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Introduction

We show that the well-known Morita theorems on equivalences of categories
of modules hold true of categories of comodules over a field k. We go parallel
with [H. Bass, Algebraic K-Theory, Chap. II Categories of Modules and their Equi-
valences, W. A. Benjamin, Inc., New York, 1968].

Let Coem.r and Cem, denote the categories of right I'-comodules and left 4-
comodules, where I’ and 4 are k-coalgebras.

If ,Pr is a A-I'-bicomodule, the co-tensor product {}1_‘[ determines a “k-linear”
functor: X4—>X[] Pr from Com._s to Com.r.

Every “k-line/éu"’ equivalence from Com.s onto Comp is of the form ?[] Pr
for some bicomedule ,Pr. .

We must describe the “co-hom” and “co-end” functors.

A right I'-comodule Xr is quasi-finite, if Com_r(F, X), the space of I'-colinear
maps from F to X, is finite dimensional for all finite dimensional comodule Fr.

Let Xr and Yr be right I'-comodules, where X is quasi-finite. There are a k-
vector space h.r{(X,Y) and a I'-colinear map ¢: Y—hr(X, Y) ® X satisfying the
following universal property: If W is a k-vector space and F: Yr—W QR Xr a I'-
colinear map, there is a unigue k-linear map f: h-r(X, Y)—W such that F=(fQI)-4.

The “co-hom” %.r{X,Y) is a contra-variant functor of Xr and a covariant
functor of Yr.

The “co-end” e.r(X)=h_r(X, X) has the following coalgebra structure: There
are unique linear maps 4:er(X)—er(X)Qer(X) and 7:er(X)—k such that
(AR 0={IR0)8: X>er(X)Qer(X)®X and (p®I)e6=I: X~k X=X. Then
er(X), 4,7) is a k-coalgebra and X is an ep(X)-I'-bicomodule, where 6: X—
e (X)QX is the left e_r(X)-comodule structure map.

By symmetry, for left A-comodules ,X and ,Y, where ,X is quasi-finite, the
“co-hom” h.(X,Y) with the canonical A-eolinear map 6: Y—=X®h, (X, Y) exists.
The “co-end” ¢4 (X)=h, (X, X) has a unique k-coalgebra structure making 0: X—
X®ea (X) into a right comodule structure map.
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The co-hom and co-end have many properties similar to the usual hom and end.
In particular, if ,X; is a A-I"-bicomodule and Y, a &I'-bicomodule, where 5 is
a k-coalgebra and X is quasi-finite, then h.(X, Y) has a natural 5 4-bicomodule

structure.

THEOREM. Let ,Pr be a A-I'-bicomodule.

a) The following are equivalent.

{i) The functor 1] Pr: Com_s—Com.r is an equivalence.

(ii) The functor AZ;I [1?: Comp—Cemy,_ is an equivalence.

(iil) The right comodgde Pr i3 a quasi-finite injective cogenerator and there
1s a canonical isomorphism of k-coalgebras e.p(P)=A.

{iv) The left comodule 4P is a quasi-finite injective cogenerator and there is
a canonical isomorphism of k-coalgebras e, (P)=I".

b) Suppose the above equivalent conditions hold. The I'-A-bicomodules Q=
b-r{aPr, rI'r) and Q' =h (4 Pr, 144) are canonically isomorphic. The functor 7 1Qy
(resp. FQI;] ?) s a quasi-inverse of ? !;}P[‘ (resp. AP];] 7). g

The bicomodules ,Pr satisfying the conditions of a) ean be called “invertible”.
Construction of the “inverse” bicomodule Q, is given in b). Two coalgebras 4 and
I may be called “Morita equivalent” if there is an invertible bicomodule ,Pr.

The ahove theorem implies that, if X, is a quasi-finite injective cogener-
ator right I"-comodule, then the bicomodule ,,_F<X>Xp is invertible with inverse
hop(X, F):he_r @-(X, e-r(X)) and there is a canonical isomorphism of %-coalgebras
ee_rm-(X):]’.

Similar results are valid with quasi-finite injective cogenerator left 4-comodules.

The categories of comodules can be characterized as follow:

THEOREM. Let A be a k-abelian category. A is k-linearly equivalent to Com.p
Jor some k-coalgebra I' if and only if A is locally finite in the semse of [2, p. 356]
and the space A(M,N) is finite dimensional over k for each objects M and N of
Jfinite length of A.

