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ABSTRACT

Phase Change Memory (PCM) is emerging as a scalable and power-
efficient technology to architect future main memory systems. The
scalability of PCM is enhanced by the property that PCM devices
can store multiple bits per cell. While such Multi-Level Cell (MLC)
devices can offer high density, this benefit comes at the expense
of increased read latency, which can cause significant performance

degradation. This paper proposes Morphable Memory System (MMS),

a robust architecture for efficiently incorporating MLC PCM de-
vices in main memory. MMS is based on observation that memory
requirement varies between workloads, and systems are typically
over-provisioned in terms of memory capacity. So, during a phase
of low memory usage, some of the MLC devices can be operated at
fewer bits per cell to obtain lower latency. When the workload re-
quires full memory capacity, these devices can be restored to high
density MLC operation to have full main-memory capacity. We
provide the runtime monitors, the hardware-OS interface, and the
detailed mechanism for implementing MMS. Our evaluations on
an 8-core 8GB MLC PCM-based system show that MMS provides,
on average, low latency access for 95% of all memory requests,
thereby improving overall system performance by 40%.

Categories and Subject Descriptors:
B.3.1 [Semiconductor Memories]: Phase Change Memory

General Terms: Design, Performance

Keywords: Phase Change Memory, Multi-Level Cell, Morphable
Memory, Memory Monitor.

1. INTRODUCTION

As DRAM-based memory systems get limited by power wall
and scalability challenges, architects are turning their attention to-
wards exploiting emerging memory technologies for building fu-
ture memory systems. Phase Change Memory (PCM) has emerged
as one of the most promising technologies to incorporate into main
memories. PCM devices are expected to scale better than DRAM
and prototypes with feature size as small as 3nm have been fab-
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ricated [17]. Recently, several studies [8][25][14] have advocated
for PCM-based memory systems, given the scalability and density
advantages of PCM.

PCM devices exploit the property of chalcogenide glass to switch
between two states, amorphous and crystalline, with the application
of heat using electrical pulses. The phase change material can be
switched from one phase to another a large number of times reli-
ably. Data is stored in PCM devices in the form of resistance —
the amorphous phase has high electrical resistivity and the crys-
talline phase has low resistance. The difference in resistance be-
tween the two states is typically 3 orders of magnitude. To achieve
high density PCM memories are expected to exploit this high re-
sistance range to store multiple bits in a single cell, forming what
is known as Multi-Level Cell or MLC devices [1][4]. The density
advantage of PCM is, in part, dependent on storing more and more
bits in the MLC devices.
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Figure 1: Comparison of SLC vs. MLC (Figure not to scale).

While MLC devices offer more density than devices that store
one bit per cell (also called as SLC devices), this advantage comes
at a significant price. MLC devices require precise reading of the
resistance value. The number of levels in the MLC device increases
exponentially with the number of bits stored, which implies that
the resistance region assigned to each data value decreases signifi-
cantly. For example, in a 4-bit per cell device the resistance range
is divided so as to encode sixteen levels, and reading the data stored
in the cell requires accurately differentiating between the 16 resis-
tance ranges. The read latency of MLC devices, depending with the
sensing amplifier technology, can increase linearly or exponentially
with the number of bits. Furthermore, when programming (writing)
an MLC device, it is likely that attaining a resistance value that is
within the desired range will require the use of iterative write al-
gorithms [13][15]. These algorithms contain several steps of read-
verify-write operations that increase the write energy and further
negatively impact the limited lifetime of PCM memories. Figure 1
captures this trade-off between MLC and SLC. Ideally we would
like to have PCM memories with the capacity of MLC devices at
the latency, energy, and lifetime of SLC devices.



Architecting a main memory system with MLC devices is thus
a challenge as the density advantage of MLC can be useful only if
the associated drawbacks are handled carefully. The objective of
our paper is design a memory architecture that can obtain the la-
tency, lifetime, and energy of fewer bit per cell devices in the com-
mon case while still having the ability to provide the high memory
capacity enabled by MLC.

We base our solution on the observation that memory capacity
requirements vary widely between different applications as well as
within the execution of the same application, and the system is typ-
ically provisioned with enough memory capacity to be able to ef-
ficiently execute the worst-case workload of interest. In current
DRAM-based systems, increasing the main memory capacity does
not significantly change the memory latency. However, in case the
memory system is based on MLC devices, the capacity boost comes
at the expense of increased latency. If the workload does not use all
the capacity, then it is beneficial to convert the excess main memory
capacity to store fewer bits per cell (from MLC to SLC, for exam-
ple). Especially given that it is fairly easy to restrict the number
of levels used in a MLC device to emulate a fewer bits per cell de-
vice. To this end, we propose Morphable Memory System (MMS),
that dynamically regulates the number of bits per cell in memory
system depending on the workload requirement.

Conceptually, MMS divides the main memory into two regions.
First, a high-density high-latency region that contains pages in MLC
mode. We denote such a memory region as High-Density PCM
or HDPCM region. Second, a low-latency low-density region that
contains the PCM devices in half the number of bits per cell than
in the HDPCM region. We denote such a memory region as Low-
Latency PCM or LLPCM region. As the percentage of total mem-
ory pages that are in LLPCM mode increases, the likelihood of an
access being satisfied by the LLPCM region increases, but at the
expense of reduction in overall memory capacity. Thus, the key de-
cision in MMS is to determine what fraction of all memory pages
must be in LLPCM mode to optimally balance this latency and ca-
pacity trade-off.

MMS contains a Memory Monitoring circuit (MMON) that tracks
the workload memory requirement at runtime to determine the best
partition between LLPCM and HDPCM regions. MMON performs
the well-known Stack Distance Histogram (SDH) analysis [12] [21]
[16], at runtime for a few sampled pages to estimate the page miss
ratio curve [24]. This information along with the estimated benefit
from accessing pages in LLPCM region is used to determine the
best partition. MMS periodically consults MMON to obtain the es-
timate for the best partition and accordingly varies the number of
pages in LLPCM region.

