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Abstract—Automatic music generation systems have gained in popularity and sophistication as advances in cloud computing have

enabled large-scale complex computations such as deep models and optimization algorithms on personal devices. Yet, they still face

an important challenge, that of long-term structure, which is key to conveying a sense of musical coherence. We present the MorpheuS

music generation system designed to tackle this problem. MorpheuS’ novel framework has the ability to generate polyphonic pieces

with a given tension profile and long- and short-term repeated pattern structures. A mathematical model for tonal tension quantifies the

tension profile and state-of-the-art pattern detection algorithms extract repeated patterns in a template piece. An efficient optimization

metaheuristic, variable neighborhood search, generates music by assigning pitches that best fit the prescribed tension profile to the

template rhythm while hard constraining long-term structure through the detected patterns. This ability to generate affective music with

specific tension profile and long-term structure is particularly useful in a game or film music context. Music generated by the MorpheuS

system has been performed live in concerts.

Index Terms—Affective Computing, Music, Music retrieval and generation, Affective computing applications, Sound and Music

Computing, Entertainment, Variable Neighborhood Search, Pattern Detection

✦

1 INTRODUCTION

T ECHNOLOGIES for digital music have become increas-
ingly important, bolstered by rising global expendi-

tures in digital music in excess of 64 billion USD in 2014
alone [1]. The popularity and relevance of automatic music
generation has recently been underscored by the launch of
Google’s Magenta project1, “a research project to advance
the state of the art in machine intelligence for music and
art generation”. In this research, we develop a music gen-
eration system, called Morpheus [2], that tackles one of
the biggest remaining challenges in the field of automatic
music composition: long term structure. Long term structure
is that which generates coherence over larger time scales
from phrases up to the entire piece; it refers to more than
simply traditional ABA form, and includes the modulation
of features such as loudness and tension, and the use of
recurrent patterns and motivic transformations over time, so
as to generate coherence over these large time scales. While
most existing music generation systems create pieces that
may sound good over a short time span, these outputs often
lack long-term structure. MorpheuS can take any existing
polyphonic music piece as template and morph it into a
new piece with a predefined tension profile. The new piece
will also preserve the same long term structure (i.e. pattern
structure) as the template.

To this day, it remains notoriously difficult to en-
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force constraints (e.g. long-term structure) in music gener-
ation systems based on machine learning methods such as
Markov models [3]. In previous research, the first author
therefore developed a novel method for constraining long-
term structure through an optimization-based approach,
combined with machine learning. The proposed framework
consisted of an efficient variable neighborhood search (VNS)
optimization algorithm that is able to generate melodies
(or monophonic music) with a fixed semiotic structure (e.g.
AABBACA) [4, 5] and evaluates its solution through the
Euclidean distance between a Markov model built on a
corpus and one trained on the generated piece. This research
shows that the approach offers a viable way of constrain-
ing structure. In the current paper, the VNS algorithm is
expanded to generate complex polyphonic music. Although
the algorithm is able to work with any type of polyphonic
music, as a proof of concept, we focus on piano music in
this research.

A second novel aspect of MorpheuS is the inclusion of an
original tension model. Tension shapes our music listening
experience. In some music genres, such as game and film
music, there often is a direct relationship between tension, a
narrative, and the emotion perceived [6]. In this research,
we aim to generate music that has a predefined tension
profile through time. The target tension can be specified
by the user, or calculated from a template piece using
a computational model developed by the authors [7]. A
system like Morpheus that can generate music having a
particular tension profile could be employed by film makers,
composers, and game programmers when music matching
a specific narrative is desired.

The third contribution of this research is the integration
of a state-of-the-art pattern detection algorithm [8], which is
used to find recurring patterns and themes in the template
piece. MorpheuS then uses the patterns found to configure
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the structure in a newly generated piece by introducing the
patterns as hard-constraints during the generation process.
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Fig. 1: Overview of MorhpeuS’ architecture.

MorpheuS’ functional architecture is displayed in Fig-
ure 1. The system is implemented entirely in Java. The
main modules of the algorithm, in bold, will be further
discussed in Sections 3, 4, and 5. Before embarking on these
discussions, we briefly survey related systems in the next
section.

2 LITERATURE REVIEW

Before examining the individual components of the Mor-
pheuS system, we give an overview of related research.
The first subsection covers different techniques used in
automatic music generation; the focus of this overview lies
mainly on metaheuristic optimization algorithms. Next, we
focus on the two types of long term structure that are incor-
porated in the system. A first aspect of long-term structure
is ensured through a tension profile. By requiring that the
music adhere to a coherent tension profile, MorpheuS can
generate music displaying specific tension characteristics
throughout the piece. This makes the output particularly
well suited to game or film music scenarios. An overview
thus follows of previous research on music generation with
a narrative and tension. We then address the second aspect
of long-term structure in MorpheuS, namely, recurring pat-
terns in generated music, providing a review of how this
has previously been tackled by researchers in automatic
composition. For a more general survey of current music
generation systems, the reader is referred to [9].

2.1 Generation techniques for music

The idea that computers could compose music is as old
as the computer itself. Ada Lovelace, who worked with
Charles Babbage on the Difference Engine, predicted that
the engine when realised could one day “compose elaborate

and scientific pieces of music of any degree of complexity or
extent” [10].

Since then, many automatic systems for music gen-
eration have been developed. In the 50s, the first piece
composed entirely by a computer, “The Illiac Suite”, was
generated by a stochastic rule-based system [11]. More re-
cently, a number of systems based on Markov models were
developed for simple melody generation [12, 13], to har-
monization [14, 15] and improvisation systems [16, 17, 18].
In recent years deep learning models have entered the scene
[19, 20, 21, 22]. While many of these systems produce output
that sounds good on a note-to-note level, they often lack
long-term coherence. We aim to tackle this challenge in
this research by employing pattern detection techniques.
In order to exploit the patterns found, we opt for an
optimization-based approach, which allows us to constrain
structure.