§0. Conventions

k is a fixed ground field.

All vector spaces and linear maps are k-vector spaces and k-linear maps.
Unadorned @ and Hom mean &, and Hom,.

If V is a vector space, V*=Hom(V, k).
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Med denotes the category of vector spaces.

A coalgebre is a triple (C, 4,7) where C is a vector space, 4: C—-CQC and »:
C—%k are linear maps such that (IQ4)e4=(4QI)c4: C-CRCRC and (pRI)ed=1I=
{IQn)od: C—kRC=C=CRk.

Throughout the paper 4, I', ® and 5 are coalgebras.

A vight I'-comodule is a pair (X, p) where X is a vector space and p: X—>XRI
a linear map such that (IQdep=(pRI)ep: X>XQI' QI and (IQpep=I X—
XREk=X.

A comodule is finite dimensional if it is as a vector space. Every comodule is
the union of finite dimensional subcomodules.

A TI-colinear map f: X—Y of right I'-comodules is a linear map such that
pyof=(fQI)opy where py and py denote the structure maps of X and Y.

Com.; denotes the category of right I-comodules and [-colinear maps. This
is abelian, and has direct sums and direct products. (See Note.) The forgetful functor
Com.p—Mod is exact and preserves direct sums.

If WeMod and X Com.p, WRX has the right I'-comodule structure I&px,
where px: X—XQI' denotes the structure map of X. We then have canonically

Com.r{WRX, Y)=Hom (W, Com (X, Y))

for all YeCom.r.

Here and later A(X, Y) denctes the A-morphisms from X to Y, where A is
a category and X and Y are objects in A.

I" is a right I"-comodule with structure map 4: I'—-I'QI. We have canonically
Com.p(X, WRI')=Hom (X, W) for all XeCom, and We Mod. Hence WQI' is
injective in Cem.r. In particular I’ is an injective cogenerator of Com.r.

By symmetry left A-comodules and 4-colinear maps are defined. Comy- denotes
the category of left A-comodules. For X¢ Comy- and WeMed, XQW has the
canonical left A-comodule structure.

A A-T-bicomodule is a left A-comodule and a right I'-comodule P such that
the A-comodule structure map p4: P~>ARP is I'-colinear or equivalently that the
T-comodule structure map pr: P>PQI" is A-colinear.

I" is a I'-I'-bicomodule, where 4: '->I'®QI" is the left and right I'-comodule
structure map.

In the following we write X, ,Y and ,Z; to denote that X is a right I'-
comodule, Y a left 4-comodule, and Z a A-I'-bicomodule.
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For comodules X and Y, the co-temsor product X {Fj Y is the kernel of

0xQL IQpy: XQY —3 XQI'QY

where py and py denote the structure maps of X and Y.
The functors X D ? and ? [I Y are left exact and preserve direct sums. Ir
particular X[l (Y®W) (XD Y)®W and (WRX) [I Y= W®(X[! Y) for We Mod.
‘When AX rand Y, are blcomodule the structure maps p: X—>A®X and pg: Y—
Y®®6 induce the structure maps p,[11: X [] Y- (4R X) [} Y=4QX [] Y) and
I pe: X[] Y—>X[] (YRO=(X1YIK6 Wlth which X[ Y is a 4-6- blcomodule
The co- tensor product is assoi:iative: For comodules ;nd bicomodules X, Y,
and ,Z, we have

in X®Y®Z. This subspace is denoted by X [Fl YI%I Z.

For comodules X, and Y, the structure maps px and py induce I'-colinear
isomorphisms X=X [] Fand Y=r [] Y. In particular we have XQW=X D (F'QRW)
and WRY=(WQI) D Y for We Mod

Let A be an abehan category and Ix: A—A the identity. The natural trans-
formations End(I) from Ix to Ix form a commutative ring.

A E-abelian category is a pair (A, o) where A is an abelian category and ¢: k—
End(la) a ring homomorphism preserving unit. Giving ¢ is equivalent to making
A(X, Y) into vector spaces for all X, Ye A so that the composition maps A(Y, Z) X
A(X, Y)>A(X, Z) are bilinear.

Com.; and Comy,. are k-abelian categories.

When A and B are k-abelian categories, a functor T: A—B is linear if T:
A(X, Y)-B(T(X), T(Y)) are linear for all X, YecA.