If a memory access occurs to a page in the HDPCM region, that
page can be upgraded to the LLPCM region for reduced latency
on subsequent accesses. MMS allows such transfers between the
HDPCM and LLPCM regions in order to automatically provide
lower latency to frequently accessed pages. Such a transfer be-
tween HDPCM and LLPCM region is handled transparently by the
MMS hardware, without any involvement of software or the OS.
A separate hardware structure, called the Page Redirection Table
(PRT), keeps track of the physical location of each page and is con-
sulted on each memory access.

Unlike conventional memory system, the total memory capac-
ity (in terms of number of pages) that are available to the OS can
vary at runtime in a system that implements MMS. We provide a
hardware-OS interface to facilitate this communication. This al-
lows the OS to evict some of the allocated pages to make them
available to the MMS hardware, if the number of pages in the
LLPCM region is to be increased. When the demand for memory
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capacity increases the hardware transfers pages from the LLPCM
region to HDPCM region, and the pages thus freed up can be re-
claimed by the OS to accommodate another page.

We evaluate the MMS proposal on a 8GB PCM-based system
consisting of MLC devices. Our evaluations with 10 workloads
show that for workloads with low capacity requirement MMS per-
forms similar to a memory system with fewer bits per cell, whereas
for workloads that are capacity constrained MMS offers the full
memory capacity. On average, MMS services 95% of all read re-
quests and 90% of writebacks from the LLPCM region. MMS im-
proves overall system performance by 40% on average. Satisfying
most of the accesses in LLPCM region also has the associated ben-
efits of saving energy and improving lifetime.

2. BACKGROUND ONMULTI-LEVEL PCM

PCM is emerging as a promising technology to build main mem-
ory systems in a power-efficient and scalable manner. One of the
important ways in which PCM devices are expected to scale in
terms of bits per unit area is by storing multiple bits per cell. As
this is one of the first architecture papers on efficiently exploiting
such Multi Level Cell (MLC) PCM devices, this section first pro-
vides the basic operation of MLC, then the trade-offs with MLC
devices, and finally the design of a morphable PCM cell.

2.1 What is MLC and Why MLC?

PCM is a memory technology that stores data by programming
and reading the resistance of the memory elements. Although ear-
lier research on PCM was focused on single bit operation, recently,
the focus of PCM research has been moving towards MLC oper-
ation, mainly to keep up with the increasing demand for low cost
memory. Figure 2 shows the concept of MLC devices that can store
2 bits/cell and 4 bits/cell. The resistance range of each level de-
creases exponentially as the number of bits per cell increases. The
maximum number of bits that can be stored in a given MLC de-
vice is a function of precision in reading technology, device data
integrity, and precision in writing. As technology improves, the
number of bits in MLC devices is expected to increase. The ITRS
roadmap [1] projects that PCM cells will have 4 bits/cell by 2012.
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Figure 2: Concept of Multi-Level PCM (Figure not to scale)

2.2 Reading Techniques for MLC

Reading a data value from MLC device requires distinguishing
precisely between different resistance levels that are spaced closely.
The reading operation is performed by selecting, biasing, and sens-
ing the given PCM device. Although, to the best of our knowledge,
there is no published material on sensing devices for MLC PCM,
from an high level perspective, possible solutions are limited to the
most area efficient ADCs. We will discuss two ADC technologies
that are scalable to more than 2 bits per cell.




2.2.1 Integrating ADC Model

An integrating ADC (e.g., charge run-down ADC) [3] uses a
counter to measure the discharge time of a capacitor through the
PCM element. An example of this scheme is shown in Figure 3.
To represent n bits, the counter must be able to count 2™ different
values, thus implying that the number of clock steps is exponential
in the number of bits stored in the device. The difference in sens-
ing time between the lowest data value and the highest data value
grows exponentially, indicating doubling of sensing time from SLC
to 2 bits/cell, and quadrupling from 2 bits/cell to 4 bits/cell.
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Figure 3: Example of integrating ADC: structure and working.

2.2.2  Successive Approximation ADC Model

Figure 4 shows an example of a successive approximation ADC [18,
3]. The conversion is performed in steps, at each step the hardware
is reused to obtain an additional bit. The sensing time with this ap-
proach increases linearly with the number of bits stored in the MLC
devices, thus increasing by a factor of two with each doubling of
the number of bits per cell.

DAC }
.
——{Sample/Hold}——(ﬁE—{ ADC>——{ SAR P’ o

Figure 4: Example of successive approximation ADC.

2.3 Writing Technique for MLC

In MLC devices, each data value is assigned a limited resistance
range, which means the writing process must be accurate enough to
program that narrow range of resistance. The increased program-
ming precision is obtained by means of iterative write algorithms
that contains several steps of write-and-verify operations [15]. The
number of iterations required for writing increases (almost expo-
nentially) with the number of bits per cell [13]. Thus, with more
bits per cell, these algorithms will consume increasingly more write
energy, and exacerbate the limited lifetime of PCM memories.

2.4 A Morphable PCM Device

While MLC devices offer more density, this advantage comes at
significant price of increased read latency, increased energy con-
sumption, and reduced lifetime. Ideally, we want a PCM cell that
offers the density of MLC but the latency, energy, and lifetime of
fewer bits/cell devices. While this may not be practical, it is possi-
ble to program the MLC device to store restricted data values and
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emulate the functionality (and performance) of a lower density de-
vice. Examples of such flexible devices can be already found in
Flash [5][7], and will conceivably be available in PCM.