In Section 5 the problem of generating music with long-
term structure is defined as a combinatorial optimization
problem. This problem is computationally complex to solve,
as the number of possible solutions grows exponentially
with the length of the piece. As an example, a piece con-
sisting of only 32 notes, with 24 possible pitches per note,
has 3224 possible solutions.

There have only been limited attempts at solving music
generation problems with exact methods such as integer
programming. For example, Cunha et al. [23] uses inte-
ger programming with structural constraints to generate
guitar solos based on existing licks. Their objective func-
tion is based on music theoretic rules. In research by [24],
the authors propose a method to generate counterpoint—
independent linear voices that combine to form a single
harmonic texture. They formulate the generation task as
an integer programming problem that uses existing com-
position rules as constraints to control global structure.
However, this work remains a theoretical formulation, with
no solution method as yet implemented.

In order to overcome the difficulty and often long com-
putational run times required to calculate exact solutions
to optimization problems, many practical applications use
metaheuristics. A metaheuristic is defined by Sörensen [25] as
“a high-level problem-independent algorithmic framework
that provides a set of guidelines or strategies to develop
heuristic optimization algorithms. The term is also used to
refer to a problem-specific implementation of a heuristic op-
timization algorithm according to the guidelines expressed
in such a framework.” These techniques often employ a
variety of strategies to find a good solution in a limited
amount of computing time; they do not guarantee an op-
timal solution, but typically good solutions are found [26].

There exist three main groups of metaheuristics:
population-based, constructive, and search-based algo-
rithms [27]. The first group, which includes evolutionary
algorithms, has seen recent gains in popularity in the liter-
ature. Population-based algorithms get their name from the
fact that they inter-combine a set of solutions (population)
to create new ones. Horner and Goldberg [28] were the first
to develop a genetic algorithm for music generation. These
techniques have later been used to generate jazz solos [29],
counterpoint style music [30, 31, 32], and rhythmic patterns
[33, 34], and to combine fragments for orchestration [35].
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The second group, constructive metaheuristics, gradu-
ally build solutions from their constituent parts, for exam-
ple, by growing individual notes in sequence. An example
of this category includes ant colony optimization, which
was first applied to music in 2007 to harmonize baroque
music [36].

The third category, local search-based heuristics, typi-
cally make iterative improvements to a single solution. They
include algorithms such as iterated local search, simulated
annealing, and variable neighborhood search [27]. An ex-
ample of these techniques in the field of music generation
can be found in the research of Davismoon and Eccles [37],
who used simulated annealing to generate music according
to a fitness function that was derived from a Markov model.
The first author of the current paper, was the first to develop
a variable neighborhood search (VNS) algorithm that was
able to generate counterpoint music [38]. This VNS was
shown to outperform a genetic algorithm on the same task
and has been modified in the current research to generate
complex polyphonic music.

2.2 Narrative and tension

The tension profile, which is integrated in the algorithm so
as to shape the tension of the generated music, is particu-
larly important when generating music with a narrative, or
program music. Program music has a long and illustrious
history, a well-known example being Richard Strauss’ “Don
Quixote”. Such narrative music tells a story, by using a
set of organizational, representational, and discursive cues
that deliver story information to the audience. Such cues
can include tension profiles, leitmotifs (recurring melodic
fragments associated with a person, idea, or story situation),
and others. All of these elements typically elicit varying
emotion responses during the unfolding of a piece when
synchronized with simultaneous media such as video or
game play. Existing systems in the domain of video and
game music are discussed, followed by a more focused
overview of literature on tension models.

2.2.1 Generating film music

A prominent application of music with narrative is film
music. Music has been shown to be an important source
of perceived emotion in film [6, 39]. While Prechtl et al.
[40] has conducted research on generating music that evokes
basic emotions in the context of games, very little research
exists on developing music generation systems that follow
the emotion content of films. Even commercial applications
such as the web-based music generation app, Jukedeck2, do
not yet take into account the emotion narrative. Jukedeck
generates background music for YouTube videos using a
combination of rules and deep learning.

A prototype system that generates background music
and sound effects for short animation films was developed
by Nakamura et al. [41]. For each scene, music (harmony,
melody, rhythm) is generated based on rules from music
theory whilst taking into consideration the mood, the inten-
sity of the mood, and the musical key of the previous scene.
The sound effects are determined by the characteristics and

2. jukedeck.com

intensity of the movements on screen. In the next subsection
we will discuss the related topic of game music.

2.2.2 Game music – blending

The most dynamic form of narrative in music can be
found in computer games, whereby a user creates his or
her own unique scenario when moving through the game.
The accompanying music needs to follow and support the
suspense and emotion of the current game play. Game music
is rarely generated on the fly. Short audio files are generally
cross-faded together as the player moves through different
game states [42]. An exception to this common practice
can be seen in the game, Depression Quest3, as the music
is generated dynamically as the user moves through the
different scenarios of the game. With current cross-fading
techniques, it is not uncommon for two fragments to clash
rhythmically or harmonically, causing a jarring change in
the music. The automatic DJ-system developed by Müller
and Driedger [43] ensures smooth blending, yet the audio
fragments need to be harmonically and rhythmically similar
for the blending to work successfully. By restricting the
range of harmonies and rhythms in this way, one also
limits the musical variations and expressive capacity of the
music. To overcome this limitation, some games implement
procedural music approaches that use control logics or rules
that control playback. One of the first procedural music
and audio approaches for computer games can be found
in the game ‘Otocky’ for the Famicom platform. Otocky is
a side-scrolling shooter, whereby the player controls a ship
that fires balls at both enemies and flying musical notes.
The melody part is formed by the player’s firing behavior
and in-game mechanics, and is rendered on top of a two
note bass line [44]. For an overview of procedural music
techniques, the reader is referred to Collins [44].