Let S: B—A and T: A—B be functors, where A and B are categories. If
A(S(X), Y)=B(X, T(Y)) naturally for Xc¢B and Ye A, S is left adjornt to Tor T
is right adjoint to S. In this case we write S T.

The left adjoint of 7" and the right adjoint of S are uniquely determined if
they exist.

If A and B are k-abelian and one of S and 7T, where ST, is linear, so is the
other. The natural isomorphisms A(S(X), Y)=B(X, T(Y)) then are linear isomor-
phisms. S is right exact and 7 is left exact. In fact S preserves colimts.
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If S4T, where S is exact, then T preserves injectives. Indeed if U€ A is in-
jective, then B(X, T(U))=A(S(X), U) is an exact functor of XeB.

§1. The “co-hom’’ functor hp(-, -)

1.1 DEFINITION. A comodule X, is quasi-finite, if Com.p(F,X) is finite
dimensional for all finite dimensional comodule Fr.

1.2 EXAMPLE. A comodule Xy is finitely cogemerated, if it is isomorphic to
a subcomodule of WQI for some finite dimensional vector space W. Finitely co-
generated comodules are quasi-finite.

1.3 PROPOSITION. For a comodule X, the following are equivalent.
(1) Xr is quasi-finite.
(i) The functor Mod—Com_r, W—>W®RX has the left adjoint.

PROOF. Assume fi). If Fy is a finite dimensional comodule, Com p(F, WRX)=
WRCom_p(F, X)~Hom (Com.(F, X)*, W) for WeMed. When Y is an arbitrary
comodule, let {Y3} be the finite dimensional subcomodules of Y. Then

Cem (Y, WRX)=lim Com_p(Y;, WRX)= 1<i_r£1 Hom (Com_r(Y;, X)*, W)
<~
2 A
=Homlim Com-r(Y;, X)* W).
—
i

Hence (i) holds.

Conversely if Wi>W®X has the left adjoint, then for each finite dimensional
comodule Fr, the functor Wi—Com_p{F, WRX)=WRCom-r(F, X), Mod->Moad pre-
serves direct products. Since a vector space V is finite dimensional if and only if
the functor W>W®V preserves direct products, it follows that Xr is quasi-finite.

1.4 DEFINITION. For a quasi-finite comodule Xr, the left adjoint of Wi-WRX
is written as Yr—h.r(X, Y), Com.,—Mocd. We have canonical isomorphisms
Com. (Y, WRX)=Hom((h-r(X, Y), W).

Let 6: Y—h.p(X, Y)QX denote the I'-colinear map associated with the identity of
h.p(X,Y). For any We Mod and any I'-colinear map f: Y->WRX, there is a unique
linear map u: hp(X, Y)W such that f=u®I)-0.

1.5 Let u: X;—Xr and v: Yp—Y} be I'-colinear maps of right I-comodules,
where X, and X are quasi-finite. The composite Y —— Y SLEN hr( X, YIQX
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2 hr(X, Y)QX is of the form

boplu, QI

Y - herlX, V)QX hr(X, Y)QX

with a uniquely determined linear map h.r(u, v). In this way h-r(X, Y) is a “bilinear”
functor, covariant in Y and contra-variant in Xr.

1.6 For a quasi-finite Xy, the functor h.p(X,?) is right exact and preserves
direct sums, since it has the right adjoint. In particular there is the canonical
isomorphism W®h_r(X, Y)=h_p(X, WRY) for all WeMod and Ye¢ Com . Or
equivalently the colinear map

IRE: WRY — WRhr(X, VRX
satisfles the universal mapping property of (1.4).

1.7 For a quasi-finite comodule X, and a bicomodule ,Yr, the structure map
p4: Y>ARY induces the structure map h.r(l, p4): br(X, V)b (X, AR Y )= AR
h-r(X,Y) with which h (X, Y) is a left A-comodule. The canonical map 8: Y
hriX, Y)QX is then A-I'-bicolinear.

1.8 Let s Xr be a bicomodule, where X is quasi-finite. For each comodule Yr,

®
the composite vy, hrlX, YIQX —:5» hr(X, YIRQERX, where pg; denotes the
F-comodule structure of X, is of the form

Y= hr(X, VIQX 25 hr(X, VIQIQX
with a uniquely determined linear map p: hp(X, Y)—h (X, Y)RE With the

structure map p, k-r(X, Y) is a right Z-comodule. The image of @ is contained in
h-r( X, Y)OX.
5

1.9 If zXr and ,Yr are bicomodules, where X is quasi-finite, then k.r(X, Y)
is a A-5-bicomodule and the map 6: Y—h (X, Y) ] X is A4-I'-bicolinear.
g

1.10 PROPOSITION. For a bicomodule zXr, the following are equivalent.
(1) Xr is quasi-finite.

{ii} The functor Comg—Com., Zg—>Z g} Xr has the left adjoint.