PCM is fundamentally an analog medium that stores data in
terms of resistance. For changing the number of bits per cell in
a PCM cell, one need not change the device itself but just make
minor changes to the sensing circuit. For example, a normalized
resistance (R) value of 0.6 would indicate a “1” (R > 0.5) in SLC
mode and a “10” (0.5 < R < 0.75) in 2 bits per cell MLC mode.
Similarly, a cell that stores 4 bits per cell can also be used to store
2 bits per cell by simply regulating the resistance range in which
data values get stored and providing a control signal that specifies
the bits/cell associated with the device. For example, in integrating
ADC model, a subset of the levels can be used and the Vref value
can be increased to reduce the reading time. Whereas, in case of
successive approximation ADC, only the most significant bits can
be retrieved, which improves the reading time linearly.

We refer to such a MLC PCM cell that can be programmed to two
different cell density as a Morphable PCM Cell. The Morphable
PCM cell can be operated in two modes: First, high-density high-
latency (HDPCM), which stores as many bits per cell as permit-
ted by the technology. Second, low-density low-latency (LLPCM),
which stores half the number of bits per cell but with low latency
access.! Throughout this paper we assume that such a morphable
PCM device is feasible and can be used in memory system.

3. MOTIVATION

MLC PCM is expected to be a cost effective means of providing
a large main memory. However, architecting a main memory sys-
tem with MLC devices is a challenge as the density advantage of
MLC can be useful only if the associated drawbacks are handled
carefully. We base our solution on the observation that memory ca-
pacity requirement varies widely across applications, and the sys-
tem is typically provisioned with enough memory capacity to be
able to efficiently execute the worst-case workload of interest. For
example, consider the benchmarks in the SPEC CPU 2006 suite.
There are 29 benchmarks in the suite, some with multiple (refer-
ence) input sets, for a total of 55 unique benchmark-inputset pairs.
SPEC specifies that the machine on which these benchmarks are
evaluated must have at-least 1GB of main memory [20], and the
worst-case workload indeed requires close to 1GB of memory.
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SPEC 2006 Benchmarks (29 with multiple inputs = 55)
Figure 5: Variation in memory capacity requirement of dif-
ferent applications. Each dot in the graph represents one
benchmark-inputset pair from the SPEC CPU 2006 suite.

'The density vs. latency trade-off is present not only in MLC and
SLC but also within MLC devices of different densities. For ex-
ample, HDPCM may denote 4 bits/cell MLC and LLPCM can de-
note 2 bits/cell MLC, and MMS can try to obtain the density of 4
bits/cell at the latency of 2 bits/cell. Therefore, we use the terms
HDPCM and LLPCM instead of MLC and SLC.



Figure 5 shows the memory requirement curves for these 55
benchmarks.? While the worst-case requirement is close to 1GB,
most of the applications require much less than 0.5GB of memory
capacity. However, the system must be provisioned with enough
capacity to run the worst-case benchmark in the suite. Otherwise,
such benchmarks would experience significantly degraded execu-
tion time because of memory thrashing, given that page faults re-
quire two to four orders of magnitude more latency to service than
memory accesses.

It is common to over-provision memory and often applications
do not use all the memory throughout the execution. When appli-
cations do not use all the memory capacity, it would be appealing to
avoid paying the penalties associated with high density MLC when
a smaller, less dense memory would have provided better perfor-
mance. If we can morph the memory on-the-fly, then it is possible
to get the benefit of low density PCM in common case, and still re-
tain capacity for applications that need all the memory capacity. To
this end, we propose Morphable Memory System (MMS), a mem-
ory architecture than can dynamically regulate the bits/cell in MLC
devices depending on the workload requirement.

4. MORPHABLE MEMORY SYSTEM

MMS uses a memory consisting of MLC devices that can be
morphed between LLPCM and HDPCM modes. For applications
that are not capacity constrained, it is beneficial to have most of the
memory in LLPCM mode. Whereas, for capacity-intensive work-
loads it is better to have most (or all) of the memory in the HDPCM
mode. MMS achieves these goals. The next subsections describe
the architecture and working of MMS.

4.1 Architecture

Figure 6 shows the architecture of MMS. Main memory is ar-
ranged in terms of pages® (4KB each) and physical memory units
(fixed number of PCM cells storing either 2KB or 4KB). Each page
can be in one of two states: HDPCM (occupying one 4KB memory
unit) or in LLPCM (occupying two 2KB memory units). The OS
sees a addressable memory size as if each page occupies one mem-
ory unit, i.e., all pages in HDPCM mode. In this way, there is a one
to one relation between addressable pages and memory units.

Conceptually, MMS divides the main memory into two regions.
First, a high density high latency region (HDPCM region). Second,
a low latency, low density region (LLPCM region). A key decision
in MMS is to determine what fraction of all memory pages must
be in LLPCM mode to optimally balance the latency and capac-
ity trade-off. A memory monitoring (MMON) circuit observes the
traffic received by main memory to estimate the capacity require-
ment of the workload. Periodically, the MMON is consulted to
determine the number of pages that must be in LLPCM mode for
best overall performance. This number of pages is termed as the
LL-Target.

When a page is accessed in HDPCM mode, it can be upgraded to
LLPCM mode for lower latency. Such an upgraded page occupies

“This data was generated by full run execution of each benchmark-
inputset pair using an instrumentation tool. The memory size at
which page misses increase by more than 1% compared to unlim-
ited memory size is deemed the memory requirement of the bench-
mark. We do not use specrand in our studies.

3We use the term pages for a region of memory 4KB in size for con-
venience as it is the commonly used pagesize in OS. If the OS has
a pagesize larger than 4KB, then MMS can manage the memory at
a sub-page granularity of 4KB. This also allows MMS to automat-
ically handle heterogeneous page sizes, as long as each pagesize is
a multiple of 4KB.
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Figure 6: Architecture of Morphable Memory System (Figure
not to scale)

two memory units (2KB each). The first half of the page is resident
in its corresponding memory unit. A separate hardware structure,
Page Redirection Table (PRT), provides the physical location of the
second half of the pages that are in LLPCM mode.