More recent work has focused on incorporating elements
of tension and emotion into adaptive game music. Prechtl
[45] created a system that generates music from scratch
instead of using existing fragments. Prechtl uses a Markov
model for chord generation that takes into account emotion
parameters such as alarm or danger. His study uncov-
ered correlation between mode and valence, and between
tempo/velocity and arousal.

Casella and Paiva [46] created MAgentA (not to be
confused with Google’s music generation project Magenta),
an abstract framework for a video game background music
generation that aims to create “film-like” music based on
the mood of the environment using a cognitive model.
At the time of publication, the authors mention that the
framework was being integrated from the abstract level into
the FantasyA Virtual Environment, but no further references
could be found.

The system developed by Brown [47] makes use of
the concept of “Leitmotifs” , commonly used in Western
opera. Brown [47]’s system stores different forms of each
motif corresponding to varying degrees of harmonic tension
and formal regularity. This allows the system to choose the
appropriate fragment corresponding to the current state and
story of a game. The reader is referred to Collins [44] for a
more complete overview of dynamic music in games.

3. https://isaacschankler.bandcamp.com/album/
depression-quest-ost
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2.2.3 Generating music with tension

Musical tension is an important tool for evoking emotion.
According to Farbood [48], the way that different listen-
ing experiences translate into actual ‘affect’ is a complex
process. Musical tension, measured based on musical struc-
tures, provides a stepping stone to understanding and quan-
tifying subjective, emotional responses. The link between
emotion and tension has become apparent in many stud-
ies [49, 50, 51, 52]. If a music generation system can gen-
erate music according to given tension profiles, it becomes
directly relevant for applications in game and film music.
Recent research has made advances in the quantification of
aspects of musical tension, such as tonal tension [7, 53], even
combining them to produce a composite model [54]. Based
on an extensive empirical experiment, Farbood [48] built
a tension model that takes into account multiple musical
parameters to obtain one comprehensive tension rating. Far-
bood implemented an earlier version of her tension model,
that does not yet integrate features, [54] in the graphical
computer-assisted composition system called Hyperscore,
in which users can intuitively edit and visualize musical
structures as they compose music [55]. Hyperscore shows
low-level and high-level musical features (such as color,
shape, dynamics, harmonic tension) and maps them to
graphical elements which can be controlled by the user
when crafting compositions. Thus, a user can draw a tension
profile and Hyperscore will generate music with a similar
profile.

Similarly, Browne and Fox [56]’s system arranges pre-
written motifs according to a pre-specified tension profile
using simulated annealing. An artificial neural network was
used to compute tension profiles. The objective function
of the algorithm was then formed by taking the Kullback-
Leibler divergence between the desired and observed ten-
sion profiles. The optimal arrangement was then taken to be
the one that minimizes this distance.

In this study, we will focus on multiple aspects of
tonal tension independently versus considering a composite
tension characteristic. The tonal component has proven to
be a particularly strong structural influence on emotions.
In Rutherford and Wiggins [57]’s scary music study, they
conclude that more scary music is generated by breaking
the Western tonal music rules. This result was empirically
verified by users who rated the scariness of the generated
music. The computational model used in this research for
calculating tonal tension is discussed in more detail in Sec-
tion 3. The next section considers the importance of patterns
in music.

2.3 Structural patterns in generated music

Music is more than just a succession of notes that only
needs to sound good in the short term. Having long-term
structure: motives, patterns and variations of those patterns
are essential for an enjoyable and satisfying listening expe-
rience. Music generation systems that use traditional statis-
tical sampling methods based on Markov models typically
only ensure short term relationships between notes [5].

One approach to obtaining long term structure was
implemented by Roig et al. [58], whose system concate-
nates rhythmic and melodic patterns in order to form new

melodies based on a combination of rules and a statistical
method. More complex statistical learning methods, such as
recursive neural networks have recently gained popularity
in the field of music generation due to the availability of
large amounts of digital music data and increased comput-
ing power. While the first neural network for melody gen-
eration was implemented in the late 80s [59], this approach
has become more relevant due to the ability of these net-
works to learn complex relationships between notes given a
large enough corpus. Recent research in audio transcription
by Boulanger-Lewandowski et al. [21] shows promising
results for music generation as well. They use a piano roll
representation for polyphonic pieces to build a Recurrent
Temporal Restrictive Bolzmann Machine (RT-RBM)-based
model. This model learns harmony and melody, and local
temporal coherence. Long term structure is not yet captured
by the model.

Another approach to long-term structure is explored
by Herremans et al. [5] who examined the integration of
Markov models in an optimization algorithm. By looking at
different ways a statistical model can be used to construct an
objective function, the approach ensures that the generated
music has the same statistical distribution of features as a
target dataset of pieces. By treating the problem of music
generation as an optimization problem, Herremans et al.
were able to impose larger-scale structure (e.g. ABBAC) on
the generated music, in addition to short term statistical
constraints. The resulting optimization problem was solved
by a VNS metaheuristic to generate music for bagana, an
Ethiopian lyre. This approach is extended in the current
research to polyphonic music, with automatic detection of
more complex long term patterns in the template piece. The
detection method is described in greater detail in Section 4,
after the next section, which focuses on the tension model.

3 QUANTIFYING TENSION IN MUSIC

Tension is a composite characteristic, which makes it very
hard to capture or measure in a quantitative way. According
to Mary Farbood [48], “increasing tension is a feeling of ris-
ing intensity or impending climax, while decreasing tension
can be described as a feeling of relaxation or resolution” (p.
387). In Herremans and Chew [7], the authors developed
a model for tonal tension based on the spiral array [60],
a three-dimensional model for tonality. The relevant part
of the model is briefly described below, together with how
it was implemented in the MorpheuS system to quantify
tension in an optimization context.

