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Abstract

In this paper we deal with Morozov’s discrepancy principle as an a-posteriori pa-
rameter choice rule for Tikhonov regularization with general convex penalty terms Ψ
for non-linear inverse problems. It is shown that a regularization parameter α fulfilling
the discprepancy principle exists, whenever the operator F satisfies some basic con-
ditions, and that for suitable penalty terms the regularized solutions converge to the
true solution in the topology induced by Ψ. It is illustrated that for this parameter
choice rule it holds α→ 0, δq/α→ 0 as the noise level δ goes to 0. Finally, we establish
convergence rates with respect to the generalized Bregman distance and a numerical
example is presented.

1 Introduction

We will be concerned with the computation of approximate solutions x of an ill-posed prob-
lem of the form

F (x) = y, (1)

where F : X → Y is a (non-linear) operator between reflexive Banach spaces X,Y . Addi-
tionally we assume that only noisy data yδ with

‖yδ − y‖ ≤ δ,

is available. The mathematical formulation of a large variety of technical and physical
problems – such as, for example, medical imaging and inverse scattering – result in in-
verse problems that are of this type, where the noise in the data usually appeares due to
inaccuracies in the measurement process.
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Since we are dealing with ill-posed problems, some form of regularization technique is
needed to stabilize the inversion of F , see [5] for more details. One way to achieved this is
by minimizing a Tikhonov-type functional

Jα,q(x) = ‖F (x)− yδ‖q + αΨ(x), (2)

with α > 0 and q > 0.
In this paper we will – for the most part – make only very general assumptions regard-

ing the penalty term Ψ, which will allow for a wide range of possible choices to be made
according to specific properties required of the solution, such as, e.g., sparsity promoting
functionals (usually weighted `p norms on the coefficients with respect to some orthonor-
mal basis or frame), functionals related to the total variation for suitable spaces, but also
classical Tikhonov regularization, where Ψ(x) is the square of the Banach space norm.

For the quality of the reconstructed solution obtained by minimizing Tikhonov-type
functionals as in (2), the choice of the regularization parameter α is crucial. Various results
regarding the convergence – and also the rate of convergence – of regularized solutions to a
true solution using general penalty terms in Banach spaces for linear operators can be found
in [3, 15]. For the case of a nonlinear operator see [16], for Hilbert spaces see [7], and for
sparsity promoting penalty terms see [12, 14]. In these papers the parameter is generally
assumed to be chosen according to an a priori choice rule, which means that the choice only
depends on the noise level δ and not on the actually available data yδ. Moreover, in many
cases convergence rates are proven under the additional assumption that the choice of the
parameter involves knowledge of certain properties of the searched-for solution x†, such as
its smoothness. In most practical applications such knowledge will not be at hand.

An example of an a posteriori parameter choice rule, i.e. a rule to determine α which
incorporates the data, is known as Morozov’s discrepancy principle. Here we are interested
in choosing α = α(δ, yδ) such that for constants 1 < τ1 ≤ τ2,

τ1δ ≤ ‖F (xδ
α)− yδ‖ ≤ τ2δ

holds, where xδ
α denotes a regularized solution obtained by minimizing (2). This strategy

has been studied extensively as an option to be used in the classical Tikhonov setting
[5, 11, 13, 17], but not until recently has its application to inverse problems with more
general penalty terms been investigated further. Tikhonov et al. [19] provide a very rigorous
analysis of variational methods for solving extremal problems which cover the case (2) under
consideration in this paper. The authors discuss several different parameter choice rules,
among them the following version of the discrepancy principle. Let α = α(δ, yδ) be chosen
such that

inf
xδ

α

‖F (xδ
α)− yδ‖ ≤ δ ≤ sup

xδ
α

‖F (xδ
α)− yδ‖.

As opposed to our approach, the selection of the regularized solution xδ
α corresponding to

α = α(δ, yδ) is done depending on properties of arbitrarily chosen minimizers xδ
α1
, xδ

α2
of (2)

corresponding to α1 = α/r, α2 = rα for some r > 1 and in a way such that the resulting
discrepancy may be smaller than the noise level, i.e.

‖F (xδ
α)− yδ‖ ≤ δ

is possible, and no lower bound in terms of δ is available. Thus, in this case it can no longer
be ensured that the discrepancy is of the same order as the noise level. Also, considertions
regarding convergence are done with respect to the underlying (weak) topology.
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First results using Morozov’s discrepancy principle as defined in (6) below were obtained
for denoising, where the operator is the identity, when using the L1-norm as the penalty
term, see [10]. Bonesky [1] considered linear inverse problems combined with the discrepancy
principle and showed convergence rates in the Bregman distance.

Once the regularization parameter has been chosen, it remains to compute the related
regularized solution as the minimizer of the Tikhonov-type functional (2). Different methods
to achieve this can be found in [2, 4, 8, 12, 14].

In this paper, we will analyze under what circumstances the discrepancy principle can
be applied to the non-linear inverse problem (1). We will see that the regularized solutions
xδ

α converge to a true solution x† with respect to the penalizing functional Ψ, i.e., that

Ψ(xδ
α − x†) → 0 as δ → 0. (3)

and that the resulting parameter choice rule has the properties α(δ, yδ) → 0 and δq/α(δ, yδ) →
0 as δ → 0. In addition, we will prove convergence rates of order O(δ) with respect to the
generalized Bregman distance induced by the penalty term under the assumption that a
source condition and a non-linearity condition are satisfied.