Given that some of the pages in memory can be in LLPCM mode,
the number of pages usable by the OS reduces. Furthermore, for
correctness reasons, the OS must ensure that it does not allocate
a memory unit that is storing the second half of another page in
LLPCM mode. This hardware-OS interface is accomplished by
a memory mapped table, called the Page Status Table (PST). The
PST contains information about which units are usable by OS, and
which units can be used as placeholders for the second halves of
LLPCM pages. In the next subsections we will describe each struc-
ture of MMS.

4.2 Memory Monitoring (MMON)

The heart of the MMS is the memory monitoring circuit (MMON),
which tracks the memory reference stream. The role of MMON is
to estimate the statistics of the memory usage and to set a target for
the fraction of LLPCM pages (LL-Target). To estimate the memory
requirement of the system, we use the classical stack distance his-
togram (SDH) analysis [12] that has been widely used in literature
for page miss rate curve [24] and cache requirement [21][16] stud-
ies. Using the SDH analysis it is possible to estimate the hit-rate
for various capacity using a single pass. Figure 7(a) shows an ex-
ample of SDH analysis for a memory containing four pages. Four
counters, one each per recency position, count the number of hits
obtained for that recency position. As shown in the example of Fig-
ure 7(b) given the counter values, it is possible to compute the miss
rate when memory contained only one, two, three or four pages.
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PAGES
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Number of Misse:
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MISSES = 25 12 3 4

Number of pages in memory
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Figure 7: Stack distance analysis for memory with four pages



A typical memory system contains millions of pages, so it is
impractical to measure the exact recency information using a stack
algorithm for a fully associative structure of this size. Therefore,
we conceptually divide the memory into rows of 64 columns each,
and perform a recency analysis using the ordering of pages only
within each row. Thus, the SDH information will be discretized to
64 values, much like this information would be present in a 64-way
cache. Figure 8(a) shows how such a MMON circuit would work
by accruing global counts of hits in each recency position of any
row. Note that each row only contains ordering information for all
the columns in that row and does not contain any tag (all pages
have a corresponding entry) or data values. The number of global
counters equals the number of columns (64).

MRU LRU
DHONONC MRU LRU
~ ~ ~ ~
foun [ T T T T ONORONO
— — — —
RowB | | | | i RowA| i | |
RowC 1 ‘ ‘ 1 RowC| ' ' ' '
RowD ! !
- Sampled Page Recency Directory
Page Recency Directory

(a) (b)

Figure 8: Memory monitor concept and implementation

Obtaining recency ordering for each row requires 64 - log,, 64 =
384 bits = 48B per row. A typical memory system would contain
several hundred thousand rows. We reduce the monitoring hard-
ware by using the well understood concept of set sampling [23][16].
We use only 64 rows in MMON to estimate the memory hit rate.
This means only 64 *x 64 = 4096 pages (< 1% of all pages)
participate in monitoring. A sampled MMON has accuracy sim-
ilar to having all rows participate and incurs a storage overhead
of less than 4KB. The proposed MMON is shown in Figure 8(b).
The counts of the sampled MMON are scaled by a factor that is
equal to NumTotalRows/NumSampledRows to estimate the global
hit counts.

: BestOffCols = 0, MaxCols = 64, BestCycleSaving =0
: for OffCols = 1 to MaxCols/2 do

LowLatencyHits = SDHCounters [0] + ... + SDHCounters[OffCols-1]
CyclesSaved = LowLatencyHits * (HDPCM Hit Latency - LLPCM Hit Latency)
6:  CyclesIncrease = PageFaultIncrease * AveragePageFaultLatency

7. if CyclesSaved-CyclesIncrease > BestCyclesSaving then

8: BestOffCols = OffCols

9: BestCycleSaving = CyclesSaved - CyclesIncrease

10:  end if

11: end for

12: Return LL-Target = (BestOffCols/MaxCols)*NumTotalPages (END)

g w o e

PageFaultIncrease = SDHCounters [MaxCols-1] + ... + SDHCounters[MaxCols-OffCols]

Figure 9: Algorithm to estimate LL Target.

Periodically the counters in MMON are read to estimate the in-
crease in page fault and the benefit from LLPCM hits. This is done
by using the algorithm described in Figure 9. For a 64 column
MMON, there are 33 possible values for LL-Target in terms of
columns (0-32). The algorithm estimates for each such point the
increase in execution time due to increased page-fault rate and re-
duction in execution time due to low latency LLPCM hits. The
point that minimizes the expected execution time is selected as the
LL-Target. We invoke this algorithm once every 250ms. At each
invocation, the counters in MMON are multiplied by 0.9 to account
for changing phase behavior, similar to as done in [21].
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4.3 Changing Effective Memory Size via
Ballooning and Page Status Table

The MMON estimates of LL-Target is periodically read by the
OS. If the number of LLPCM pages in the system is less than LL-
Target, the OS evicts some HDPCM pages so that the memory units
associated with those pages can be used for LLPCM operation. To
enable this, we use the concept of Ballooning which is an effective
way of reclaiming idle pages in the system [23]. The concept of
Balloon is described in Figure 10. A balloon process is a dummy
process which can take away physical memory pages from running
processes. When the OS wants to reduce the available pages, it
inflates the balloon and vice versa.

INFLAT/

MEMORY

£

(DECREASE EFFECTIVE MEMORY)

MEMORY

YLATE

MEMORY

S0

(INCREASE EFFECTIVE MEMORY)

PAGE OUT
PAGE IN

Figure 10: Concept of Balloon process for stealing pages [23]

In MMS, the memory units associated with the pages claimed
by the balloon process, are marked by the OS to be free for stor-
ing second halves of LLPCM pages. This information is commu-
nicated to the hardware using a memory mapped table, called the
Page Status Table (PST). Each page can be in one of the four states:
a normal OS page (Normal), a monitor page used by MMON
(Monitor), a balloon page that is available to be used in LLPCM
mode (BalloonFree), and a balloon page that is currently be-
ing used in LLPCM mode (BalloonUsed). The PST contains a
two bit status field for each page (which means PST occupies <
0.01% of main memory). The OS uses it to specify a balloon page,
and to reclaim a BalloonFree page in case it wants to increase
memory capacity. The PST avoids the scenario where OS can vic-
timize a BalloonUsed page for allocating another page during
page fault. The PST is kept coherent by disallowing any updates to
PST from the hardware when the OS is operating on it.