3.1 The Spiral Array

The spiral array is a three-dimensional geometric model for
tonality [60]. It consists of an outermost helix representing
pitch classes (shown in Figure 2), and inner helices (not
shown) representing higher level tonal constructs such as
chords (major and minor) and keys (major and minor)
successively generated from their lower level components.
Any set of points in the spiral array can be weighted and
summed to generate a center of effect (c.e.), representing the
aggregate tonal effect of its components.

Tonal representations in the spiral array mirror close
tonal relationships between the entities, such as a perfect



1949-3045 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAFFC.2017.2737984, IEEE

Transactions on Affective Computing

IEEE TRANSACTIONS ON AFFECTIVE COMPUTING 5

(a) Cloud diameter of a C major chord
(small) versus the Tristan chord (large).

(b) Cloud momentum from a C major
chord to a C# major chord.

(c) Tensile strain of a C major and C#
major chord in the key of C major.

Fig. 2: An illustration of the three tension measures in the pitch class helix of the spiral array.

fifth between pitches, by their proximity in 3D space. For
example, pitches one fifth apart are adjacent to each other
in the pitch class helix (e.g. C-G) and pitches one major
third apart are arranged vertically above one another (e.g.
C-E). Similarly, the most likely key or chord of a cluster
of pitches can be identified through a search for the key
representation nearest to the c.e. of the pitch cluster. The
tension model in MorpheuS uses only the pitch class and
the major and minor key helices. The spiral array takes
pitch spelling into account, meaning that enharmonically
equivalent (but differently-spelled) pitches, such as G# and
Ab have different spatial representations. The interested
reader can refer to [60] for a full description of the spiral
array model.

3.2 A quantitative model of tension

The model, developed by the authors in [7], represents tonal
tension as captured by the geometry in the spiral array. The
software that calculates the tension according to this model
is freely available online4. In order to calculate the tonal
tension of a musical fragment, the piece is first divided into
equal length segments, which can be mapped to clouds of
points in the spiral array. The segment length is expressed
in beats and can be set by the user (default setting is an 1

8

note), a more detailed discussion of the effect of the segment
length can be found in [7]. Based on these clouds, three
measures of tonal tension can be computed:

Cloud diameter captures the diameter of the cloud of notes,
which measures the dispersion of the cloud in tonal
space.

Cloud momentum reflects the movement in tonal space be-
tween two consecutive clouds of notes, by quantifying
the distance between their c.e.’s.

Tensile strain measures the distance between the c.e. of a
cloud and the position of the global key in the array.

Figure 2 illustrates each of the three tension measures
with the pitch class helix of the spiral array. On the left, the
(small) cloud diameter of a C major triad is shown together
with the (much larger) diameter of the tristan chord, a well
known tense chord [61]. The large tonal distance traversed
by a transition from the C major to the C# major chord is
illustrated in Figure 2b, an example of the cloud momentum

4. http://dorienherremans.com/tension

measure. Finally, Figure 2c visualizes the tonal distance
between the c.e.’s of each these two chords and the key of C
major, which shows two contrasting tensile strain measures.

For exact mathematical details of how to calculate the
three measures of tension, the reader is referred to [7]. Mor-
pheuS uses these three tension characteristics to evaluate
the musical output and match it to given template tension
profiles. The weights for each of these characteristics can
be set by the user, reflecting the aspect of tension deemed
most important. The integration of tension in the objective
function of the optimization is discussed in detail in Sec-
tion 5. The next section focuses on the the pattern detection
algorithm implemented in MorpheuS to improve long-term
coherence.

4 DETECTING RECURRING PATTERNS

Automatic recognition, description, classification and
grouping of patterns are important problems in many do-
mains [62]. Applications include image segmentation [63],
human action recognition [64], face description [65], DNA
sequence analysis [66], speech recognition [67], music genre
recognition [68], and affective computing [69]. We focus on
pattern analysis for polyphonic music.

When listening to a musical piece, a listener is able
to recognize structure through perceiving repetition and
relationships between parts of the piece of music. In or-
der for a generated musical piece to sound natural, such
patterns should exist. MorpheuS uses recurring patterns
such as themes and motives from a template piece to fix
these structural elements in a new composition. The de-
tected patterns consist of groups of notes that can recur
transposed in different places throughout the piece. There
has been research on pattern detection techniques for music
audio [70, 71], but our focus is on symbolic music (i.e. MIDI).

MorpheuS uses two state-of-the-art greedy compression-
based algorithms for MIDI, COSIATEC and SIATECCom-
press [8], both based on Meredith’s “Structure Induction
Algorithm” (SIA) and SIATEC. SIA finds all the maximal
translatable patterns (MTP) in a point-set and SIATEC dis-
covers all translational equivalence classes (TECs) of MTPs
in a point-set [72]. The performance of both algorithms is
benchmarked on a compression task in [8]. The specific
application of finding patterns for music generation requires
special consideration when applying these algorithms. A
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discussion of the effect of parameter choices on the chosen
pattern detection algorithm can be found in Section 7.1.
MorpheuS offers the user a choice of which algorithm to
use as each has its own strengths and weaknesses.