2 Preliminaries

Throughout this paper we assume the operator F : dom(F ) ⊂ X → Y , with 0 ∈ dom(F ), to
be weakly continuous, q > 0 to be fixed, and that the penalty term Ψ(x) fulfills the following

Condition 2.1. Let Ψ : dom(Ψ) ⊂ X → R+, with 0 ∈ dom(Ψ), be a convex functional
such that

(i) Ψ(x) = 0 if and only if x = 0,

(ii) Ψ is weakly lower semicontinous (w.r.t. the Banach space topology on X),

(iii) Ψ is weakly coercive, i.e. ‖xn‖ → ∞ =⇒ Ψ(xn) →∞.

The following consequence of the above conditions will be needed later on.

Lemma 2.2. If Ψ satisfies Condition 2.1, then for any sequence {xn} ⊂ X with Ψ(xn) → 0
it holds that xn ⇀ 0.

Proof. Take an arbitrary subsequence of {xn} – again denoted by {xn} for simplicity –
then

{
Ψ(xn)

}
is bounded, and because of the weak coercivity of Ψ, so is {xn}. Therefore

we can extract a weakly convergent subsequence, xn′ ⇀ x̄. Due to the weak lower semi-
continuity of Ψ we obtain

0 ≤ Ψ(x̄) ≤ lim inf
n′→∞

Ψ(xn′) = 0,

which according to Condition 2.1 (i) only holds for x̄ = 0.
Altogether we have shown that any subsequence of {xn} has a subsequence that converges

weakly to 0 and therefore the same holds true for the entire sequence.

�

In the preceding proof we have used a well known convergence principle in Banach spaces,
which can be found in [20, Proposition 10.13]. We now state a slightly different version of
this convergence principle, which we will repeatedly use throughout this paper.
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Lemma 2.3. Let {xn} ⊂ X and a functional f : X → R be such that every subsequence
{xn′} of {xn} has, in turn, a subsequence {xn′′} such that f(xn′′) → c ∈ R as n′′ →∞, then
f(xn) → c as n→∞.

Proof. If f(xn) → c does not hold then there is a subsequence {xn′} such that |f(xn′)− c| >
ε for some ε > 0. This contradicts the assumption that {xn′} has a subsequence {xn′′} such
that f(xn′′) → c.

�

Definition 2.4. Our regularized solutions will be the minimizers xδ
α of the Tikhonov-type

functionals

Jα(x) =
{ ‖F (x)− yδ‖q + αΨ(x) if x ∈ dom(Ψ)∩dom(F )

+∞ otherwise .
(4)

For non-linear operators the minimizer of (4) will in general not be unique and for fixed yδ,
we denote the set of all minimizers by Mα, i.e.

Mα = {xδ
α ∈ X : Jα(xδ

α) ≤ Jα(x), ∀x ∈ X} (5)

We call a solution x† of equation (1) an Ψ-minimizing solution if

Ψ(x†) = min {Ψ(x) : F (x) = y},

and denote the set of all Ψ-minimizing solutions by L. Throughout this paper we assume
that L 6= ∅.

The remainder of the paper is organized as follows. In Section 3 we will analyze Morozov’s
discrepancy principle for non-linear operators and general penalty terms fulfilling Condition
2.1. As in the well studied case of classical Tikhonov regularization, we will be able to show
that standard conditions on the operator F suffice to guarantee the existence of a positive
regularization parameter fulfilling the discrepancy principle. Section 4 contains the main
regularization results where we will show in particular that for suitable penalty terms the
regularized solutions converge with respect to the penalty term as the noise level goes to
zero and that the parameter α = α(δ, yδ) chosen such that (3) holds, satisfies

α(δ, yδ) → 0 and δq/α(δ, yδ) → 0 as δ → 0.

Additionally, we will see in Section 5 that the generalized Bregman distance between the reg-
ularized solution and a Ψ-minimizing solution goes to zero with the same order as the noise
level δ. Finally, we will present a numerical example in Section 6, where the theoretically
established results are verified.

3 The Discrepancy Principle

Let us start by defining Morozov’s discrepancy principle.

Definition 3.1. For 1 < τ1 ≤ τ2 we choose α = α(δ, yδ) > 0 such that

τ1δ ≤ ‖F (xδ
α)− yδ‖ ≤ τ2δ (6)

holds for some xδ
α ∈Mα.
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To analyze when this is possible, we will be using the following functionals.

Definition 3.2. Let yδ ∈ Y be fixed. For α ∈ (0,∞) and xδ
α ∈Mα we define

G(xδ
α) = ‖F (xδ

α)− yδ‖, (7)

Ω
(
xδ

α

)
= Ψ(xδ

α), (8)

m(α) = Jα(xδ
α). (9)

Remark 3.3. Since all minimizers xδ
α ∈ Mα have the same value of Jα(xδ

α), the value of
m(α) does not depend on the particular choice of xδ

α ∈ Mα. This is in general not true,
however, for G(xδ

α) and Ω
(
xδ

α

)
.

In the following we state basic properties of G,Ω and m. The proofs can be found, e.g.,
in [19, Section 2.6].

Lemma 3.4. The functional Ω
(
xδ

α

)
is non-increasing and the functionals G(xδ

α),m(α) are
non-decreasing with respect to α ∈ (0,∞) for any q > 0 in the sense that if 0 < α < β then

sup
xδ

α∈Mα

G(xδ
α) ≤ inf

xδ
β∈Mβ

G(xδ
β),

inf
xδ

α∈Mα

Ω
(
xδ

α

)
≥ sup

xδ
β∈Mβ

Ω
(
xδ

β

)
,

m(α) ≤ m(β).

Lemma 3.5. The functional m(α) defined in (9) is continuous on (0,∞).

Lemma 3.6. The set

{α > 0 | inf
xδ

α∈Mα

G(xδ
α) < sup

xδ
α∈Mα

G(xδ
α)}

is at most countable and the functional G is continuous everywhere else with respect to α.
The same holds true for Ω and the respective sets of discontinuity points coincide.