In this case the left adjoint of Zg—Z g] Xr is given by Yr—h.p(X, V).

PROOF. Suppose (i}. Then h-r(X, Y) is a right 5-comedule for all comodule Y;.
We claim that the map 6: Y—h (X, Y) g] X satisfies the following universal map-
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ping property: For each comodule Zg and each I'-colinear map f: Y—Z [gj X, there
is a unique S-colinear map u: h-p(X, Y)—Z such that f=(u[]I)-0. Indeed there
is a unique linear map w: h-r(X, Y)—Z such that f=u®I)-0: Y-»ZQX. The com-
posites qs: hop(X, ¥) —> hplX, VIQF -2 205 and g hrlX, ¥) ——> Z—o
ZR & coincide, since (¢ QI)ob8={IQpx)of=(0,R1)ef=(q:RI)0: Y>ZRQERX, where
0, px and p; denote the F-comodule structure maps of k-r(X, Y), X and Z respec-
tively. Hence the map % is S-colinear. Thus (i) implies (ii}.

Suppose (ii). Since the functor Wi»W®ZE, Med—Com.z has the left adjoint
by (1.2) and (1.8), so has the composite, Med—Com.;, W—{WQZ)[]X = WRX.
Hence Xr is quasi-finite by (1.3). y

1.11 REMARK. Let zXr, 4Yr and ,Zz be bicomodules, where Xr is quasi-finite.
If f:Y-Z [5] X is a A-T'-bicolinear map, then it is easy to check that the associated

map u: h.r(X, Y)—Z is A-B-bicolinear.

1.12 If the quasi-finite comodule X, is injective, then the functor h-r(X, ?) is
exact. Indeed the functor Yr—hp(X, Y)*=Com. (Y, X) is exact.

1.13 For comodules and bicomodules Xp, Z, and ,Yr, where Xr is quasi-finite,
the canonical map
9: h-p(X, Zl;l Y)— Z[; hr(X,Y)

is & unique map such that the composite

0] Y — hp(X, 20 QX 2 Z200hr(X, V)X
equals T4, where note that 6: Y—h.p(X, Y)®X is left A-colinear.

1.14 PROPOSITION. The map 0 is an isomorphism if either
a) Z, 1s injective, or
b) X is (quasi-finite and) injective.

PROOF. By definition 8: h-p(X, A1 Y)—>A[1h-r(X, Y) is an isomorphism. Con-
sider both hand sides of 8: h-p(X, ZDA Y)~>Z Eldh_p(X, Y) as functors of Z,. Since
they commute with direct sums, it /flollows thAat 9 is an isomorphism if Z, is in-
jective. If X is injective, then they are left exact by {1.12). Since each comodule
Z,4 can be imbedded into an exact sequence of the form 0> Z->W,RQA->W,RA4 for
some W,;¢Mod, 3 is then isomorphic.
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1.15 If zXr,¢Z, and ,Y; are bicomodules, where Xr is quasi-finite, then the
map 2:h (X, Z l;j Y)=»Z[h (X, Y) is ©-Fbicolinear. The proof is similar to
4
(1.10).

1.16 By definition the @ map satisfies the following associativity: If Xp, W,
eZs and , Y are comodules and bicomodules, where X, is quasi-finite, then the
following diagram commutes:

103

Wl;__l hr(X, Z[;l Y) — WQ Zgh-[‘(X, Y)

I [
hr{X, W[al (Z{;l Y) = hrlX (W]“T;] Z) [Aj Y).

1.17 Assume X, is a quasifinite comodule. Put e (X)=h (X, X). Let 4:
e-r(X)—er(X)Qer(X) and 7: e.r(X)—k be the linear maps such that (4QI)-6=
(IR0)o0: X—er(X)Qe.r(X)@X and I=@RI)o0: X—>X=kRX. Then (e.r(X), 4, 7)
is a coalgebra and X an e.p(X)-I"-bicomodule, where 4: X—e p(X)®X is the left
e-r(X)-comodule structure map.

The coalgebra e.p(X) is the coalgebra of “co-endomorphisms” of X.

