

is the case then $R$ is Morita equivalent to $eRe$ .

The proof is the same as that of Corollary 4.3 in [1], therefore it is

omitted here.

$PROPOSlT10N3.6$ . A ring with local units is Morita equivalent to a division

ring if and only if it is a simple ring with minimal one-sided ideals.

PROOF. Let $R$ be a ring with local units which is Morita equivalent to a
division ring $D$. By Proposition 3.5 there is an idempotent $e\in R$ such that $eRe$

and $R$ are Morita equivalent. Given any finite subset $X$ of $R,$ $X\cup\{e\}$ has a
local unit $f$ ; then $X\subseteqq fRf,$ $R\supseteqq RfR\supseteqq RefR=ReR=R$ , so $R=RfR$ , and by Prop-

osition 3.5 $fRf$ is Morita equivalent to $R$, hence also to $D$ . Now $fRf$ , being

a ring with identity Morita equivalent to the division ring $D$, must be iso-

morphic to a full matrix ring over $D$. Theorem 1 in Anh [3] tells us now
that $R$ is a simple ring with minimal one-sided ideals.

Conversely, if $R$ is a simple ring with minimal one-sided ideals then it is

regular, hence a ring with local units. On the other hand, for any primitive

idempotent $e\in R,$ $eRe$ is a division ring and $ReR=R$ . By Proposition 3.5, $R$ is

then Morita equivalent to $eRe$.

REMARK. Notice that, by a result of E. Hotzel (see Corollary 3.5 in [4]),

simple rings with minimal one-sided ideals are just the finitely orthogonal Rees

matrix rings over division rings.

By a primary ring $A$ we mean a ring with identity whose factor $A/J(A)$

by its Jacobson radical is a simple artinian ring such that idempotents can be

lifted. If, moreover, $A/J(A)$ is a division ring then $A$ is said to be a local
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ring. $A$ ring $R$ is said to be a strongly locally matrix ring over a (unital)

ring $S$ if for every finite subset $U\subseteqq R$ there is an idempotent $e\in R$ such that
$U\subseteqq eRe$ and $eRe$ is isomorphic to the matrix ring $S_{n}$ for some $n$ .

PROPOSITION 3.7. A ring $R$ with local units is Morita equivalent to a
primary ring if and only if $R$ is isomorphic to a strongly locally matrix ring

over a local ring. If, in addition, $RR$ and $R_{R}$ are projective modules then $R$ is
isomorphic to a finitely orthogonal Rees matrix ring over a local ring.

PROOF. Let $R$ be Morita equivalent to a primary ring. By Proposition 3.5
there is an idempotent $e\in R$ such that $eRe$ and $R$ are Morita equivalent, hence
$eRe$ is Morita equivalent to a primary ring $S$. Now both $eRe$ and $S$ are rings

with identity, hence $eRe$ isomorphic to $fS_{n}f$ for an idempotent $f$ in a full

matrix ring $S_{n}$ over $S$ . Here $J(fS_{n}f)=fJ(S_{n})f$ , so $fS_{n}f/J(fS_{n}f)=fS_{n}f/fJ(S_{n})f$

$\cong\overline{f}(S_{n}/J(S_{n}))\overline{f}$ where $\overline{f}$ denotes the image of $f$ under the canonical homo-
morphism of $S_{n}$ corresponding to $J(S_{n})$ , the last ring is obviously simple and
artinian, and it is also clear that the idempotents can be lifted. Therefore $eRe$

is itself a primary ring, hence there is an idempotent $g\in eRe$ such that $gRg$ is

a local ring. Now we have $(eRe)g(eRe)=eRe$ and, by $R=ReR$, also $R=ReR=$

$ReReR=ReRegeReR=ReRgReR=RgR$. Hence, by Proposition 3.5, the bimodule
$RRg_{gRg}$ induces Morita equivalence between $R$ and $gRg$ . Furthermore, similarly

to the case treated in Example 2, $Rg\in R$ Mod is a finitely generated projective

generator. Then by Lemma 1.10, $Rg_{gR}$. is a locally projective generator. The

canonical components of $Rg_{gRg}$ are free modules, being finitely generated pro-

jectives over a local ring. Therefore the endomorphism ring of each of them

is a finite matrix ring over $gRg$ , and the assertion follows from Theorem 2.5.–
The converse is obvious by Proposition 3.5.

Suppose now that, in addition, $RR$ and $R_{R}$ are projective. Then in the

proof above, $Rg_{gRg}$ and $gRggR$ are also projective, hence they are free modules,

for $gRg$ is a local ring. Now [4], Theorem 3.1 says that $R=RgR$ is a Rees

matrix ring over $gRg$ , and it is finitely orthogonal for $R$ has local units.

PROPOSITION 3.8. A ring $S$ with local units is Morita equivalent to a two-

sided perfect local ring $R$ if and only if $S$ is an orthogonal Rees matrix ring

over $R$.

PROOF. Suppose that $R$ and $S$ are Morita equivalent. By Theorem 2.1,

there exist locally projective bimodules ${}_{R}P_{S}$ and $sQ_{R}$ such that $S\cong Q\ovalbox{\tt\small REJECT}^{P}$. Since
$R$ is perfect, ${}_{R}P$ and $Q_{R}$ are projective, and since $R$ is local, projectives are
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free. Now the assertion follows from [4], Theorem 3.1. The converse is

obvious by Example 2.
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