Lemma 3.7. To each ᾱ > 0 there exist x1, x2 ∈Mᾱ such that

lim
α→ᾱ−

G(xδ
α) = G(x1) = inf

x∈Mᾱ

G(x) and lim
α→ᾱ+

G(xδ
α) = G(x2) = sup

x∈Mᾱ

G(x).

The next Proposition generalizes a result for classical Tikhonov regularization from [13].

Proposition 3.8. Assume that ‖F (0)− yδ‖ > τ2δ, then we can find α, ᾱ ∈ R+ such that

G(xδ
α) < τ1δ ≤ τ2δ < G(xδ

ᾱ).

Proof. Let us first consider a sequence {αn} converging to 0 and a corresponding sequence
of minimizers xn ∈Mαn , then for x† ∈ L (cf. Definition 2.4) we get

G(xn)q ≤ m(αn) ≤ Jαn
(x†) ≤ δq + αnΨ(x†) → δq < τ q

1 δ
q.

This proves G(x) < τ1δ if we choose α = αN for N large enough.
On the other hand, if αn →∞ and {xn} as before, then

Ω
(
xn

)
≤ 1
αn

m(αn) ≤ 1
αn

‖F (0)− yδ‖ → 0 as n→∞.
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This shows that Ψ(xn) → 0, which according to Lemma 2.2 implies xn ⇀ 0 and also
F (xn) ⇀ F (0) by the weak continuity of F . Using the lower semi-continuity of the norm
we obtain

‖F (0)− yδ‖ ≤ lim inf
n→∞

‖F (xn)− yδ‖, (10)

Together with the assumption τ2δ < ‖F (0) − yδ‖ this yields the existence of ᾱ such that
‖F (xδ

ᾱ)− yδ‖ = G(x̄) > τ2δ.

�

We are now ready to prove that the following condition is sufficient to ensure the existence
of a regularization parameter α chosen according to the discrepancy principle in Definition
3.1.

Condition 3.9. Assume that yδ satisfies

‖y − yδ‖ ≤ δ < τ2δ < ‖F (0)− yδ‖, (11)

and that there is no α > 0 with minimizers x1, x2 ∈Mα such that

‖F (x1)− yδ‖ < τ1δ ≤ τ2δ < ‖F (x2)− yδ‖.

For the following theorem compare [13, Theorem 2.5] where the same result is proven
for the special case of classical Tikhonov regularization.

Theorem 3.10. If Condition 3.9 is fulfilled, then there are α = α(δ, yδ) > 0 and xδ
α ∈

Mα(δ,yδ) such that (6) holds.

Proof. Assume that no α fulfilling (6) exists, and define

S = {α : ‖F (xδ
α)− yδ‖ < τ1δ for some xδ

α ∈Mα}
S̃ = {α : ‖F (xδ

α)− yδ‖ > τ2δ for some xδ
α ∈Mα}.

Note that for α ∈ S it must actually hold that ‖F (xδ
α) − yδ‖ < τ1δ for all xδ

α ∈ Mα since
otherwise either (6) would hold or Condition 3.9 would be violated. The same way we obtain
‖F (xδ

α)− yδ‖ > τ2δ for all xδ
α ∈Mα whenever α ∈ S̃. Therefore it must hold that

S ∩ S̃ = ∅ and S ∪ S̃ = R+.

If we set ᾱ = supS then it follows from Proposition 3.8 and the monotonicity of G(xδ
α) with

respect to α that 0 < ᾱ < ∞, and therefore ᾱ must belong to either S or S̃. We consider
these two cases separately.

If ᾱ ∈ S then we choose αn ↓ ᾱ and xn ∈Mαn . Since all αn must belong to S̃ it follows
from Lemma 3.7 that

τ2δ ≤ lim
n→∞

‖F (xn)− yδ‖ = sup
x∈Mᾱ

‖F (x)− yδ‖ < τ1δ.

This is a contradiction since we chose τ1 ≤ τ2.
Similarly, if ᾱ ∈ S̃ then we choose S 3 αn ↑ ᾱ and xn as before and again obtain a

contradiction:
τ2δ < inf

x∈Mᾱ

‖F (x)− yδ‖ = lim
n→∞

‖F (xn)− yδ‖ ≤ τ1δ.

�
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4 Regularization properties

In [19, Section 2.5] Tikhonov et al show that the following conditions ensure weak con-
vergence of the regularized solutions to the set L of Ψ-minimizing solutions. The proof is
repeated here for the convenience of the reader in the special case that is of interest in this
paper.

Lemma 4.1. Let x† ∈ L, δn → 0 and assume that {xn} ⊂ dom(F )∩dom(Ψ) satisfies

lim
n→∞

‖F (xn)− yδn‖ = 0 and lim sup
n→∞

Ψ(xn) ≤ Ψ(x†), (12)

then xn converges weakly to the set L of Ψ-minimizing solutions and Ψ(xn) → Ψ(x†).

Proof. From the second inequality in (12) it is clear that the sequence {Ψ(xn)} is
bounded. Thus, the same holds true for {xn} due to the weak coercivity of Ψ and we
can extract a subsequence xn′ ⇀ x̄. Using (12) and the weak lower semi-continuity of
‖F (·)− y‖ and Ψ, respectively, we get

‖F (x̄)− y‖ ≤ lim inf
n′→∞

‖F (xn′)− y‖ ≤ lim inf
n′→∞

{ ‖F (xn′)− yδn′‖+ δn′} = 0,

Ψ(x̄) ≤ lim inf
n′→∞

Ψ(xn′) ≤ lim sup
n′→∞

Ψ(xn′) ≤ Ψ(x†).