1.18 If 5X; is a bicomodule, where X is quasi-finite, then the structure map
ozt X—>EFQX corresponds to a linear map ¢: ¢-p(X)—& by pz=(c®I)6. Then ¢ is
a coalgebra map.

Conversely a coalgebra map ¢: e.r(X)—5 makes Xr into a bicomodule 5X.

The coalgebra e.p(X) is a Z-5-bicomodule through ¢. This structure coincides
with e r(X)=h.r(sXr, X1}

1.19 By symmetry, if 3X is a quasi-finite comodule, the functor Wi=XQW,
Med—Comgz- has the left adjoint hs-(X, ?) with adjunction : Y-»X®Qkhs(X, Y) for
each comodule ;Y.

¢s-{X)=hz(X, X) has a unique coalgebra structure making X into a Fes.(X)-
bicomodule through 6: X—»X®egz.(X).

§2. Pre-equivalence data

2.1 PROPOSITION. Let T: Com.,—~Com.r be a “linear” functor. If T is left
exact and preserves direct sums, there is a bicomodule ,Pr such that TZ)=Z I;l P
as a functor of Z€ Com.y.



Morita theorems for categories of comodules 637

PROOF. Since T preserves direct sums, WRT(Z)=T(WRZ) for all Wec Mod
and Ze Com_,. If we put P=T(4), the exact sequence

o®1I
7 ZQ4 —3 ZR4R4,
®4
where p is the structure map, induces the exact sequence

).
7(7) 29 ZQP— > ZRAQP

IRTH

for all comodule Z,, since 7T is left exact.

This means that P is a 4-I-bicomodule, where T(4): P—>ARP is the left 4-
comodule structure map. For each comodule Z,, T(0) induces a natural isomorphism
T(Z\=Z [;] P.

2.2 LEMMA. Let 4Pr and Ry be bicomodules and let T=?[ 1P and U=?1R
A A
be the associated functors: Com ,—~Cem_. Let a: T-U be a natural transforma-
tion. There is a unique bicolinear map f: P—R such that «a=1{1f.

PROOF. Put f=a(d): P=TA—-U(A=Q. Then for each WeMed, IRQS=
a(WRA): WRQP=T(WRQA—-U(WRA)=WREQ. Since 4: A—ARQA is right 4-colinear,
the following diagram commutes:

T = P —— @ = UW
T(A)l lp}’ po lU(A)
T(AQA) = ARP —2> ARQ=U(AR )

where pp and pp denote the A-comodule structure maps of P and Q. Hence f is
bicolinear. If Z, is a comodule, a(Z)=I[]f, since a{ZQA=I1f and Z is a sub-
comodule of ZRA.

2.3 DEFINITION. A set of pre-equivalence data (A, I", 4Pr, r@a, f, g) consists of
coalgebras A and I', bicomodules ,Pr and r@Q,, and bicolinear maps f: 4—~P[]Q and
r
g: '-Q ] P making the following diagrams commute:
A

P ~ P[I—_:]F Q ~ Q[;]A

U J’IDQ § lmf

AP poeor roeheorOg.
4 r A r il r



638 Mitsuhiro TAREUCHI
If f and g are isomorphisms, (P,Q,f,g) is a set of equivalence data.

2.4 REMARK. Let S=?[]Q:Com_—Com_, and T=?[]P: Cem_,—~Com., be
the linear functors determinefi by @ and P. The bicolinearAmaps J and g can be
identified with the natural transformations f: I-ST and g: I-TS by (2.2). The
diagrams of (2.3) commute if and only if Tf=gT: T—TST and fS=Sg: S—S78S.

Hence if f is an isomorphism, then the pair {f!: ST—I g: I->TS) gives an
adjoint relation S—T.

If f and g are isomorphisms, then S and T are equivalence.

2.5 THEOREM. Let (4, T,P, Q. 1, 9) be a set of pre-equivalence data. Assume
S AP Q is injective.
(1) Ff 18 an tsomorphism.
) The comodules Pr and rQ are quasi-finite ingective.
) The comodules ,P and Q4 are cogenerators.
) g induces bicomodule isomorphisms

hp(P,T)=Q and hr(Q,I')=P.
(5) The bicomodule structures ,Pr and rQ, induce coalgebra isomorphisms

er(P)=A and er(Q)=A.