When NumBalloonPages < LLTarget, the OS converts some
Normal pages into BalloonFree pages using its own replace-
ment algorithm, ensuring that a Monitor page is not converted
into BalloonFree. The hardware can then use these pages for
LLPCM operation. When the NumBalloonPages > LLTarget,
the OS converts BalloonFree pages into Normal pages. If
there are not enough BalloonFree pages, the hardware is in-
structed to actively convert some of the BalloonUsed pages into
BalloonFree pages. The LL-Target thus set by MMON is en-
forced lazily by adjusting the number of balloon pages.

4.4 Redirection, Upgrades, and Downgrades

For pages that are stored in LLPCM mode, the actual physical
location of the pages may be different from the physical address
specified by the OS. MMS contains a hardware table called the
Page Redirection Table (PRT), which is responsible for the trans-
lation from a physical address to the PCM memory address. Each
page has a corresponding entry in the PRT, which contains a valid
bit, a ref bit, and a pointer. For pages in HDPCM mode, the associ-
ated PRT entry is invalid. For pages in the LLPCM mode, the asso-
ciated entry has a pointer which stores the address of the physical
memory unit that stores the second half of the page. The first half



of such a page is always stored in place, albeit in LLPCM mode.
We now describe the process of accessing memory in MMS, and
converting pages between HDPCM and LLPCM modes.

4.4.1 Memory Access

The incoming line address is applied to the PRT. If the associated
page has an invalid PRT entry then the page is a HDPCM page and
the physical location corresponds with the incoming address. That
location is accessed in HDPCM mode. If the PRT entry is valid,
and the line address corresponds to the first half of the page, then
the physical location still corresponds with the incoming address,
except that location is accessed in LLPCM mode. Whereas, if the
second half of the page is accessed then the pointer in the PRT entry
specifies which physical location must be accessed. That location
is accessed in LLPCM mode.

4.4.2 Upgrades

When there is a miss in the PRT, the HDPCM page may be con-
verted into LLPCM page for lower latency. We call this process a
Page Upgrade. This process is performed as follows. First, a vic-
tim unit is found either from one of the BalloonFree units or
from one of the units that is already in LLPCM mode. If the victim
isaBalloonFree, then it’s status is changed to BalloonUsed
in the PST. The contents of the original page are read out and stored
in LLPCM mode for the first half, and the second half is stored in
the victim unit, again in the LLPCM mode. The PRT entry for the
page is upgraded to be valid, and the pointer field is set to the vic-
tim unit. If the victim unit was already in LLPCM mode, then the
upgraded page resident in that location must be downgraded first,
which we describe next.

4.4.3 Downgrades

We use the term Page Downgrade to denote the process of con-
verting a page from LLPCM mode to HDPCM mode. A page
downgrade can happen either when the page is being victimized
to upgrade another page, or if the LL-Target is much smaller than
the number of balloon pages, so the hardware is trying to convert
BalloonUsed pages to BalloonFree pages. The process of
downgrade is performed as follows: The data is read out from both
memory units occupied by the LLPCM page and is stored in HD-
PCM format in the original location. The corresponding entry in
PRT is invalidated. The PST entry is updated to change the status
of the freed unit from BalloonUsed to BalloonFree.

4.5 OS Support

MMS requires the OS to support the dynamically changing mem-
ory capacity. First, the page replacement algorithm is updated to
check PST and not victimize Balloon pages. Second, an OS pro-
cess must periodically check (e.g., every 250ms) to ensure that the
target set by MMON is close to number of balloon pages. If the
target is higher, then the OS inflates the balloon to create more bal-
loon pages. If the target is lower, then the OS deflates the balloon
and converts BalloonFree pages into Normal pages.

5. CASE STUDY

We now analyze the effectiveness of MMS using a simple kernel
RandStep as a case study to provide insights. Detailed evaluations
with standard benchmarks will be presented in Section 7. RandStep
randomly accesses one of the lines in its working set once every 100
instructions. The working set size changes once every 20 Billion
instructions, as described in Figure 11. It has three modes: small
working set (30% memory), medium working set (60% memory),
and large working set (90% memory).

158

SML1 MED1 LRG1 MED2 SML2 LRG2 SML3
20 40 60 80 100 120
Number of Instructions (in Billions)

140

Figure 11: RandStep Kernel: Accesses random memory line in
working set once every 100 instructions

Ideally the system should have almost all the memory in LLPCM
mode for SML1, SML2, and SML3 phases. For LRG1 and LRG2
almost all the memory should be in HDPCM mode to accommodate
the working set. We execute this kernel on a single-core system
with 1GB of memory with MMS enabled (other parameters shown
in Table 1). We sampled the system once every billion instructions
to measure various statistics. Figure 12 shows the effective memory
capacity visible to the OS for different phases of the kernel.
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Figure 12: Effective memory capacity usable by OS with MMS

During the SML phases the effective capacity is halved which
means almost all pages in memory can be in LLPCM mode. The ef-
fective capacity of the system increases as the demand for capacity
increases. These results also show the need for dynamic adaptation
to different phases as a static partition of memory between LLPCM
and HDPCM regions causes thrashing in phases LRG1 and LRG2.
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Figure 13: Percentage of memory accesses in LLPCM mode:
Expected and with MMS