But x† was chosen to be a Ψ-minimizing solution and therefore Ψ(x̄) = Ψ(x†) whence it
follows that x̄ ∈ L and Ψ(xn′) → Ψ(x†).

The same reasoning applies to any subsequence of {xn} and yields a subsequence weakly
converging to L. Therefore the whole sequence weakly converges to L and Ψ(xn) → Ψ(x†).

�

In the following proof of weak convergence of regularized solutions found through Moro-
zov’s discrepancy principle we use techniques similar to [19].

Corollary 4.2. Let δn → 0. If αn = α(δn, yδn) and xn ∈Mαn satisfy (6), then the sequence
{xn} weakly converges to L and Ψ(xn) → Ψ(x†).

Proof. From (6) we know that

lim
n→∞

‖F (xn)− yδn‖ ≤ lim
n→∞

τ2δn = 0

and also that for x† ∈ L it holds true

τ q
1 δ

q
n + αnΨ(xn) ≤ ‖F (xn)− yδn‖q + αnΨ(xn) ≤ δq

n + αnΨ(x†).

Therefore, we obtain

0 ≤ (τ q
1 − 1)

δq
n

αn
≤ Ψ(x†)−Ψ(xn) (13)

whence it follows that
lim sup

n→∞
Ψ(xn) ≤ Ψ(x†).

Altogether we have shown that the family {xn} satisfies the assumptions of Lemma 4.1
which gives the assertion.

�
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For certain penalty terms one can even show convergence with respect to Ψ.

Condition 4.3. Let {xn} ⊂ X be such that xn ⇀ x̄ ∈ X and Ψ(xn) → Ψ(x̄) < ∞, then
xn converges to x̄ with respect to Ψ, i.e.,

Ψ(xn − x̄) → 0.

Remark 4.4. It has been shown in [7, Lemma 2] that choosing weighted `p-norms of the
coefficients with respect to some frame {φλ}λ∈Λ ⊂ X as the penalty term, ie.

Ψp,w(x) := ‖x‖w,p =
( ∑

λ∈Λ

wλ |〈x, φλ〉|p
)1/p

, 1 ≤ p ≤ 2, (14)

where 0 < wmin ≤ wλ, satisfies Condition 4.3. Therefore the same trivially holds for
Ψp,w(x)p. Note that these choices also fulfill all the assumptions in Condition 2.1.

Corollary 4.5. Let δn → 0 and F,Ψ satisfy the Conditions 2.1, 4.3. Assume that yδn

fulfills Condition 3.9 and choose αn = α(δn, yδn), xn ∈ Mαn
such that (6) holds, then xn

converges to L with respect to Ψ.

Proof. The sequence {xn} satisfies the assumptions of Corollary 4.2 and hence also of
Lemma 4.1. From the proof of Lemma 4.1 we see that {xn} has a subsequence xn′ ⇀ x† ∈ L.
According to Corollary 4.2 also Ψ(xn′) → Ψ(x†) holds and we obtain from Condition 4.3

Ψ(xn′ − x†) → 0.

The same reasoning applies to any subsequence of {xn} and yields a subsequence con-
verging to L w.r.t. Ψ. Therefore the whole sequence Ψ-converges to L.

�

Remark 4.6. If instead of Condition 4.3 the penalty term Ψ(x) satisfies the Kadec property,
i.e., xn ⇀ x̄ ∈ X and Ψ(xn) → Ψ(x̄) < ∞ imply ‖xn − x̄‖ → 0, then the convergence in
Corollary 4.5 holds with respect to the norm.

We will now be concerned with the question if Morozov’s discrepancy principle is a
regularization method according to the natural generalization of [5, Definition 3.1]. What
remains to show is that α = α(δ, yδ) → 0 as δ → 0. This is in general not necessarily true,
but as we will see the following condition is sufficient for that matter.

Condition 4.7. For all x† ∈ L (cf. Definition 2.4) we assume that

lim inf
t→0+

‖F ((1− t)x†)− y‖q

t
= 0. (15)

The following Lemma provides more insight as to the nature of Condition 4.7.

Lemma 4.8. Let X be a Hilbert space and q > 1. If F (x) is differentiable in the directions
x† ∈ L and the derivatives are bounded in a neigbourhood of x†, then Condition 4.7 is
satisfied.

Proof. It holds for any y (as long as it admits a Ψ-minimizing solution x†) that

d

dt
‖F ((1− t)x†)− y‖q = q ‖F ((1− t)x†)− y‖q−2

· 〈F ′((1− t)x†)(−x†), F ((1− t)x†)− y〉
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and due to the boundedness of F ′((1− t)x†) near t = 0 this can be estimated by∣∣∣∣ ddt ‖F ((1− t)x†)− y‖q

∣∣∣∣ ≤ q ‖F ((1− t)x†)− y‖q−1 ‖F ′((1− t)x†) · x†‖ t→0+

−→ 0,

since ‖F (x†)− y‖ = 0 by assumption. Together this yields

lim
t→0+

‖F ((1− t)x†)− y‖q

t
=

d

dt
‖F ((1− t)x†)− y‖q

∣∣∣
t=0

= 0.

�

Lemma 4.9. Assume that Condition 4.7 is satisfied and that there exist α > 0 and a
solution x? of F (x) = y such that

x? = arg min
x∈X

{
‖F (x)− y‖q + αΨ(x)

}
,

then x? = 0.

