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Abstract

Modern resource management frameworks for large-

scale analytics leave unresolved the problematic ten-

sion between high cluster utilization and job’s perfor-

mance predictability—respectively coveted by operators

and users. We address this in Morpheus, a new sys-

tem that: 1) codifies implicit user expectations as ex-

plicit Service Level Objectives (SLOs), inferred from his-

torical data, 2) enforces SLOs using novel scheduling

techniques that isolate jobs from sharing-induced perfor-

mance variability, and 3) mitigates inherent performance

variance (e.g., due to failures) by means of dynamic re-

provisioning of jobs. We validate these ideas against pro-

duction traces from a 50k node cluster, and show that

Morpheus can lower the number of deadline violations by

5× to 13×, while retaining cluster-utilization, and lower-

ing cluster footprint by 14% to 28%. We demonstrate the

scalability and practicality of our implementation by de-

ploying Morpheus on a 2700-node cluster and running it

against production-derived workloads.

1 Introduction

Commercial enterprises ranging from Fortune-500 com-

panies to venture-capital funded startups are increas-

ingly relying on multi-tenanted clusters for running their

business-critical data analytics jobs. These jobs comprise

of multiple tasks that are run on different cluster nodes,

where the unit of per-task resource allocation is a con-

tainer (i.e, a bundle of resources such as CPU, RAM and

disk I/O) on an individual machine. From an analysis

of large-scale production workloads, we observe signifi-

cant variance in job runtimes, which sometimes results in

missed deadlines and negative business impact. This is

perceived by users as an unpredictable execution experi-

ence, and it accounts for 25% of (resource-provisioning

related) user escalations in Microsoft big-data clusters.

Unpredictability comes from several sources, which for

discussion purposes, we roughly group as follows:

• Sharing-induced – performance variability caused

by inconsistent allocations of resources across job

runs—a scheduling policy artifact.

• Inherent – performance variability due to changes in

the job input (size, skew, availability), source code

tweaks, failures, and hardware churn—this is en-

demic even in dedicated and lightly used clusters.

Unpredictability is most noticeable to users who sub-

mit periodic jobs (i.e., scheduled runs of the same job on

newly arriving data). Their recurrent nature prompts users

to form an expectation on jobs’ runtime performance as

well as react to any deviation from it, particularly, if the

job is business-critical (i.e., a production job).

Unfortunately, widely deployed resource managers [9,

27, 51, 55] provide limited mechanisms (e.g., fairness

weights, priorities, job killing) for users to cope with un-

predictability of such jobs. Given these basic tools, users

resort to a combination of ad-hoc tricks, often pivoting

around conservative over-provisioning for important pro-

duction jobs. These coarse compensating actions are man-

ual and inherently error-prone. Worse, they may adversely

impact cluster utilization—a key metric for cluster opera-

tors. Owing to the substantial costs involved in building/-

operating large-scale clusters, operators seek good return

on investment (ROI) by maximizing utilization.

Divergent predictability and utilization requirements

are poorly handled by existing systems. This is taxing

and leads to tension between users and operators.

An ideal resource management infrastructure would

provide predictable execution as a core primitive, while

achieving high cluster utilization. This is a worthwhile

infrastructure to build, particularly, because periodic, pro-

duction jobs make up the majority of cluster workloads,

as reported by [43] and as we observe in §2.
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In this paper, we move the state of the art towards this

ideal, by proposing a system called Morpheus. Building

Morpheus poses several interesting challenges such as,

automatically: 1) capturing user predictability expecta-

tions, 2) controlling sharing-induced unpredictability, and

3) coping with inherent unpredictability. We elaborate on

these challenges next.

Inferring SLOs and modeling job resource demands.

Our first challenge is to formalize the implicit user pre-

dictability expectation in an explicit form that is action-

able for the underlying resource management infrastruc-

ture. We refer to the resulting characterization as an (in-

ferred) Service Level Objective (SLO). We focus on com-

pletion time SLOs or deadlines. The next step consists of

quantifying the amount of resources that must be provi-

sioned during the execution of the job to meet the SLO

without wastefully over-provisioning resources. Natu-

rally, the precise resource requirements of each job de-

pend on numerous factors such as function being com-

puted, the degree of parallelism, data size and skew.