When applied to polyphonic MIDI files, the compression
algorithms use a point-set representation of the score, which
positions each note in a two-dimensional pitch/time space.
They then compute a compressed encoding, which takes
the form of a set of TECs of maximal-length patterns. An
example output of COSIATEC in pitch/time space is shown
in Figure 3, whereby the time is expressed in tatums, i.e.,
“the regular time division that mostly coincides with all
note onsets” [73]. Two longer patterns (displayed in red and
green) are detected in the figure. A pattern (or a repetition of
a pattern) is shown as a connected sequence of points, and
its TEC consists of a musical transposition of the original
pattern (one translation unit is a semitone). The two main
patterns in the fragment recur, transposed, in the other
hand. The red pattern, for instance, starts on the fifth note of
the right hand (C), it recurs in the second bar (left hand) at
the fifth note, transposed two octaves down. The encoded
representation of the red (wavy) pattern in the figure is as
follows:

T(P(p(360,72),p(480,71),p(600,75),p(720,76),p(840,70)),

V(v(0,0),v(480,-2),v(1920,-24),v(2400,-26)))

whereby the set of pairs P() represents a maximal-length
pattern, consisting of individual points p() in pitch/time
space. The set V() contains the translation vectors v(),
which when applied to P() form a translational equivalent
pattern. The combination of the pattern and its transla-
tion vectors form T(), a translational equivalence class of
maximal-length patterns (MTP TEC).

(a) First two bars of Bach’s 20th prelude (Book II).

(b) Patterns detected with COSIATEC [8]

.

Fig. 3: COSIATEC applied to a short musical excerpt. Each
TEC is represented with a different color.

The first algorithm implemented in Morpheus, SIATE-
Ccompress, runs SIATEC once to get a list of MTP TECs
and then selects a subset of TECs that covers the input
dataset [74]. The second algorithm, COSIATEC, on the other
hand, iteratively uses SIATEC to find the best TEC, then
removes this from the input dataset and repeats the pro-
cess [8]. Both algorithms result in a set of TECs with high
compression ratios that cover a point-set. The encodings
generated by COSIATEC are generally more compressed,
meaning that the size of the file listing all TECs is smaller.

SIATECCompress produces patterns that may intersect,
which may be more relevant in the context of music analysis,
as a note may belong to more than one musically meaning-
ful pattern. SIATECCompress performed best in the 2013
and 2014 MIREX competition on “Discovery of repeated
themes and sections”, and COSIATEC outperformed SIATE-
CCompress on a Dutch folk song classification task with an
accuracy rate of 84% [74].

The next section describes polyphonic music generation
as an optimization problem which imposes the way the pat-
terns repeat in the generated piece using hard constraints.
This allows us to constrain the form and repetition struc-
tures of the newly generated piece.

5 OPTIMIZATION PROBLEM

In this research, generating music is modeled as an opti-
mization problem. The main advantage of this is that it al-
lows us to constrain global structure, consisting of repeated
patterns, and to optimize the music to fit a tension profile.
In this section, the resulting combinatorial optimization
problem is formally defined.

5.1 Variables

The algorithm starts with a template piece whose rhythm
and dynamics are treated as constants in the generated
piece. The aim of MorpheuS is then to find a new set
of pitches, x, for each note of the template piece, that
minimizes the objective function and satisfies the repeated
pattern constraints.

5.2 Objective function

The objective of the optimization problem is to find a
solution x that matches a given tension profile as closely as
possible. This tension profile can either be calculated from
the template piece t or could be manually input by the
user. It comprises of three parts: one for each of the three
tension measures i ∈ {0, 1, 2} from Section 3, represented
as a vector Ti(x) with length li. Since we want to match the
tension profile of the solution x to that of the template t, we
calculate the Euclidean distance between these two tension
profiles:

Di(x) =

li
∑

j=1

√

(Tij(x)− Tij(t))2. (1)

The sum of the distances between each of the tension
measures forms the objective function D(x), which we aim
to minimize.

D(x) =
2

∑

i=0

ai ×Di(x), (2)

where ai is the weight for tension measure i. The weights
offer the user a way to specify the relative importance of
certain tension measures. In this paper, the weights are all
set to 1.
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5.3 Soft constraints

In addition to the hard constraints to be described in the
next section, the user can elect to fix certain pitches in the
solution. In order to do this, an additional term was added
to the objective function D(x) which imposes an arbitrary
high penalty if pitch(nj) of note j is not set to the required
pitch (setpitch(nj)):

D′(x) = D(x) + b×

j
∑

j=0

C(nj), (3)

whereby

C(nj) =

{

0, if pitch(nj) = setpitch(nj)

1, otherwise

and b is an arbitrary large number.

5.4 Hard constraints

A number of the variables (pitches) of the solution x are
hard constrained to enforce the patterns detected in the
template piece (as described in Section 4). This constraint
ensures the recurrence of themes and motives in the output
musical piece. The data structure used to store the solution
is such that only the pitches of the original occurrence of the
patterns p() need to be decided. All other occurrences of
a pattern are automatically set based on the pitches for the
original pattern and the set of translational equivalence vec-
tors V() of the pattern. This setup speeds up the algorithm
as it drastically reduces the size of the variables in the set x.

In addition to the pattern constraints, an additional hard
constraint is imposed on the pitch range for each track. This
range is set based on the lowest and highest occurring pitch
in the template piece for each track. Within this range, all
possible pitches are allowed.

6 VARIABLE NEIGHBORHOOD SEARCH

In this section, we describe the variable neighborhood
search (VNS) algorithm used to solve the optimization
problem defined above. Much of the research on the devel-
opment of metaheuristics stems from more traditional fields
such as vehicle routing and scheduling. In this research, we
chose to implement a VNS algorithm because it has been
shown to outperform several other heuristics (including
genetic algorithms) on a range of problems [75]. Since its
inception in the late 90s, it has been successfully applied
to problems in combinatorial optimization including project
scheduling [76], finding extremal graphs [77], vehicle rout-
ing [78], graph coloring [79], and piano fingering [80].

A VNS algorithm has previously been developed for
generating counterpoint music [4, 38]. This algorithm has
proven to be efficient and outperformed a genetic algorithm
implemented on the same problem. The inner workings of
the algorithm have been modified to work with complex
polyphonic piano music, and the constraints and objective
function described in Section 5 have been integrated into the
algorithm.