Proof. Since x? is a minimizer of Jα with exact data y, we obtain for all x† ∈ L

αΨ(x?) ≤ αΨ(x†),

and this implies that x? ∈ L. Due to the convexity of Ψ and to the fact that 0, x? ∈ dom(Ψ)
with Ψ(0) = 0, it holds for t ∈ [0, 1) that

Ψ((1− t)x?) = Ψ((1− t)x? + t · 0) ≤ (1− t)Ψ(x?) + t Ψ(0) = (1− t)Ψ(x?).

As x? ∈Mα, we thus get

αΨ(x?) = Jα(x?) ≤ Jα((1− t)x?) ≤ ‖F ((1− t)x?)− y‖q + α(1− t)Ψ(x?)

and therefore
α tΨ(x?) ≤ ‖F ((1− t)x?)− y‖q.

Altogether this implies

0 ≤ αΨ(x?) ≤ lim inf
t→0+

‖F ((1− t)x†)− y‖q

t
= 0,

which yields Ψ(x?) = 0. But according to Condtion 2.1 (i) this only holds if x? = 0.

�

Remark 4.10. To illustrate that Lemma 4.9 does not hold for arbitrary F and y, we give
a continuous one dimensional counter example. Let

F (x) = 1 +
√
|1− x|, x ∈ R,

then the derivative of F is unbounded in x = 1, i.e. Lemma 4.8 cannot be applied. For the
choices y = 1, q = 2 and Ψ(x) = |x| the unique solution of F (x) = y is x† = 1 and it holds
that

lim
t→0+

∣∣F ((1− t)x†)− y
∣∣2

t
= lim

t→0+

|t|
t

= 1.
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Therefore Condition 4.7 is violated and indeed for α = 1 we find that

J1(x) = (F (x)− y)2 + Ψ(x) = |1− x|+ |x| ≥ 1 = J1(x†) ∀x ∈ R,

which shows that the Ψ-minimizing solution x† 6= 0 is also a minimizer of the Tikhonov
functional for α > 0. The same example also works in the classical Tikhonov case, choosing
Ψ(x) = x2. Note that for a choice y > 1, Condition 4.7 is always satisfied, so that (15) truly
depends on the exact data y. This is no longer an issue, however, if the Gâteux derivative
of F (x) is locally bounded (cf. Lemma 4.8).

Theorem 4.11. Let F,Ψ satisfy the Conditions 2.1, 4.7. Moreover, assume that data yδ,
δ ∈ (0, δ∗), are given such that Condition 3.9 holds, where δ∗ > 0 is an arbitrary upper
bound. Then the regularization parameter α = α(δ, yδ) obtained from Morozov’s discrepancy
principle (see Definition 3.1) satisfies

α(δ, yδ) → 0 and
δq

α(δ, yδ)
→ 0 as δ → 0.

Proof. Let δ∗ > δn → 0 and αn = α(δn, yδn) be chosen according to the discrepancy
principle. As a shorthand we write xn = xδn

αn
for the corresponding regularized solutions

satisfying (6).
Assume that there is a subsequence of {αn}, denoted again by {αn}, and a constant ᾱ

such that 0 < ᾱ ≤ αn ∀n. If we denote the minimizers of Jᾱ with data yδn by

x̄n = arg min
x∈X

{
‖F (x)− yδn‖q − αΨ(x)

}
we obtain using Lemma 3.4 and (6) that

‖F (x̄n)− yδn‖ ≤ ‖F (xn)− yδn‖ ≤ τ2δn → 0,

lim sup
n→∞

ᾱΨ(x̄n) ≤ lim sup
n→∞

{ ‖F (x̄n)− yδn‖+ ᾱΨ(x̄n)} ≤ ᾱΨ(x†).

Therefore, {x̄n} satisfies the assumptions of Lemma 4.1 and we can extract a subsequence
xn′ ⇀ x† ∈ L. Because of the weak lower semi-continuity of Ψ and ‖F (·)− y‖, it holds that

‖F (x†)− y‖q + ᾱΨ(x†) ≤ lim inf
n′→∞

(
‖F (x̄n′)− yδn′‖q + ᾱΨ(x̄n′)

)
≤ lim inf

n′→∞

(
‖F (x)− yδn′‖q + ᾱΨ(x)

)
∀x ∈ X

= ‖F (x)− y‖q + ᾱΨ(x) ∀x ∈ X,

which shows that x† is also a minimizer of Jᾱ with exact data y. Therefore, x† satisfies the
assumptions of Lemma 4.9 and it follows that x† = 0, which in turn means that y = F (0).
This violates (11) in Condition 3.9, and we have reached a contradiction.

The second part of the theorem is an immediate consequence of (13) and the assertion
Ψ(xδ

α) → Ψ(x†) in Lemma 4.2.

�

Remark 4.12. In the proof of Theorem 4.11 we have used that ‖F (0) − y‖ > 0, which is
an immediate consequence of (11). On the other hand, whenever ‖F (0) − y‖ > 0 we can
choose

0 < δ∗ ≤ 1
τ2 + 1

‖F (0)− y‖

10



and for all 0 < δ < δ∗ and yδ satisfying ‖y − yδ‖ ≤ δ we obtain

‖F (0)− yδ‖ ≥ ‖F (0)− y‖ − ‖y − yδ‖ ≥ ‖F (0)− y‖ − δ > τ2δ,

which is (11). Therefore (11) can be fulfilled for all δ smaller than some δ∗ > 0, whenever
y 6= F (0).

5 Convergence rates

Our quantitative estimates on the distance between the regularized solutions and a Ψ-
minimizing solution x† will be given with respect to the generalized Bregman distance,
which is defined as follows.