The above is hard to accomplish for arbitrary jobs for

two reasons: 1) target SLOs are generally unknown to

operators, and often hard to define even for the users—

see §2, and 2) automatic provisioning is a known hard

problem even when fixing the application framework [52,

15, 26, 19]. However, the periodic nature of our work-

load makes this problem tractable by means of history-

driven approaches. We tackle this problem using a com-

bination of techniques: First, we statistically derive a

target SLO for a periodic job by analyzing all inter-job

data dependencies and ingress/egress operations (§ 4).

Second, we leverage telemetry of historical runs to de-

rive a job resource model—a time-varying skyline of re-

source demands. We employ a Linear Programming for-

mulation, that explicitly controls the penalty of over/un-

der provisioning—balancing predictability and utilization

(§5). Programmatically deriving SLOs and job resource

model enables a tuning-free user experience, where users

can simply sign-off on the proposed contract. Users may

alternatively override any parameter of the inferred SLO

and the job resource model, which becomes binding if ac-

cepted by our system.

Eliminating sharing-induced unpredictability. Our

second challenge is to enforce SLOs while retaining high-

utilization in a shared environment. This consists of

controlling performance variance with minimal resource

over-provisioning. As noted above, sharing-induced un-

predictability is a scheduling artifact. Accordingly, we

structurally eliminate it by leveraging the notion of recur-

ring reservation, a scheduling construct that isolates peri-

odic production jobs from the noisiness of sharing. A key

property of recurring reservations is that once a periodic

job is admitted each of its instantiations will have a pre-

dictable resource allocation. High-utilization is achieved

by means of a new online, planning algorithm (§ 6). The

algorithm leverages jobs’ flexibility (e.g., deadline slack)

to pack reservations tightly.

Mitigating inherent unpredictability. Our last challenge

is dealing with inherent performance variance (i.e., ex-

ogenous factors, such as task failures, code/data changes,

etc.). We do this by dynamically re-provisioning the cur-

rent instance of a reservation, in response to job resource

consumption, in relationship to the SLO. This compen-

sates for short-term drifts, while continuous retraining of

our SLO and job resource model extractors captures long-

term effects. This problem is in spirit similar to what was

proposed in Jockey [19], as we discuss in §7.

We emphasize that all of the above techniques are

framework-independent—this is key for our production

clusters as they support multiple application frameworks.

Experimental validation. We validate our design by im-

plementing Morpheus atop of Hadoop/YARN [51] (§8).

We then perform several faithful simulations with traces

of a production cluster with over 50k nodes, and show

that the SLOs we derived are representative of the job’s

needs. The combination of tight job provisioning, reser-

vation packing, and dynamic reprovisioning allows us to

achieve: 5× to 13× reduction in potential SLO viola-

tions (with respect to user-defined static provisioning),

and identical cluster utilization. All while, our packing al-

gorithms leverage the flexibility in target SLOs to smooth

the provisioning load over time, and achieve better ROI,

by reducing cluster footprint by 14% to 28%. We con-

clude by deploying Morpheus on a 2700-node cluster, and

performing stress-tests with a production-derived work-

load. This confirms both the scalability of our design, and

the practicality of our implementation (§ 9). We intend to

release components of Morpheus as open-source and the

progress can be tracked at [2].

2 Motivation

In the early phases of our project, we set out to confir-

m/deny our informal intuitions of how big-data clusters

are operated and used. We did so by analyzing four data

sources: 1) execution logs of millions of jobs running on

clusters with more than 50k nodes, 2) infrastructure de-

ployment/upgrade logs, 3) interviews, discussion threads,

and escalation tickets from users, operators and decision

makers, and 4) targeted micro-benchmarks. We summa-

rize below the main findings of our analysis.
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Figure 1: Analysis of user escalations and recurrent behaviors of production workloads.

2.1 Cluster workloads

Proper execution of production jobs is crucial. Produc-

tion jobs represent over 75% of our workload and a simi-

lar percentage of the provisioned capacity—the rest being

dedicated to ad-hoc jobs (10-20%) and ready to handle

growth/failures (5-10%). All unassigned capacity is redis-

tributed fairly to speed up jobs. As expected, users care

mostly about proper execution of production jobs. Fig. 1a

shows that over 90% of all escalations relate to production

jobs, and this percentage grows to 100% for high/extreme

severity escalations.