Proor. (1) Put AVA———PI;] Q. View 4 as a sub-bicomodule of V via f. The
diagram

14 = V4

U

A[;VC»V V

RN

commutes, since I[;]I[AJf=I[;|ggI=fl;!I§]I: P[_;]Q——»P{;IQEIP;[Q. But in
VI;] V we have A[;] Vn Vl;l /1=/H;]A. Hence A=V.

(2) Since f is an isomorphism, S=? g QAT="? l;} P. Hence P is quasi-finite
by (1.10). Since S is exact, T preserves injectives. Hence Pr=T(A,) is injective.
By symmetry Q@ is quasi-finite injective.

(3) Since A:P;}QCP@Q, +P and @, are cogenerators.

(4) Since S and the functor Yr—h-r(P, Y) are the left adjoints of 7' (1.10),
there is a canonical isomorphism of functors b (P, Y)= Yl;] Q,vYc Com.y. Hence
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hr(P, I’):Z’l;IQ=Q. This equals the bicolinear map (1.11) induced by g. By
symmetry ¢ induces a bicomodule isomorphism hr-(@, I')=P.
(5) The composite isomorphism

er(P)=h.r(P, P) ﬁpg hr(P, 1)=PT] Q=4

equals the coalgebra map e.r(P)—A4 determined by the bicomodule structure 4Pr.
By symmetry the bicomodule @, induces a coalgebra isomorphism er- (@) =A.

§3. Constructing an equivalence from a comodule.

Let Pr be a quasi-finite comodule and A=er(P). View ,Pr asa bicomodule.
e
Let Q =h,P, T, g=0:I'-Q[]P and f:A=hr(P, P)=hr(P, Pl;] ry—r
A
Pg h-r(P, F):Pg Q.

3.1 PROPOSITION. (P,Q,f,q) is a set of pre-equivalence data.

ProoOF. f and ¢ are hicolinear by (L.9) and (1.15). The equality fOI=
Ig: P»P g Q1P follows from the defining relation of & (1.13) and the equality
A
IT)f=¢I: @@ I%I P[]Q from the associativity of & (1.16).
r

3.2 PROPOSITION. [ is imjective if and only if Pr is imjective.
PRroOF. The “if” part follows from (1.14) and the “only if” part from 2.5).
8.3 PROPOSITION. g is imgective if and only if Pr is a cogeneraior.

PRCOF. 'The “only if” part follows from (2.5). The funetor WisWRP, Mod—
Com., preserves direct products, since it has the left adjoint. Hence, if Pris a
cogenerator, there is an injective right [ -colinear map 1: '-WQXP for some
WeMod. Since there is a linear map ¢: Q=h_p(P, I")—W such that i=(IQt)°g, g is
injective.

3.4 COROLLARY. (P,Q,f,g) is o set of a equivalence data if and only if Pr
18 a {(quasi-finite) injective cogenerator.

3.5 THEOREM. Let ,Pr be a bicomodule.

a) The following are equivalent.

(i) The functor Com_4—~Cem.r, Z,—Z[ P is an equivalence.

(ii) The functor Cemp.—Comy-, pr—aP[/]l Y is an eguivalence.

(iii) The comodule Pr is a quasi-finite in?'eciive cogeneraior and ep(P)=A4 as
coalgebras.
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(iv) The comodule 4P is a quasi-finite injective cogenerator and e, (P)=I" as
coalgebras.

(v) There is a set of equivalence data (4, T, P,Q, 7, g).

(vi) There is a set of equivalence data (I, 4,Q’, P, f', g').

b)  When the above equivalent conditions hold, there is a canonical bicomodule
isomorphism h.p(P,I')=h, (P, A). Let ;Q, denote this bicomodule. Then 7@
{resp. Qg] ?7) is a quasi-inverse of the functor of (i) (resp. (ii)). !

Proor. This follows immediately from (2.1), (2.2), (2.5), and (8.4).

3.6 COROLLARY. If Pr is a quasi-finite injective cogenerator comodule, there
are ¢ I'-e-p(P)-bicomodule tsomorphism h_r(P, F):he;F(P)_(P, e_r(P) and a coalgebra
isomorphism e, -(P)=I". They are canonical.

§4. Lceally finite ab:lian categories

4.1 DEFINITION [2,p.856]. An abelian category A is locally finite, if 1) A has
direct sums, ii) for each directed family {P,} of subobjects of an object Pc A the
canonical map: hmP —P induces an isomorphism: hm P,=~U,P,, and iii) there is
a set of generators {M;} of A where each M, is of ﬁmte length.