Definition 5.1. Let ∂Ψ(x) denote the subgradient of Ψ at x ∈ X. The generalized Bregman
distance with respect to Ψ of two elements x, z ∈ X is defined as

DΨ(x, z) = {Dξ
Ψ(x, z) : ξ ∈ ∂Ψ(z) 6= ∅},

where
Dξ

Ψ(x, z) = Ψ(x)−Ψ(z)− 〈ξ, x− z〉

denotes the Bregman distance with respect to Ψ and ξ ∈ ∂Ψ(z). We remark that throughout
this section 〈·, ·〉 denotes the dual pairing in X∗, X or Y ∗, Y and not the inner product on
a Hilbert space. Moreover ‖ · ‖Y ∗ denotes the norm on Y ∗ and, in accordance with our
previous notations, we write ‖ · ‖ for the norms in the Banach spaces X and Y .

Convergence rates with respect to Bregman distances for Tikhonov-type functionals with
convex penalty terms have first been proven by Burger and Osher [3], who focused mainly
on the case of linear operators, but also proposed a non-linear generalization of their results,
and by Resmerita and Scherzer in [16]. The following non-linearity and source conditions
were introduced in the respective works.

Condition 5.2. Let x† be an arbitrary but fixed Ψ-minimizing solution of F (x) = y.
Assume that the operator F : X → Y is Gâteaux differentiable and that there is w ∈ Y ∗

such that
F ′(x†)∗w ∈ ∂Ψ(x†). (16)

Throughout the remainder of this section let w ∈ Y ∗ be arbitrary but fixed fulfilling (16)
and ξ ∈ ∂Ψ(x†) be defined as

ξ = F ′(x†)∗w. (17)

Moreover, assume that one of the two following non-linearity conditions holds:

(i) There is c > 0 such that for all x, z ∈ X it holds that

〈w,F (x)− F (z)− F ′(z)(x− z)〉 ≤ c ‖w‖Y ∗ ‖F (x)− F (z)‖. (18)

(ii) There are ρ > 0, c > 0 such that for all x ∈ dom(F )∩Bρ(x†),

‖F (x)− F (x†)− F ′(x†)(x− x†)‖ ≤ c Dξ
Ψ(x, x†), (19)

and it holds that
c ‖w‖Y ∗ < 1. (20)
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Using the above condition we are now ready to prove the same convergence rates for
Morozov’s discrepancy principle which were established in [3, 16] for a-priori parameter
choice rules. In the case of linear operators a similar result has been shown in [1].

Theorem 5.3. Let the operator F and the penalty term Ψ be such that Condtions 2.1 and
5.2 hold. For all 0 < δ < δ∗ assume that the data yδ fulfill Condition 3.9, and choose
α = α(δ, yδ) according to the discrepancy principle in Definition 3.1. Then

‖F (xδ
α)− F (x†)‖ = O(δ), Dξ

Ψ(xδ
α, x

†) = O(δ). (21)

Proof. It is an immediate consequence of (6) and (11) that

‖F (xδ
α)− y‖ ≤ ‖F (xδ

α)− yδ‖+ ‖y − yδ‖ ≤ (τ2 + 1)δ, (22)

which proves the first part of (21). In order to show the second part we use

τ q
1 δ

q + αΨ(xδ
α) ≤ ‖F (xδ

α)− yδ‖q + αΨ(xδ
α) ≤ δq + αΨ(x†),

which shows that Ψ(xδ
α) ≤ Ψ(x†). Assume now that Condition 5.2 (i) holds, then using (18)

we get for Dξ
Ψ(xδ

α, x
†) ∈ DΨ(xδ

α, x
†) that

Dξ
Ψ(xδ

α, x
†) ≤ Ψ(xδ

α)−Ψ(x†)− 〈F ′(x†)∗w, xδ
α − x†〉

≤ −〈w,F ′(x†)(xδ
α − x†)〉

≤ c ‖w‖Y ∗ ‖F (xδ
α)− y‖+

∣∣〈w,F (xδ
α)− y〉

∣∣
≤ (c+ 1)τ2 ‖w‖Y ∗δ.

If on the other hand Condition 5.2 (ii) is satisfied, then using (19) and (22) it follows

Dξ
Ψ(xδ

α, x
†) ≤ Ψ(xδ

α)−Ψ(x†)− 〈F ′(x†)∗w, xδ
α − x†〉

≤
∣∣〈w,F ′(x†)(xδ

α − x†)〉
∣∣

≤ ‖w‖Y ∗(c Dξ
Ψ(xδ

α, x
†) + ‖F (xδ

α)− y‖)

≤ c ‖w‖Y ∗Dξ
Ψ(xδ

α, x
†) + (τ2 + 1) ‖w‖Y ∗δ.

Due to (20) this yields

Dξ
Ψ(xδ

α, x
†) ≤ τ2 + 1

1− c ‖w‖Y ∗
‖w‖Y ∗δ.

�

Remark 5.4. In the special case where X is a Hilbert space and Ψ(x) = ‖x‖2 it holds that
Dξ

Ψ(xδ
α, x

†) = ‖xδ
α − x†‖2. Thus the convergence rate O(δ) with respect to the Bregman

distance in Theorem 5.3 corresponds to the well known rate O(
√
δ) in norm.

6 A numerical example

To illustrate the theoretical results of the previous sections, we will analyze a specific exam-
ple that meets the imposed conditions, namely the autoconvolution operator over a finite
interval.

This operator is of importance, for example, in stochastics, where it describes the density
of the sum of two independent and identically distributed random variables, or also in
spectroscopy (see [6] and the references therein for further details).
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Let X = Y = L2[0, 1], and define for f ∈ dom(F ) ⊂ X and s ∈ [0, 1] the operator
F : dom(F ) ⊂ X → Y through

F (f)(s) = (f ∗ f)(s) =
∫ s

0

f(s− t)f(t)dt. (23)

Autoconvolution has been studied in some detail in [6], where the authors showed that for
the choice

dom(F ) = D+ := {f ∈ L2[0, 1] : f(t) ≥ 0 a.e. in [0, 1]}

the operator is weakly continuous and since D+ is weakly closed in L2[0, 1], also weakly
sequentially closed.