Predictability trumps fairness. Further analysis of the

escalations of Fig. 1a and of discussion threads, indicates

that users are 120× more likely to complain about the

performance (un)predictability (25% of all job/resource-

management escalations) than about fairness (< 0.2%),

despite the fact that our system does not enforce fairness

strictly. This outcome may be expected, as customers can-

not observe how “fair” allocations really are.

Production jobs are often periodic. Over 60% of the

jobs in our larger/busier clusters are recurrent. Most

of these recurring jobs are production jobs operating on

continuously arriving data, hence are periodic in nature.

Fig. 1b shows the distribution of the period for periodic

jobs. Interestingly, most of the distribution mass is con-

tributed by a small number of natural values (e.g., once-

a-day, once-an-hour, etc.); this property will be useful to

our allocation mechanisms (§6). Fig. 1c provides further

evidence of recurrent behavior, by showing that job start

times are more densely distributed around the “start-of-

the-hour”. This confirms that most jobs are submitted au-

tomatically on a fixed schedule.

The above evidence confirms that the most important

portion of our workloads is strongly recurrent. This al-

lows for planning the cluster agenda, without being overly

conservative in the resource provisioning of jobs.

2.2 Predictability challenges

Manual tuning of job allocation is hard. Fig. 2a shows

the distribution of the ratio between the total amount of

resources provisioned by the job’s owner and the job’s

actual resource usage (both comparing peak parallelism

and area). The wide range of over/under-allocation in-

dicates that it is very hard for users (or they lack incen-

tives) to optimally provision resources for their jobs. We

further validate this hunch through a user study in [15].

The graphs shows that 75% of jobs are over-provisioned

(even at their peak), with 20% of them over 10× over-

provisioned. This is likely due to users statically setting

their provisioning for a periodic job. We confirm this, by

observing that in one-month period over 80% of periodic

jobs had no changes in their resource provisioning. Large

under-provisioned jobs partially offset the impact of over-

provisioning on cluster utilization.

Sources of performance variance. It is hard to precisely

establish the sources of variance from the production logs

we have. We observe a small but positive correlation

(0.16) between the amount of sharing (above provisioned

resources) and job runtime variance. This indicates that

increased sharing affects runtime variance.

We investigate further the roles of sharing-induced

and inherent performance variance by means of a sim-

ple micro-benchmark. Fig. 2b shows the normalized run-

time of 5 TPC-H queries1. We consider two configura-

tions one with constrained parallelism (500 containers),

and one with unconstrained parallelism (>2000 contain-

ers); each container is a bundle of <1core,8GB RAM>.

Each query was run 100 times in each configuration on an

empty cluster at 10TB scale. The graph shows that even

when removing common sources of inherent variability

(data availability, failures, network congestion), runtimes

remain unpredictable (e.g., due to stragglers, §7).

By analyzing these experiments and observing produc-

tion environments, we conclude that: 1) history-based

approaches can model well the “normal” behavior of a

query (small box), 2) handling outliers (as in the long

whiskers) without wasting resources requires a dynamic

component that performs reprovisioning online, and 3)

while each source of variance may be addressed with an

ad-hoc solution, providing a general-purpose line of de-

fense is paramount— see §7 for our solution.

1Box shows [25th,75th] percentiles, and whiskers shows [min,max].
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Figure 2: A) Empirical CDF of provisioning vs. used resources, B) box-whisker plot of normalized runtime of TPC-H

queries running with 500 containers (left) and >2000 containers (right). C) cluster capacity of different machine types.

2.3 Changing conditions

Cluster conditions keep evolving—jobs may run on

different server types. We provide in Fig. 2c a measure

of hardware churn in our clusters. We refer to different

machines configurations as Stock Keeping Units (SKUs).

Over a period of a year, the ratio between number of ma-

chines of type SKU1 and type SKU2 changed from 80/20

to 55/45; the total number of nodes also kept changing

over that period. This is notable, because even seem-

ingly minor hardware differences can impact job runtime

significantly— e.g., 40% difference in runtime on SKU1

vs SKU2 for a Spark production job.