The conditions i) and ii) mean that A has exact directed colimits [2, p. 337, Prop.
6]. The subobjects of an object of A form a ‘set’ by iii).

The category Com.; is locally finite, since it is generated by finite dimensional
comodules. (Note that the isomorphism classes of finite dimensional I'-comodules
clearly form a set).

42 Let A be a locally finite abelian category. A has ngective hulls (2, p. 362,
Th.2]. The direct sum of a set of injective objects is injective [2, p. 387, Prop. 6].
Bach object M€ A is clearly an essential extension [2, p. 358] of its socle s(M) (=the
sum of all simple subobjects of M). Hence an injective object I of A is indecom-
posable if and only if the socle s(I) is simple by [2, p. 361, Prop. 11].

Let {Sojoeo be a complete set of representatives of isomorphism classes of simple
objects of A. (The set 2 exists by condition iii) of (4.1)). Let I, be the injective
hull of S,. Then the L, € 2, are injective indecomposable non isomorphic with
each other, since s(L)=S,. If I is an indecomposable injective object of A, then
s{}=8, for some we L. Since I is the injective hull of s(I), I~I,. Thus {Llwco
is a complete set of representatives of isomorphism classes of indecomposable in-
jective objects of A.
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TFor each object Mc A and a cardinal number a let M denote the direct sum
of a isomorphic copies of M.

Then by [2, p. 388, Th. 21, each injective object I of A is isomorphic to the direct
sum Poecold with a uniquely determined set of cadinal numbers {G}ocg.

The direct sum I=Poe o[ is an injective cogenerator of A if and only if
a.>0 for all we Q. Indeed I is an injective cogenerator if and only if A(S,, I)#0
for all we Q. Since s{I)=P.coST?, the assertion follows.

4.8 PROPOSITION. Let A be a locally finite k-abelian category. The following
are equivalent.

a) If M and N are objects of finite length of A, then the vector space A(M, N)
is finite dimensional over k.

b) For each simple object S of A, the endomorphism algebra A(S, S) is finite
dimenstonal over k.

PrOOF. Let M and N be objects of finite length of A. Let S be a simple
subobject of M. Then the sequence 0—A(M/S, N)=AMM, N)—A(S, N) is exact.
Since condition b) means that A(S, N) is finite dimensional over k, it follows by
induction on length of M that A(M, N) is finite dimensional.

4.4 DEFINITION. A k-abelian category A is of fintte type if A is locally finite
{as an abelian category) and the equivalent conditions of (4.3) are satisfied.

The category Com.r is of finite type, since Cem._p(M, N) is finite by dimensional,
if M and N are finite dimensional comodules.

4.5 PROPOSITION. Let A be a finite type k-abelian category and F an object
of A. The following are equivalent.

a) For each object M of finite length of A, the space A(M, F) is finite dimen-
stonal over k.

b) For each stmple object S of A, the space A(S, F) is finite dimensional
over k.

¢) The socle s{F) 1s isomorphic t0 PocoS,» where {Sueeco is a complete set of
representatives of isomorphism classes of simple objects and no are finite cardinal
numbers.

ProOOF. The equivalence 2)&b) is proved by induction on length of M. The
equivalence b)&e) is obvious.

4.6 DEFINITION. An object F of a finite type k-abelian category A is quasi-
finite if the equivalent conditions of (4.5) are satisfied.
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With the same notations as in (4.2), the injective object I=@PocolS is quasi-
finite if and only if each cardinal number a, is finite, since s(I)=PoeoSE®. In
particular A always has a quasi-finite injective cogemerator. {Take a,=1 for all
w€ Q).

§5. Characterization of categories of comodules.

5.1 THEOREM. Let A be a k-abelian category. A is k-linearly equivalent to
Com. for some coalgebra I' if and only if A is of finite type.

PROOF. We have only to prove the ‘if’ part. Let A be a finite type k-abelian
category. A has a quasi-finite injective cogenerator U (4.6).

5.2 Since A has direct sums, for each W< Med and X € A, there is an object
WRXRXe A such that

AWRX, Y)=Hom(W,A(X, Y))

naturally for all Ye A.

If Zis an object of finite length of A, then A(Z WRX)=W®A(Z, X), since
the image f(Z), where fc A(Z, WRX), must be contained in W/QX for some finite
dimensional subspace W’ of W.