The Fréchet derivative of F at the point f ∈ X is given by the bounded, linear operator
F ′(f) : X → X defined as

[F ′(f)h](s) = 2
∫ s

0

f(s− t)h(t)dt 0 ≤ s ≤ 1.

Indeed, we have
F (f + h)− F (f)− F ′(f)h = F (h)

and therefore
‖F (f + h)− F (f)− F ′(f)h‖ = ‖F (h)‖ ≤ ‖h‖2,

where ‖ · ‖ denotes the Hilbert space norm on L2[0, 1], and the last inequality holds since
for all f, h ∈ X

‖f ∗ h‖ ≤ ‖f‖ ‖h‖. (24)

For a proof see [6, Theorem 2, Lemma 4]. Moreover, F ′(·) is linear and due to (24) holds

‖F ′(f − g)‖ = sup
‖h‖=1

‖F ′(f − g)h‖ = sup
‖h‖=1

‖2(f − g) ∗ h‖ ≤ 2 ‖f − g‖,

which shows that F ′ is Lipschitz continuous.
The adjoint of the Fréchet derivative F ′(f)∗h for f, h ∈ X evaluates to

〈F ′(f)v, h〉 =
∫ 1

0

2
∫ s

0

f(s− t)v(t)dt h(s)ds

=
∫ 1

0

v(t)
∫ 1

t

2f(s− t)h(s)ds dt

= 〈v, F ′(f) ∗ h〉.

Writing h̃(t) = (h)e (t) = h(1− t) for any h ∈ X we get

[F ′(f)∗h](t) = 2
∫ 1

t

f(s− t) h(s) ds

= 2
∫ 1−t

0

f(s) h̃((1− t)− s) ds

= 2 (f ∗ h̃) (1− t) = 2 (f ∗ h̃)e (t). (25)

In this example we will be reconstructing a solution f of

F (f) = g (26)
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from given noisy data gδ, ‖g − gδ‖ ≤ δ. Among all possible solutions f we are interested
in choosing the one with the sparsest representation in the Haar wavelets, which form an
orthonormal basis of the Hilbert space X. Finding sparse solutions using wavelets is com-
monly used, e.g., in signal compression, but can also be of importance to obtain a good
resolution of discontinuities in the solution. We define

ϕ(t) =
{ 1 if 0 ≤ t < 1/2
−1 if 1/2 ≤ t < 1

ψ(t) = 1 0 ≤ t < 1

and for j ∈ N0 and k ∈ {0, . . . , 2j − 1}

ϕj,k(t) = 2j/2ϕ(2jt− k).

The coefficient vector of f ∈ X in the Haar wavelet basis will be denoted by x = {xλ}λ∈Λ,
where

Λ = {1} ∪ {(j, k) : j ∈ N0, 0 ≤ k ≤ 2j − 1},

ϕλ =
{ ψ if λ = 1
ϕj,k if λ = (j, k) and

xλ = 〈f, ϕλ〉 ∀λ ∈ Λ

We now reformulate the problem in the coefficient space, so that all computations can be
executed only on sequences in `2. To this end we express the operator F as follows,

F (f)(s) = F (
∑
λ∈Λ

xλϕλ)(s)

=
∫ s

0

∑
λ∈Λ

xλϕλ(s− t)
∑
µ∈Λ

xµϕµ(t)dt

=
∑

λ,µ∈Λ

xλxµ ϕλ ∗ ϕµ(s).

Since F (f) ∈ Y = X we can also represent the image of f with respect to the Haar wavelet
basis and obtain

yη = 〈F (f), ϕη〉 =
∑

λ,µ∈Λ

xλxµ 〈ϕλ ∗ ϕµ, ϕη〉 = xTKη x, (27)

where
Kη :=

{
〈ϕλ ∗ ϕµ, ϕη〉

}
λ,µ∈Λ

∀η ∈ Λ. (28)

The above representation allows us to consider F̃ : `2 → `2, with

F̃ (x) = {yη}η∈Λ, yη := xTKη x. (29)

For the iterative computation of the regularized solutions in (30) below, we will also need
to express the Fréchet derivative of F in the coefficient space. Adapting the steps leading
up to (27) we obtain from (25)

〈F ′(f)∗h, ϕη〉 = 2 (xTKη z̃)e,
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Figure 1: The Ψ-minimizing solution f† (left), and the exact data g = F (f†) (right).

where the matrices Kη were defined in (28) and z̃ denotes the coefficients of h̃(t) = h(1− t).
They can be computed according to the formulae

z̃1 = 〈h̃, ψ〉 = 〈h, ψ̃〉 = 〈h, ψ〉 = z1,

z̃(j,k) = 〈h̃, ϕ(j,k)〉 = 〈h, ϕ̃(j,k)〉 = 〈h,−ϕ
(j,k)′ 〉 = −z

(j,k)′ ,

where (j, k)′ := (j, 2j − 1− k).
In order to find a solution that has a sparse representation, we choose the penalty term to

be Ψ(x) = ‖x‖1 as it is well known that regularization with the `1 norm promotes sparsity
(see, e.g., [4, 7, 10, 12, 14]). We thus consider the Tikhonov-type functionals

Jα(x) = ‖F̃ (x)− yδ‖2 + α ‖x‖1,

where from now on y, yδ denote the coefficient vectors of the exact data g and the noisy
data gδ, respectively. In this notation it holds that ‖g − gδ‖ = ‖y − yδ‖ and therefore the
condition for the noise level can be equivalently stated in the `2 framework. It simply reads
‖y − yδ‖ ≤ δ.