User scripts keep evolving. We perform an analysis of

the versioning of user scripts/UDFs. We remove all sim-

ple parameterizations that naturally change with every in-

stantiation, and then construct a fuzzy match of the code

structure. Within one-month of trace data, we detect that

15-20% of periodic jobs had at least one large code delta

(more than 10% code difference), and over 50% had at

least one small delta (any change that breaks MD5 of the

parameter-stripped code). Hence, even an optimal static

tuning is likely going to drift out of optimality over time.

Motivated by all of the above evidence, we focus on

building a resource management substrate that provides

predictable execution as a core primitive.

3 Overview of Morpheus

Morpheus is a system that continuously observes and

learns as periodic jobs execute over time. The findings are

used to economically reserve resources for the job ahead

of job execution, and dynamically adapt to changing con-

ditions at runtime. To give an informal sense of the key

functionalities in Morpheus, we start our overview by fol-

lowing a typical life-cycle of a periodic job (JobX) as it is

governed by Morpheus (§3.1). Next, we describe the core

subsystems (§3.2). Fig. 3 provides a logical view of the

architecture, and “zooms in” on a particular job.

3.1 “Life” of a periodic job

With reference to Fig. 3, a typical periodic jobs goes

through the following stages.

1. The user periodically submits JobX with manually pro-

visioned resources. In the meantime, the underlying

infrastructure captures:

(a) Data-dependencies and ingress/egress operations

in the Provenance Graph (PG).

(b) Resource utilization of each run (marked as the

R1-R4 skylines in Fig. 3) in a Telemetry-History

(TH) database.

2. The SLO Inference performs an offline analysis of the

successful runs of JobX:

(a) From the PG it derives a deadline d—the SLO.

(b) From the TH, it derives a model of the job re-

source demand over time, R∗. We refer to R∗ as

the job resource model

3. The user signs off (or optionally overrides) the

automatically-generated SLO and job resource model.

4. Morpheus enforces SLOs via recurring reservations:

(a) Adds a recurring reservation for JobX into the

cluster agenda—this sets aside resources over

time based on the job resource model R∗.

(b) New instances of JobX run within the recurring

reservation (dedicated resources).

5. The Dynamic Reprovisioning component monitors the

job progress online, and increases/decreases the reser-

vation, to mitigate inherent execution variability.

6. Morpheus constantly feeds back into Step 2 the PG

and telemetry information of the new runs for contin-

uous learning and refinement of the SLO and the job

resource model.
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Figure 3: Conceptual view of Morpheus’ architecture. Numbers/letters match the “Life” of a periodic job (§3.1).

3.2 Key components

We next give a brief overview of the different compo-

nents in Morpheus, highlighting the different timescales

in which they operate. Details follow in §4–§7. We start

our description with the automatic inference module,

which consists of two sub-components:

Extractor of target SLOs (§4). This sub-component op-

erates on a Provenance Graph (PG). This is a graph cap-

turing all inter-job data dependencies, as well as all in-

gress/egress operations. The SLO extractor leverages the

precise timing information stored in the PG to statistically

derive a deadline for the periodic job—as time at which

downstream consumers read a job’s output2.

Job resource model (§5). This sub-component takes as

input detailed telemetry information on job runs. The

information includes time-series of resource utilization

(“skyline”)—the amount of resources (represented as con-

tainers) used by the job at certain time granularity, typi-

cally one minute. Based on time-series of multiple runs,

the sub-component constructs a tight envelope R∗ around

the “typical” behavior of the job. These time-series are

also used to derive the period, P.

The automatic inference module outputs the SLO and

the job resource model in the form of a recurring reserva-

tion request for a newly observed periodic jobs, and con-

tinuously refines existing ones on slow time scale (e.g.,

daily). The inferred SLO and job resource model feed the

resource reservation component automatically, yet Mor-

pheus also allows for user SLO and job resource model

sign-off/override. More specifically, the job owners are

given three options: 1) sign-off on the proposed SLO and

job resource model as-is, 2) override any of the param-

eters based on further knowledge (e.g., the job will run

on 10× more data starting tomorrow), or simply 3) reject

the use of SLOs, in which case the job runs with standard

2Note that a small number of periodic jobs exhibit latency-sensitive

behaviors (output consumed immediately). Our system handles those as

a special case of a deadline with no slack.

fair-queueing semantics [51]. By signing off a recurring

reservation the user approves the SLO, the initial job de-

mand skyline, as well as it accepts a bounded (and config-

urable3) amount of runtime reprovisioning—more below.