In particular, since A(Z, U) is finite dimensional, A(Z, WRQU)=Hom(A(Z, U)*, W).

5.3 LEMMA. For each object X € A, there is a wvector space h(X) such that
Hom(h(X), W)=A(X, WRU) naturally for all WeMod.

Proor. When X is of finite length, we have only to put A(X)=A(X, U)*. In
general let {X;} be the subobjects of finite length of X. Since X=li_n)1 X,, it is
enough to put A(X)=lim kh(X,). 4

—
A

5.4 Let ay: X—h(X)QU denote the A-morphism corresponding to the identity
of B(X). For each A-morphism f: X—>WQU, where Wc Med, there is a unique
linear map ¢: A(X)->W with f={g®I)eay. If u: X—-X' is an A-map, there is
a unique linear map k{u): h{(X)—h(X’) such that ()R} cay=axou: X—h{XQU.
The functor 2: A—>Mod, X—h(X) is the left adjoint of W>WXU, Mod—A. Hence
h is linear and preserves direct sums.

In particular for each X ¢ A and We Mad, the map IQax: WRX—-WRh(X)QU
indueces an isomorphism

RWRX)=WRh(X).
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5.5 LEMMA. The functor h is exact.
PrOOF. Indeed X—h(X)*=A(X,U) is exact, since U is injective.

5.6 Put I'=h(U). Let 4: '>I"QTI and »: 'k be the unique linear maps
such that IQay)eay={4RI)eay: U-I'QI QU and I=(nR@I)eay: U-kQU=U.
Then (I", 4,7) is a coalgebra.

5.7 For each object X€ A, let p: h(X)—>I'Qh(X) be the unique linear map
such that (IQay)cax=(pQI)cax: X—h(X)QRI'RU. ’

Then (h(X),p) is a right I'-comodule. If u: X—X’ is an A-morphism, then
hiw): (B(X)—~h(X’) is I"-colinear. :

5.8 The functor h: A—Com.r is linear exaect, and commutes with colimits.
5.9 LEMMA. For each X€ A, the map ax: X—hX)QU is a monomorphism.
ProOF. Let X’ be a subobject of finite length of X éontained in Ker(ay).
Then ax =0, since h(X’)ch(X). This means that h(X")=A(X’, U)*=0. Hence X'=0.
5.10 LEMMA. The functor -h: A—~Com.r is fully faithful.
Proor. Let X and Yc A. Consider the natural map
AX,Y) — Com.p(h{X), R(Y))

induced by k. Both hand sides are left exact as functors of Y. Since there is an
exact sequence of the form 0— Y- W.QU—-W,RU, where W, Mod, by (.9), it is
enough to consider the case Y=WQU in order to say that the above map is an
isomorphism.

But then

:COIII-p(h(X), h(W@U))’

where the composite coincides with the above map. Hence h is fully faithful.

511 We claim that h: A—>Com.; is an equivalence. This completes the proof
of (5.1). Let Zr be an arbitrary comodule. There is an exact sequence 0— Z—
W.QI —%> W,QI' of I'-comodules, where W,cMod. Since W.QIr =h{W;QU),
there is a unique A-morphism %: W, QU—W.QU such that uw=nh(#), since h is
fully faithful. If X=Ker(#), then h(X)=Z, since k is exact. Therefore h is an

equivalence.
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Note: An object X of a category A which has direct products is a cogenerator if each
Yc A is embeddable into the direct product of a set of isomorphic copies of X.

If I is a coalgebra, I'* is an algebra, and each right I'-comodule is a left ™-module.
Each left I™-module M contains a unique maximal righte sub-I-comodule M7. If (M) ez
is a family of right I'-comodules, (aleIzM“)f gives the direct product in Com.r. This contains

@ M, as a subcomodule. Hence a comodule Pr is a cogenerator of Com.r if I'rCc WQPr
acl

for some WEMeod. The converse is true if Pr is quasi-finite (3.3).

After this paper was completed, it came to the author’s attention that similar subjects
were treated by Bertrand I-peng Lin, Morita’s Theorem for Coalgebras, Communications in
Algebra, vol. 1(1974), 811-344. The results of the present paper are not contained in his work,
He considers only strong equivalences between categories of comodules. It seems that he
does not use the co-tensor product nor the co-hom functor. The characterization of the
categories of comodules is not given in his paper. The author thanks Professor E. Taft for
informing him of the Lin’s paper.
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