We also measured the number of accesses that occur in the LLPCM
mode. Given that RandStep accesses memory randomly, we can
compute the expected percentage of accesses in LLPCM mode for
a theoretical system. For SML phases, all the memory accesses can
happen in LLPCM mode. For MED phases, 40% of the memory
pages are available for optimizing 60% of memory capacity, which
means two-thirds of the accesses can be in LLPCM mode. And,



for LRG phases, about 10%/0.9=11% of the accesses can happen
in LLPCM mode. Figure 13 shows the percentage of all memory
accesses that occur in the LLPCM region, both the expected theo-
retical bounds and the measured statistics with MMS. The two re-
sults match well and MMS comes close to the theoretical possible
improvement.
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Figure 14: Normalized performance of MMS over HDPCM

Figure 14 shows the performance of MMS normalized with re-
spect to the baseline system, which has all the pages in HDPCM
mode, measured over periods of executing one billion instructions
each. For SML and MED phases, MMS provides significant per-
formance improvement. However, when the phases changes such
that the working set increases instantly MMS takes more time than
baseline to accommodate this working set, hence the drop in per-
formance for phase transitions from SML to MED, MED to LRG,
and SML to LRG. But once the working set gets accommodated
MMS has similar or significantly better performance. MMS re-
duces overall execution time for this kernel by 22%, providing an
effective speedup of 1.28x.

6. EXPERIMENTAL METHODOLOGY
6.1 Configuration

We use an in-house system simulator for our studies. The base-
line system is shown in Figure 15 with the parameters given in
Table 1. The system contains an eight core CMP. We use a sim-
ple in-order processor model so that we can evaluate our proposal
for several hundred billion instructions. The baseline also contains
a 256MB write-back DRAM cache organized as a 32MB per-core
private cache. The DRAM cache uses a linesize of 128B. Write
requests arrive at main memory only on DRAM cache evictions.

PROCESSOR CHIP

ADDR

PCM-BASED
MAIN MEMORY

DATA

MORPHABLE CELLS

DRAM CACHE DEFAULT: HDPCM

Figure 15: Simulated System (Figure not to scale)

The 8GB PCM-based main memory consists of morphable PCM
cells that are defaulted to HDPCM mode in the baseline. We as-
sume that the baseline memory system is sufficiently banked such
that the contention between requests is negligible. Memory is as-
sumed to have a read latency of 1000 cycles if the page is in HD-
PCM mode and 500 cycles if the page is in LLPCM mode.
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A page size of 4KB is assumed. Virtual to physical address trans-
lation is performed using a page table built in our simulator. A
clock style algorithm is used to perform page replacements. Page
misses are serviced by a Flash based solid state disk (SSD), which
has a latency of 100K cycles.

For the MMS enabled system, we incorporate an EDRAM-based
PRT of 6MB (2M pages * 3 byte per entry).* To model the latency
overhead of PRT-based indirection, we assume that each memory
access in MMS incurs extra latency of 5ns (20 cycles). This latency
overhead is not present in non-MMS systems.

Table 1: Baseline Configuration

System 8-core CMP, 4GHz

single-issue in-order core private-L1
2MB, 4-way, LRU, 128B linesize
32MB, 8-way, 128B linesize 25 ns
(100 cycle) access, writeback policy
8GB PCM, consisting of morphable
PCM cells that are in HDPCM mode
HDPCM : 250ns (1000 cycles)
LLPCM : 125 ns (500 cycles)
unlimited size, read latency

25 micro seconds (100K cycles)

L2 cache (private)
DRAM cache (private)

Main memory

PCM read latency

Flash-Based SSD

6.2 Workloads

We use eight benchmarks from the SPEC CPU 2006 suite: BWaves,

CactusADM, GemsFDTD, Ibm, mcf, leslie3d, milc, and zeusmp.
These benchmarks were chosen because they have at least 1 mem-
ory access per 1000 instructions out of the 32MB cache (for work-
loads that fit in the cache, the proposed scheme neither helps nor
hurts performance). We skip the first 50 billion instructions for
each benchmark and then execute the next 50 billion instructions.
Table 2 shows the main-memory read accesses per 1000 instruc-
tions, write backs per 1000 instructions, on average for a 1-core
1GB system. It also shows the page faults at 0.5GB, 0.6GB, and
0.75GB memory normalized to the page fault rate with 1GB mem-
ory. The first four benchmarks need less than half of the allocated
1GB capacity, milc needs slightly more than 0.5GB, and the next
three benchmarks need more than 0.75GB.

Table 2: Benchmark Characteristics (PF denotes Relative Page
Fault Rate with respect to 1GB Memory Size).

Name Reads | Writes PF PF PF
PKI PKI 0.5GB | 0.6GB | 0.75GB
CactusADM 1.32 0.43 1.00x 1.00x 1.00x
lom 6.42 3.22 1.00x 1.00x 1.00x
leslie3d 3.15 1.65 1.00x 1.00x 1.00x
zeusmp 1.68 0.69 1.00x 1.00x 1.00x
milc 10.8 4.08 1.35x 1.00x 1.00x
BWaves 6.4 0.86 5.08x 4.15x 2.75x
mcf 3.7 0.04 27.1x 26.1x 13.4x
GemsFDTD 6.6 3.36 70.4x 22.9x 7.00x

“The storage of PRT can be reduced by restricting both halves of
LLPCM pages to be within 256 pages from each other. This would
decrease the storage overhead of PRT to approximately 2MB. It is
also possible to have a memory mapped PRT and cache the PRT
entries in a smaller structure based on demand. We do not consider
such optimizations in this paper.



To form multiprogrammed workloads, we run these benchmarks
in a rate mode, where each processor executes the same bench-
mark in a separate virtual space. We also created two heteroge-
neous workloads: mix_1 consisting of two copies each of milc,
Bwaves, mcf, and GemsFDTD. And mix_2 consisting of four
copies each of mcf and GemsFDTD. The workloads used in our
study are described in Table 3. We execute one benchmark per
core. The simulation continues till each core has executed 50 bil-
lion instructions. Execution time of the workload is determined by
the time when simulation terminates.