Reservation Placement (§6). The SLO and the job re-

source model are expressed in terms of a recurring reser-

vation request to a Reservation Placement mechanism.

Morpheus implementation (§8) builds upon YARN’s

reservation system [51, 13], which we extend to accom-

modate periodic reservations. The allocation problem it-

self poses a substantial algorithmic challenge, as the goal

is to “pack” efficiently online arriving jobs with different

periods and arbitrary skylines. To address this challenge,

we design a novel online packing algorithm specialized

for periodic jobs. The algorithm exploits the jobs’ flexi-

bility (e.g., deadline slack) to compactly pack them, which

leaves enough capacity for ad-hoc jobs. Our algorithm is

incremental as it places new reservation requests, without

modifying the allocation plan for other jobs.

Dynamic Reprovisioning (§7). Naturally, any tight and

static capacity reservation cannot perfectly accommo-

date all job instances. To cope with dynamic variabil-

ity in job execution (or “inherent unpredictability”), this

component continuously monitors the rate of progress

of the job with respect to the amount of reservation

consumed. If progress appears slower/faster than ex-

pected, the component automatically adjusts the reserva-

tion, by tweaking the resources provisioned for this reser-

vation. Notably, such black-box approach is framework-

independent, which is key given the large amount of

frameworks that run in our clusters.

3.3 Current limitations

Before we fully describe Morpheus, we briefly highlight

some limitations of our system.

Control over globally-shared resources. Morpheus re-

lies on the underlying resource management infrastructure

3This is currently a system-wide parameter, but it could be easily

evolved to be a per-job parameter if demanded by customers.
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(Apache Hadoop/YARN in our current implementation)

to enforce its decisions. As such, Morpheus can only en-

force container-level resources (such as CPU/Memory),

but lacks control over globally-shared resources (e.g.,

bandwidth on switches, DNS server). Resulting runtime

variability is coped with via dynamic reprovisioning (§7).

Support of non-periodic jobs. Morpheus supports both

periodic and non-periodic reservations, but does not au-

tomate the SLO and job resource model extraction for

never-seen-before jobs. Recent literature has shown that

job resource modeling can be performed a-priori (from

query and input data only) for a given application frame-

work [15, 42, 41, 56]—we discuss integration of these ap-

proaches in Morpheus in §8. SLO extraction for never-

seen-before jobs remains an open problem.

Automatic SLAs. Morpheus provides an important build-

ing blocks towards, but does not aim at delivering full-

fledged automated Service Level Agreements (SLAs). A

full SLA typically includes a specification of the eco-

nomic (or business) aspects of the provider-user agree-

ment [57]. For example, it may include the cost of unit of

resources, threshold of expected SLO attainment, legal/fi-

nancial consequences of missing the target SLO, limits of

how much dynamic-reprovisioning is allowed and charg-

ing consequences, etc. These aspects require further in-

vestigation beyond the scope of this paper.

4 SLO inference

In this section, we show how to automatically derive

SLOs for periodic jobs based on inter-job dependencies.

Based on interviews with cluster operators and users,

we isolate one observable metric which users care about:

job completion by a deadline. Specifically, analyzing the

escalation tickets, some users seem to form expectations

such as: “95% of job X runs should complete by 5pm”.

Other users are not able to specify a concrete deadline,

but do state that other teams rely on the output of their

job, and may need it in a timely manner. Overall, the

goal of Morpheus is to crystallize what users perceive as

“good-enough” job performance through automatically-

generated target SLO. Towards that end, Morpheus uti-

lizes a Provenance Graph (PG) as the main inference tool.

We next briefly describe the inference procedure.