6.1 Local search components

The core of a VNS algorithm is a local search strategy.
Local search typically starts from an initial solution x, and
iteratively makes a small change (i.e. a move) in order to
find a better solution. We refer to the set of solutions x′

that can be reached by applying one type of move to a
solution as the neighborhood. In this case this means that
the neighborhood will consist of all solutions that can be
reached by applying one type of move to any of the time
slices of the piece. A first descent strategy was implemented
in MorpheuS, whereby the neighborhood is built for one
note/time slice at a time. As soon as a (feasible) solution
is found that has a better value for the objective function
D(x′), this solution is accepted as the new current solution
x.

An additional strategy for accelerating the search applies
the moves chronologically from the start to the end of the
piece. When a move is successful, this change will affect the
tension profile only in its immediate vicinity. Therefore, the
algorithm will backtrack only 4 time slices then resume the
search.

Fig. 4: An example of a potential move using each of the
three different types of moves.

Three types of moves are implemented in MorpheuS
based on [38]. An example of each type of move is displayed
in Figure 4 using a very short fragment. The change1 move
changes the pitch of one note to all of the other possible
pitches in the allowed range to form the neighborhood. The
swap move consists of all musical pieces that can be created
by swapping the pitch of any two notes of the current piece.
Finally, changeSlice changes the pitches of two randomly
chosen notes in a vertical time slice to all of the other
allowed pitches in the range. The respective size of each
neighborhood generated by these three types of moves is
displayed in Table 1. In order to speed up the algorithm, a
first descent strategy is implemented, in which the neigh-
borhood is built one move at a time. Whereas a steepest
descent strategy would generate the full neighborhood, the
first descent strategy accepts a new solution as soon as it
improves the value of the current solution (see previous
subsection).

TABLE 1: Size of the neighborhood generated by each move
type for a piece consisting of n chords, each containing m

notes, and with a pitch range of p.

Move type Neighborhood size

change1 m× n× p

swap ((n×m)− 1)!
changeSlice p

2
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Fig. 5: Flow chart of the variable neighborhood search
algorithm.

6.2 Outline of the VNS

A system diagram of the full algorithm implemented in
MorpheuS is shown in Figure 5. The VNS starts from
a random (feasible) solution, which is built by assigning
pitches from the range in a uniformly random manner. This
initial solution is set as the current solution x.

The algorithm then performs local search using the
change1 neighborhood. When no improving feasible so-
lution can be found, the VNS will then switch the local
search to a different neighborhood type (e.g. changeSlice),
which then allows the search to continue [81]. This process is
repeated until no better solution can be found in any of the
neighborhoods, in which case the algorithm is said to have
arrived at a local optimum. The VNS algorithm implements
a perturbation strategy to escape this local optimum and
then continues the search for the global optimum [82].
A perturbation re-assigns a significant proportion of the
pitches each to a uniform random (feasible) pitch. Based
on the research of Herremans and Sörensen [4], the number
of perturbed pitches was set to 12%. In an iterative local
search strategy, the algorithm restarts from a totally random
solution when a local optimum is reached. The perturbation
strategy implemented in the VNS, however, leads to far
better results [83]. The search process continues until the
stopping criterion (i.e. a maximum allowed number of iter-
ations) is reached. The order in which the different types of
moves are applied is based on the increasing computational
complexity of calculating the full neighorhood. In the next
section, we evaluate the implemented algorithm and its
musical results.

7 RESULTS

The MorpheuS system is evaluated on three levels. The first
examines the effects of pattern detection on the musical out-
come. Next, we consider the efficiency of the optimization

algorithm. Last but not least, the generated musical output
is evaluated and compared to the original template piece.

7.1 Effect of pattern detection algorithm

The selected pattern detection algorithm (COSIATEC versus
SIATECCompress) exerts a big influence on the resulting
pieces. Short but frequent patterns can overly constrain the
generation process, thus forcing it to converge quickly to the
original piece. Infrequently repeated patterns, even though
they may be long, easily lose sight of the goal of constraining
long term structure. The user can specify which algorithm
is implemented: COSIATEC, which uniquely captures each
note in precisely one pattern, or SIATECCompress, which
captures more relationships between different notes, result-
ing in overlapping patterns. Each of these algorithm in turn
has additional settings, such as maximum and minimum
pattern lengths. We have generated three different pattern
sets based on an excerpt of Rachmaninov’s “Étude Tableau
Op. 39, No. 6”, shown in Figure 6.

Based on this excerpt, we have calculated three sets
of repeated patterns, as displayed in Figure 7. Their main
properties, namely, compression ratio, number of notes in
patterns, P(), and the size of the TECs, are shown in Table 2.
Each of these three pattern sets was then used as a structural
template during music generation in MorpheuS. The result-
ing music pieces generated, based on a short run of 10 iters
(less then 1 minute generation time on a Dell XPS13 laptop
with i7core and 8GB RAM) are displayed in Figure 11 in
Appendix A. An example of each detected pattern, together
with the set of translational equivalent vectors is shown on
each score in green and orange respectively.

The first pattern set (A), shown in Figure 7(a), was
detected using COSIATEC with a minimum pattern length
of 5. This resulted in 6 TECs with a compression ratio of
1.65, and 69 unique notes that needed to be optimized by
MorpheuS (see Table 2). The resulting piece, created by iter-
ating through the VNS 10 times is displayed in Figure 11a.
The music retains some of the contours of the original piece,
but also contains a great deal of original musical content.