Table 3: Workload Summary.

[ Name | Description |
cactus_r 8 copies of CactusADM
lom_r 8 copies of Ibm
leslie_r 8 copies of leslie3d
zeusmp_r 8 copies of zeusmp
milc_r 8 copies of milc
bwaves_r 8 copies of BWaves
mcf_r 8 copies of mcf
gems_r 8 copies of GemsFDTD
mix_1 2 copies of milc, BWaves, mcf, and GemsFDTD
mix_2 4 copies each of mcf and GemsFDTD

7. RESULTS AND ANALYSIS

7.1 Performance

Figure 16 shows the speedup (normalized to baseline) for four
systems: the baseline 8GB system with all memory in HDPCM
mode, an iso-area system that has 4GB memory all in LLPCM
mode, the proposed MMS system with 8GB morphable memory,
and a system that has 8GB all in LLPCM mode. Note that the 8GB
LLPCM system requires 2x the area as the other three systems and
it serves as an upper bound on the speedup possible with MMS. The
bar labeled Gmean is the geometric mean over all the workloads.
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Figure 16: Speedup of MMS with respect to other systems

Neither 8GB HDPCM nor 4GB LLPCM works well across all
workloads. For the first five workloads, latency is more important
than capacity, hence they show significant improvement with the
4GB LLPCM system. BWaves has phases where sometimes it is la-
tency sensitive and sometimes capacity sensitive. Four workloads,
mcf_r, gems_r, mix_1, and mix_2, are capacity intensive and see
significant degradation in performance with 4GB LLPCM system.
Thus, simply using HDPCM memory instead of LLPCM memory
does not provide significant overall improvement. MMS dynam-
ically changes memory mode between LLPCM and HDPCM de-
pending on application demand and provides an average speedup
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of 1.4x, which is significantly compared to the 1.54x possible with
the upper-bound system.’

7.2 Memory Accesses from LLPCM

MMS divides memory into LLPCM and HDPCM regions. Ide-
ally we would like to have almost all the accesses satisfied from the
LLPCM region, as that mode of operation has lower latency and is
expected to have better endurance and energy-efficiency. Figure 17
shows the percentage of hits serviced in the LLPCM mode with
MMS. The data is separated in terms of read accesses, write backs
from DRAM cache, and overall accesses. The bar labeled Amean
represents the arithmetic mean measured over all workloads.
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Figure 17: Percentage of accesses serviced from LLPCM

The first five workloads are not capacity sensitive and almost all
of the read and write requests are satisfied in LLPCM mode. For
capacity sensitive workloads (next five) almost 90% of the accesses
are satisfied in LLPCM mode. The writeback stream in mcf_r
has poor locality hence only half of the write-backs hit in LLPCM
mode. However, mcf has negligible writeback traffic (=1% of all
accesses). Overall, on average, 90% of the writebacks and 95% of
read requests are satisfied in LLPCM mode. These benefits come at
a small overhead of < 4 transfers between HDPCM and LLPCM,
every 1000 memory accesses.

Energy Implications: Satisfying more than 90% of the accesses
in LLPCM mode also means that energy consumption of the MMS
system would be much closer to LLPCM rather than HDPCM.
The exact energy savings between the two modes is a function of
bits/cell in each mode and the ADC technology.

Lifetime Implications: Studies in Flash domain have shown
MLC devices to have 10x lower endurance than SLC devices [22],
indicating significant room for lifetime improvement. MMS en-
hances lifetime significantly compared to naively using MLC-PCM.
For example, if SLC-PCM has endurance of 10® writes and MLC-
PCM has lifetime of 107 writes , then the effective endurance with
MMS would be approximately 0.9 - 10® writes, if 90% of the writes
were satisfied in SLC-PCM mode.

Write Bandwidth Implications: MLC PCM is expected to suf-
fer from poor write bandwidth. MMS fundamentally solves this
problem by satisfying 90% of the writes in LLPCM (SLC) mode
(no iterative writes). Since MMS satisfies most of the writes from
SLC, the effective write bandwidth is much closer to SLC. For
example, if SLC write bandwidth = 5 units, and MLC=1 units,
then with MMS the write bandwidth is approximately equal to 4.6
(0.9-540.1-1) units.

SWe also evaluated the overall performance improvement on other
metrics as well and got similar results. MMS obtained an average
improvement of 38.4% on weighted speedup metric [19] compared
to 53.5% possible with upper-bound system. MMS obtained an
average improvement of 38% on hmean-fairness metric [11] com-
pared to 53% possible with upper-bound system.



7.3 Dynamic Memory Capacity with MMS

Figure 18 shows the effective memory capacity when MMS is
enabled, averaged over the entire execution. The first five work-
loads have close to 50% capacity, meaning almost all memory is in
LLPCM mode. For the other five workloads, memory capacity gets
extended to fit the working set each of the workload.

Avg. Mem Capacity(%)

Figure 18: Average memory capacity with MMS

The average capacity statistics do not capture the dynamic vari-
ation in memory demand of workloads. Figure 19 shows the dy-
namic capacity with MMS, for bwaves_r and mcf_r. The data is
obtained by sampling the system once every one billion instruc-
tions. BWaves has phases of execution where the working set in-
creases close to full capacity, and MMS responds to this demand by
increasing the available memory capacity. Other workloads, such
as mcf_r, have a regular demand for memory capacity and hence a
constant memory capacity with MMS, after the initial period.
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Figure 19: Phase behavior of bwaves_r and mcf_r with MMS

We also evaluated equal cell-capacity Static Memory System
(SMS) that statically partitions between LLPCM and HDPCM. How-
ever, our baseline already has a relatively large (3.25% of memory-
capacity) DRAM cache so a small partition of LLPCM does not
help. If LLPCM partition is made large (25%) then it hurts work-
loads which need more (>75%) memory capacity. As MMS can
adapt to variation in memory capacity demand, MMS is much more
robust and effective than SMS.