Provenance Graph – reasoning about cluster data. The

PG gathers logs (petabytes daily across our production en-

vironments) capturing key aspects of job execution, file

system accesses, and system metrics. The PG is a seman-

tically rich and compact (few TBs) graph representation

of these raw logs. Specifically, nodes represent jobs and

files in our clusters, and edges capture read/write opera-

tions among jobs, files, and all ingress/egress operations

violations
Input − avail time (𝑇inAvail )
Job-start time (𝑇start )
Job-completion time (𝑇end )
Output − consumed time (𝑇outRead )

a j dj 

Figure 4: A periodic job from production traces.

(modeled as virtual source/sink nodes). This represen-

tation gives us a unique vantage point with nearly per-

fect close-world knowledge of the meaningful events in

the cluster. The PG is constructed by scanning three sets

of logs: application logs, filesystem logs, frontend logs.

The application logs capture all job-related events such

as: start and completion times, failures, and a job’s in-

puts/outputs (this is part of the algebraic representation

of the user query). The filesystem logs provide metadata

information about files (size, nodes storing each block,

etc.). The frontend logs capture upload/download opera-

tions from the cluster (i.e., ingress/egress). A daily batch

job is used to parse the logs and by means of template-

matching extract both the structure and node/edge proper-

ties which are then efficiently stored in the PG [37].

Isolating periodic jobs. We group individual job in-

stances in a periodic job, if the templatized job names are

an exact match, if source-code signatures are an approxi-

mate match, and if submissions have a near-constant inter-

arrival time. The latter criterion is evaluated using the co-

efficient of variation (CV) measure of inter-arrival times.

CV is computed as the ratio of median absolute devia-

tion (MAD) (a robust estimate of dispersion) and central

value (median), namely CV = MAD
median

; we filter out jobs

with large CV. We derive the period Pj of a job j based on

the submission times—not subject to queuing delays.

Estimating SLOs from the PG. With reference to Fig. 4,

our goal is to derive estimates for the earliest start time a j

and the deadline d j for the job. To this end, we rely on four

random variables, in chronological order: TinAvail, time at

which job inputs are available (i.e., the time of last write to

any input); Tstart, time when the job starts execution; Tend,

time when the job completes execution; ToutRead, time at

which any job output is first read. All these times are de-

fined relative to the start of the current period TperiodStart
4.

We say that a job has an actionable deadline if its output

4The start time of the period of the ith job instance is given by

TperiodStart = AbsoluteReferenceTime+ i ·period, where AbsoluteRefer-

enceTime is the time of first event recorded for the periodic job.
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is consumed at an approximately fixed time, relative to

the start of the period (e.g., everyday at 4pm), and if there

is non-trivial amount of slack between the job end and

the deadline. Formally this means imposing thresholds on

CV (ToutRead) and median
(

ToutRead−Tend
Tend−Tstart

)

. Finally, a j and

d j are derived5 as percentiles of the distributions of TinAvail

and ToutRead (e.g., 95th and 50th percentiles, respectively).

The vast majority of periodic jobs in our workloads have

actionable deadlines (§9), and will be offered an inferred

SLO. The remainder will continue running with manually

provisioned resources.

5 Job Resource Model

The second part of our inference module produces a re-

source allocation R∗j that has high fidelity to the actual

requirements of some periodic job j. In a nutshell, Mor-

pheus collects resource usage patterns of periodic jobs

over N j instances that have run in the past, and solves

an LP that “best fits” all patterns. Fig. 5 shows 4 runs

(R1-R4) of a TPC-H query that were used, along with

other runs, to generate R∗. The underlying optimization is

governed by a parameter α ∈ [0,1] which determines the

extent to which one wishes to reduce over-allocation of

resources (α = 1 hinting the maximal reduction of over-

allocation). The usage patterns are captured as a set of

skylines, one per run of a periodic job j. The resource

allocation R∗j is defined as the amount of resources to be

provisioned (e.g., number of containers) at any point in

time, for the successful execution of the different runs of

j. For ease of presentation, we omit the index j, yet recall

that all quantities below are for the same periodic job.

To derive the resource allocation, we first align the start

times of all the job runs (instances), and quantize time, so

that each quantized time-step corresponds to a fixed actual

duration (e.g., one minute). Formally, a skyline for the i-th

instance can be defined by the sequence {si,k}, the aver-

age number of containers used for each time-step k (k ∈
1, . . . ,K). Using a collection of sequences as input, the op-

timization problem outputs the vector s = (s1, . . .sK)—the

number of containers reserved at each time-step.