When constraining COSIATEC to detect only very short
patterns of maximum length 2, we obtain a set of TECs (B),
shown in Figure 7(b). This yields a very similar compression
ratio, yet the piece generated based on this template pattern
is very different. In this case, the original piece is almost
replicated exactly due to the many constraints posed by the
set of TECs. The prevalence of such short patterns typically
severely limit the originality of the music generated. Here,
MorpheuS only has 11 notes to optimize; the others were
derived from the translation vectors of the pattern vector.

Pattern set C, shown in Figure 7(c), shows the results
of running SIATECCompress without any constraints on
pattern length. Although the compression ratio of COSI-
ATEC is often higher than that of SIATECCompress [74],
musically speaking, the latter may have further benefits. In
SIATECCompress, a note can be contained in multiple sets
of TECs, which allows the algorithm to find a different and
larger set of TECs than COSIATEC. This may result in the
algorithm capturing more meaningful musical relationships.
The resulting music generated using pattern set C as a
template offers a mix between the highly constrained nature
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Fig. 6: Original excerpt from Rachmaninov’s “Étude Tableau Op. 39, No. 6”

(a) Pattern set A: COSIATEC, minimum pattern length 5, compression ratio: 1.65, Number of TECs: 6

(b) Pattern set B: COSIATEC, maximum pattern length 2, compression ratio: 1.67, number of TECs: 6

(c) Pattern set C: SIATECCompress (no restrictions on the pattern length), compression ratio: 1.58, number of TECs: 11. Each TEC
is represented with a different color.

Fig. 7: Different patterns detected in Rachmaninov’s “Étude Tableau Op. 39, No. 6”

of pattern set B and the freedom of pattern set A. An
example of this can be found in the ascending pattern in
bars 1 and 3. In pattern set C, both bars have an ascending
line, yet the starting note is different. Pattern set B generates
a more constrained output, whereby both bars are identical.
With pattern set A, we see a much freer interpretation,
whereby the two bars bear minimal resemblance to each
other. Although each of the three example patterns offer a
way to constrain long-term structure in generated music, the
degree to which they constrain pitch patterns has significant
effect on the musical outcome.

7.2 Evolution of solution quality

A formal comparison with other existing systems was not
possible due to the fact that MorpheuS is the first algo-
rithm that implements a tension based objective function

TABLE 2: Pattern sets generated for Rachmaninov’s “Étude
Tableau Op. 39, No. 6”

Algorithm CR UP TECs

Pattern set A COSIATEC 1.65 69 6
Pattern set B COSIATEC 1.67 11 6
Pattern set C SIATECCompress 1.58 34 11

CR: compression ratio, UP: number of pitches to be set by MorpheuS

with pattern constraints. The use of VNS for generating
counterpoint, on which MorpheuS is based, has been tested
extensively in [38] and shown to outperform a genetic
algorithm on the same task. We can thus assume that, in the
more constrained (due to the patterns imposed) musical task
represented here, the algorithm will be at least as effective.

In order to verify the effectiveness of the algorithm
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it was run 100 time on Kabalevsky’s “Clowns” (from 24
Pieces for Children, Op. 39 No. 20) with SIATECCompress
patterns, and the Rachmaninov “Étude Tableau Op. 39, no.
6” shown above (using pattern set C). Figure 8 shows the
range and average of the best objective function value found
over time for 100 runs of the VNS for both pieces. The
experiment was performed on a Dell XPS Ultrabook with
i7Core and 8GB RAM. The average running time of the
VNS was 136 seconds for “Clowns” and 526 seconds for
the Rachmaninov piece. The size of the solution was 34 and
84 notes, respectively.
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(a) For Rachmaninov’s “Étude Tableau Op. 39, No. 6”
(with Pattern set C)
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(b) Kabalevsky’s “Clowns”.

Fig. 8: Evolution of the objective function over time, for
100 runs of the VNS. The plotted line shows the mean best
solution found by the VNS for 100 runs. The ribbons show
the maximum and minimum objective function values for
the best solution found over the 100 runs at each move.

Figures 8a and 8b clearly show a steep improvement
during the initial seconds of the algorithm’s run for both
pieces. This pattern can be observed for each of the 100
runs, as the maximum values for the best solution found (i.e.
worst run of the algorithm), goes down quickly. Even after 2
minutes, the algorithm manages to find small improvements
to the current solution.

In Figure 9, we isolate one particular run of the al-
gorithm on “Clowns”. A clear descending trend can be
observed when looking at the best solution found over
time. The peaks in the graph indicate points of perturbation.
Whenever the search gets trapped in a local optimum, the
current solution is perturbed, leading to a temporarily worse
solution. Note that even after 500 moves, the perturbation

0 100 200 300 400 500

10−2.5

10−2

10−1.5

Number of moves

D
(x
)

current solution
best solution

Fig. 9: Evolution of the objective function over time for one
run of the VNS, for Kabalevsky’s “Clowns”.

step manages to escape from a local optimum to find a better
solution, thus confirming that the perturbation strategy is
successful.

The three tension profiles: cloud diameter, tensile strain
and cloud momentum, are shown in Figure 10. The graphs
show the original tension profile of the template piece
(dashed line), and snapshots of the tension profiles of the
output piece before optimization (random piece) and after
optimization. It can be noticed that the tension profile of the
original piece fluctuates between tension and relaxation, a
dynamic that Lerdahl and Jackendoff [84] discuss in their
Generative Theory of Tonal Music.

The graphs of the random piece, however, show a much
more erratic tension profile distant from that of the original
piece. Overall, the tension is also higher for the random
pieces, which can in part be explained by the dissonance
that we can expect in pieces with random pitches. A striking
similarity can be seen between the tension profiles of the
original piece (template) and the optimized piece, yet again
confirming that the optimization algorithm indeed finds
a solution that minimizes the objective function. This is
confirmed by the correlation coefficients, which are high
between the tension profiles of the optimized and template
piece (0.9748, 0.9918, 0.9993), and lower between the random
initial solution and the template piece (0.4103, 0.2053, and
0.6174). In the next section we will focus on the actual
musical results.