7.4 Page Fault Rate

MMS tries to modulate the capacity of the system in response to
the workload. If the workload gets less capacity than required, it
would result in increased page fault rate. Figure 20 shows the page
faults of 4GB LLPCM system and 8GB MMS system normalized
to 8GB HDPCM baseline. For gems_r and mcf_r, the 4GB sys-
tem has significantly increased page fault at 4GB, whereas MMS
has page fault similar to baseline. For bwaves_r, the transitions in
demand causes page fault rate to increase with MMS when capac-
ity increases from 50% to 90%. Whereas, the 8GB baseline could
accommodate the entire working set of bwaves_r at all times. On
average, the number of page faults with MMS (1.3x) is much closer
to the 8GB baseline system, as compared to the 4GB system (4.6x).
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Figure 20: Normalized Page Fault Rate (Y axis in log scale)

8. RELATED WORK

In our work, we have exploited the observation that memory
capacity demand varies at runtime. Therefore, a transient excess
memory capacity can be used to improve performance by convert-
ing the memory from high-density mode to low-latency mode. Lim
et al. [6] also showed that memory demand can vary even within
the same application for workloads such as TPCC-H and proposed
using memory blades to efficiently share capacity between multi-
ple blade systems. Note that the overall capacity of the entire sys-
tem still remains constant in their solution, and their solution is not
geared towards improving hit latency of memory.

Kgil et al. [7] proposed dynamically downgrading MLC pages to
SLC pages for Flash-based disk cache when the page nears its life-
time, thereby increasing the overall lifetime of the system. The con-
cept of dynamically choosing between single level cells and multi-
level cells for Flash storage was proposed in [9]. Note that man-
aging storage vs. managing main memory are fundamentally dif-
ferent in that data from storage cannot be evicted by controller just
to improve performance, whereas in main memory unused resident
pages can be evicted to improve overall performance. FlexFS [9]
leverages only unused portion (that does not store any data) of
Flash storage for improving latency. It typically takes users several
months or years to fill up an SSD, so leveraging unused portions
for latency optimizations is acceptable in that domain. However,
in our case, main memory typically fills up in minutes, so rely-
ing only on unused portion is not a viable option. Furthermore,
FlexFS does not need to the estimate dynamically varying capacity
demand. Whereas, the demand for main memory capacity changes
frequently, and hence requires a dynamic mechanism to determine
the optimal partition between fast region and high density region.

MMS tries to reduce memory latency by trading off memory
capacity. A converse approach is to exploit redundancy in data
stored in memory to increase capacity, albeit at higher latency. Both
memory compression and MMS require similar support from OS
to handle the dynamically changing memory capacity and to re-
duce or increase balloon pages [2] to control effective memory size.
However, these two approaches are fundamentally different in that
compression is dependent on data values and not on demand. It
cannot be used to reduce the latency for memory hits. These two
approaches are orthogonal and can be combined.

We have proposed a hardware managed MMS, where the hard-
ware regulates which pages are in LLPCM mode and which pages
are in HDPCM mode. MMS can also be implemented completely
as a software module within the OS. In such a case, the OS can
divide memory into two regions, and use dynamic page remap-
ping [10] to upgrade frequently accessed page from HDPCM re-
gion to LLPCM region. Such a technique obviates the PRT-based
indirection of MMS, but requires monitoring usage of each page
and performing the upgrades and downgrades in software, which
incurs significant performance overhead.



9. SUMMARY

The demand for main memory capacity and the scaling chal-
lenges of DRAM call for architects to look towards exploiting other
emerging technologies that are expected to be more scalable. Phase
Change Memory (PCM) has emerged as a promising technology
that has better scalability than DRAM. One of the ways PCM de-
vices are expected to improve density is by packing multiple bits
per cell. While such Multi-Level Cells (MLC) have better density
they have much higher read latency, reduced lifetime, and higher
energy compared to cells that store one bit. Ideally we would like
to have the capacity of MLC while having the latency, lifetime, and
energy of SLC devices. To this end, our paper exploits the fact that
typical applications do not use all the available memory capacity,
and makes the following contributions:

1. We propose an adaptive infrastructure, Morphable Memory
System (MMS) that can dynamically partition the memory
into high-density pages and low-latency pages. MMS lever-
ages morphable PCM cells that can be programmed to be in
either high-density mode or low-latency mode.

2. We propose a cost-effective runtime mechanism to determine
the best partition between high-density region and low-latency
region in MMS. This mechanism uses stack distance his-
togram analysis and sampling to estimate the best partition,
while incurring a total storage overhead of less than 4KB.

3. We provide the hardware-software interface for the OS to
handle dynamically varying memory capacity. The OS uses
the information from the monitoring circuit to regulate mem-
ory capacity in order to free up a given number of pages for
low latency access.

We evaluate the MMS system using a kernel as well as ten work-
loads on a system with 8GB of main memory consisting of MLC
PCM cells. Our evaluations show that on average MMS satisfies
95% of the read requests and 90% of the writebacks from the low
latency region, while keeping the overall page fault rate close to the
8GB system. On average, MMS provides a performance improve-
ment of 40%, bridging three-fourth of the performance difference
between SLC and MLC PCM devices.

We believe an architecture such as MMS will be crucial in in-
corporating technologies that present a trade-off between density
and latency, and can be morphed dynamically. In this work, we re-
stricted morphing to two levels, in which one of the level has half
the density of the other. A more generalized structure that allows
any number of levels without restrictions can also be architected.
In our proposal we optimized the partition based on performance,
other partitioning algorithms better suited to optimize lifetime or
energy can also be investigated. Furthermore, wear leveling algo-
rithms better suited to morphable memory structures can be devel-
oped. Exploring such extensions is a part of our future work.
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