To compute the regularized solutions

xδ
α = arg min

x∈`2

Jα(x)

we will use the iterative soft-shrinkage algorithm for non-linear inverse problems from [12],
which is based on the surrogate functional approach described in [4]. We denote the soft-
shrinkage operator with threshold β > 0 by Sβ , i.e. for x = {xλ}λ∈Λ ∈ `2

(Sβ(x))λ =

{ xλ − β if xλ > β
xλ + β if xλ < −β
0 if |xλ| ≤ β.
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Figure 2: Top: Graph of δ 7→ δ2/α(δ, yδ) (solid) and of δ 7→ α(δ, yδ) (dashed). Bottom:
Graph of δ 7→ ‖xδ

α(δ,yδ) − x†‖1. The noise was chosen uniformly random at each step.

It has been shown in [12] that for arbitrary x0 ∈ `2 and with

xn,0 = xn,

xn,k+1 = Sα/2C

(
xn,0 +

1
C
F ′(xn,k)∗

(
yδ − F (xn,0)

))
, (30)

xn+1 = lim
k→∞

xn,k

the resulting sequence xn converges at least to a critical point of Jα(x). Here the constant C
has to be choosen large enough for the algorithm to converge (see [12] for details). Choosing
the starting value x0 reasonably close to the true solution we observed numerically that in
this case the iteration actually approximates a minimizer.

Moreover, choosing the right hand side g such that

g ∈ R+
ε := {g ∈ C[0, 1] : g ≥ 0, ε = max{s : g(ξ) = 0 ∀ξ ∈ [0, s]}}

for some ε > 0, it has been shown in [6] that any f ∈ D(F ) fulfilling (26) possesses the form

f(t) =

{ 0 a.e. in t ∈ [0, ε/2]
uniquely determined by g a.e. in t ∈ [ε/2, 1− ε/2]
arbitrarily non-negative in t ∈ [1− ε/2, 1]

(31)

For our test, we have chosen g ∈ R+
ε with ε = 1/4 as shown in Figure 1. Due to the

representation of the possible solutions in (31), we know that they are uniquely determined
on [0, 7

8 ], but differ on ( 7
8 , 1]. Also, the right hand side was chosen such that it actually

permits a sparse solution. The Ψ-minimizing solution f† (see Figure 1) has four non-zero
coefficients when expressed in the Haar wavelet basis. Note that in this example the solution
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Figure 3: Regularized solutions with noise level δ = 0.001 (left) and δ = 0.1 (right) as solid
lines together with the Ψ-minimizing solution f† (dashed).

f† is different from the minimum norm solution, which would have the constant value zero
on ( 7

8 , 1].
Since we have seen that the operator F and the penatly term Ψ fulfill all the conditions

needed to apply Theorem 4.11 and Corollary 4.5 (a parameter α(δ, yδ) could indeed be found
for all choices of the noisy data, ensuring that the discrepancy principle is applicable), and
since moreover the Ψ-minimizing solution x† is unique, it can be expected that for δ → 0
we observe

α(δ, yδ) → 0,
δ2

α(δ, yδ)
→ 0, and Ψ(xδ

α − x†) = ‖xδ
α − x†‖1 → 0.

Our numerical experiments confirm these expectations. For a sample case with wavelets up
to a maximal index level J = 5 and noise chosen uniformly random such that ‖y − yδ‖ =
δ, δ ∈ (0, 0.2] at each step, we show the results in Figure 2. The corresponding values
of α = α(δ, yδ) can be found, e.g., using a bisecting trial and error approach exploring
the monotonicity of the residual functional G(xδ

α) (cf. Lemma 3.4). The reconstructed
solutions have between three and seven non-zero coefficients for 10−2 ≤ δ ≤ 0.2 and eight
to eleven non-zero coefficients for 10−3 ≤ δ < 10−2. As the noise level – and thus also the
regularization parameter – approaches zero, the data fit term becomes dominant and the
coefficient sequences less sparse. The solutions corresponding to the noise levels δ = 10−3

and δ = 10−1 can be seen in Figure 3, where the regularization parameters α = 10−4 and
α = 3.872 · 10−2, respectively, were chosen according to Morozov’s discrepancy principle.

7 Conclusion

We have studied Morozov’s discrepancy principle as a parameter choice rule for non-linear
inverse problems with Tikhonov type regularization using a general convex penalty term
Ψ(x). Adapting results from [19] we showed weak convergence of the regularized solutions
to the set of Ψ-minimzing solutions. For a large class of widely used penalty terms (including
the `p norms) this even implies strong convergence or convergence with respect to the penalty
term (which may be even stronger than norm convergence). We gave a condition (see
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Condition 4.7) which is sufficient for the so chosen regularization parameter α = α(δ, yδ) to
satisfy α → 0 and δq/α → 0 as the noise level δ → 0, where q > 1 can be chosen suitable
for the problem under consideration (see definition 2.4). A key ingredient here was to show
that a Ψ-minimizing solution cannot be a regularized solution minimizing the Tikhonov-type
functional with exact data (cf. Lemma 4.9).

Convergence rates of order δ were obtained in the Bregman distance (corresponding
to

√
δ in the classical Hilbert space setting) under the common smoothness type source

condition and the nonlinearity conditions introduced in [3] and [16].
Finally, to substantiate our theoretical findings on a practical example we discussed the

autoconvolution operator over a finite interval reconstructing sparse solutions with respect
to a wavelet basis.
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