7.3 Musical outcome

It must be noted that in the examples given in this paper, the
goal of the optimization is to fit the original tension profile
of the template piece as closely as possible. This explains
a tendency to revert to the original piece, but offers us a
way to verify that the optimization algorithm performs well.
A future version of MorpheuS may include a ‘similarity-
penalty’ in the objective function, to enforce originality in
the generated pieces. Currently, the user is free to design
their own tension profile to create an original piece, or use
the tension profile of a template piece.

Appendix B (Figure 12) shows the musical output of
the optimization process described in the previous section
together with the initial (random) starting piece, based on
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(a) Cloud diameter: random (solid) & original piece (dashed) (b) Cloud diameter: optimized (solid) & original piece (dashed)

(c) Cloud Momentum: random (solid) & original piece (dashed)
(d) Cloud momentum: optimized (solid) & original piece
(dashed)

(e) Tensile strain: random (solid) & original piece (dashed) (f) Tensile Strain: optimized (solid) & original piece (dashed)

Fig. 10: The three types of tension profiles before and after optimization of Kabalevsky’s “Clowns”, together with the
template profile (dashed). The y-axes represent the value of each tension score (cloud diameter, tensile strain and cloud
momentum), and the x-axes represent score time.

the template piece “Clowns” by Kabalevsky. A significant
improvement in musical quality can be noticed between the
random and the optimized piece. One of the most evident
aspects is that the latter (optimized) piece is much more
tonal. We can also see some long-term recurrent structures;
for example, the theme from bars 1-5 returns in bars 18-22.

The reader is invited to listen to this and other output
generated by MorpheuS online5 While these first tests are
promising, there is still room for improvement. One interest-
ing improvement is to add constraints on playability. While
the current pitch range constraint ensures that assigned
notes occur within the range of the template piece, the
output can be far from idiomatic for the instrument and
variables such as the unexpectedness of the note sequences
can make them difficult to play. Improved playability could
be achieved by a statistical machine learning approach (e.g.
Markov model or recurrent neural network) to integrate
transition probabilities in the current objective function.

Following live performances of MorpheuS’ pieces, we
have received a range of comments from expert musicians,
reflecting interesting perspectives on MorpheuS’ composi-
tions to inform future developments of the system. Upon
hearing MorpheuS’ version of a Haydn sonata movement,
an academic composer remarked that the system shows
some competence with the repetition of material, however
it does not develop the material; furthermore, it does not
know (like Stravinsky) to use the ‘right’ kind of ‘wrong’

5. http://dorienherremans.com/morpheus

notes; MorpheuS’ use (or misuse) of cadences, cadential
figures were inserted in odd places, were the most obvi-
ous anomalies distinct from human composition; also, the
phrase structure, the evolution of harmony with respect to
phrase structure, does not work as the tension levels do not
relate to the phrase structure.

Several expert listeners remarked on the humor apparent
in MorpheuS’ pieces, particularly the ways in which it
naively violates conventional expectations, often with sur-
prising and sometimes adventurous but plausible results.
The advantage of this naiveté, as one person puts it, is
that the system “has no fear” and thus “has courage to
try things”, unencumbered by conditioning that constrains
human composers to behave or make choices only in ways
that are deemed acceptable. This was in the context of
three morphed pieces by Bach and three morphed pieces by
Kabalevsky. In a few of these pieces, there were awkward
harmonic moments when returning to the beginning of a
repeated section, leading one expert listener to comment
that MorpheuS lacked the ability to make good transi-
tions. However, the listener found it fascinating to hear
the original Bach pieces (from “A Little Notebook for Anna
Magdalena”) through the lens of MorpheuS’ compositions.
In contrast, another expert listener found the Kabalevsky
pieces “more honest” than the Bach ones, likely because the
original Bach pieces were too recognizable in the morphed
ones, yet lacked certain characteristics typically associated
with the pieces.
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Finally, with regard to interaction design, it would be
interesting to test a transformational approach in which the
optimization starts from the original piece and searches for
a new piece that matches a tension profile provided by the
user, thus transforming the original piece.

8 CONCLUSIONS

MorpheuS consists of a novel framework that allows us to
tackle one of the main challenges in the field of automatic
music generation: long-term structure. An efficient variable
neighborhood search algorithm was developed that enables
the generation of complex polyphonic music, with recurring
patterns, according to a tension profile. Two pattern detec-
tion techniques extract repeated and translated note patterns
from a template piece. This structure is then used as scaf-
folding to constrain long-term structure in new pieces. The
objective function of the optimization problem is based on
a mathematical model for tonal tension. This allows for the
generation of pieces with a predefined tension profile, which
has potential applications to game or film music. The pieces
generated by MorpheuS have proved to be promising and
have been tested in live performance scenarios at concerts
internationally.

In future research it would be interesting to explore
the integration of machine learning methods, e.g. deep
learning techniques or Markov models, in the objective
function of the optimization algorithm. This way, a style
could be learned from a large corpus of music, and in
turn be reflected in the generated piece. We expect that this
would also improve the playability of the pieces and reduce
awkward transitions. A second expansion would be to al-
low for more flexible pattern detection, such as recognition
of inverted patterns, augmentations, and diminutions and
other variations. It would equally be interesting to evaluate
if the generated music elicits the same emotion responses as
expected given a tension profile, by measuring physiological
responses or by recording listener judgments of tension
as described in [85, 86]. The tension model could also be
expanded to capture other characteristics of tension such as
timbre and cadence. Finally, in the context of adaptive game
music generation, the VNS algorithm could be modified
to allow for real-time generation, much like the system
Herremans and Sorensen [87] implemented as the FuX 2.0
mobile music generation app.
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