Our optimization objective is a cost function which is a

linear combination of two terms: One term which penal-

izes for “over-allocation” Ao(s), and another term which

penalizes for “under-allocation” Au(s), both illustrated in

Fig. 5; formally, we wish to minimize αAo(s) + (1 −

5Note that, for a small fraction of the jobs, the periodicity of the job j

can be smaller than the one of its consumers (e.g., daily jobs rolled up in

a monthly report). In this case, we force a deadline based on the smallest

periodicity to ensure the resource provisioning load is distributed over

time (e.g., daily) instead of accumulated at the end (e.g., monthly). We

confirmed with users that this aligns with their intents.
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Figure 5: LP deriving a provisioned skyline R∗, from four

runs (R1-R4) of TPC-H Query12 (10TB scale).

α)Au(s). Next we describe these terms.

Over-allocation penalty. The over-allocation penalty is

defined as the average over-allocation of containers. For-

mally, the expression (sk−si,k)
+ = max{sk−si,k,0} is the

instantaneous over-allocation for instance i at time-step

k. Accordingly, the over-allocation penalty is given by

Ao(s) =
1
N ∑

N
i=1 ∑k(sk − si,k)

+.

Under-allocation penalty. We define a penalty which

captures the eventual under-allocation of resources. In-

tuitively, we allow the job to “catch up” on under-

allocations using resources available later in the run. For-

mally, we define the debt for instance i at time-step k as

Di,k(s1, . . . ,sk) = (Di,k−1 + si,k − sk)
+, with Di,0 = 0. Ob-

serve that the allocation can decrease the debt over time,

but cannot accumulate “credit” for later times (i.e., the

debt cannot go below zero). The under-allocation penalty

is the average debt at the last time step. Accordingly,

Au(s) =
1
N ∑

N
i=1 Di,K(s).

The idea behind choosing these particular forms of

penalties is to model, as closely as possible, the usage

of allocated resources by a job that requests them. Par-

ticularly, the over-allocation penalty models the amount

of unused resources because the job instance doesn’t need

them. Wasted resources allocated in a time-step cannot

be recovered back at a later time-step. However, a short-

age of resources at a time-step can be satisfied at a later

point in time assuming the job is elastic. Final shortage of

provisioned resources has to be counted only at the end;

hence motivating the under-allocation penalty.

Avoiding lazy solutions. Just optimizing the above cri-

teria can lead to solutions that lazily under-provision ini-

tially and compensate by aggressively allocating towards

the end of a job’s execution. So we add the follow-

ing regularization constraint to the optimization problem
1
N ∑

N
i=1

∑k(si,k−sk)
+

∑k si,k
≤ ε . In words, we wish to sustain the

average normalized instantaneous under-allocation below

a threshold ε . While the objective and the constraints have

non-linear terms, the optimization problem can be casted

as an LP through standard lossless transformations.
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The “right” value of ε may depend on the job character-

istics (e.g., size, duration). In order to reduce the burden

of calibrating the value of ε for every job, we roll ε into

the optimization problem as follows. We add a linear term

β · ε to the objective function. The value of β is set pro-

portional to the other terms in the objective function, to

make it relevant. Specifically, we solve the original op-

timization problem (without the β · ε term), and obtain

a value V . We then set β to be a fraction of that value.

Through experiments across many jobs, we found that set-

ting β as 0.1V yields good results across the board.

Complexity. The LP has (O(N×K)) number of variables

and constraints. Our sampling granularity is typically one

minute, and we keep roughly one-month worth of data.

This generates less than 100K variables and constraints.

A state-of-the-art solver (e.g., Gurobi, CPlex) can solve

an LP of millions of variables and constraints in up to few

minutes. Since we are way below the computational limit

of top solvers, we obtain a solution within few seconds for

all periodic jobs in our clusters.

Estimating parallelism. We assume that the skylines

used to derive R∗ are generated under capacity alloca-

tions sufficient to satisfy the maximum parallelism a job

instance can harness. This assumption holds for produc-

tion jobs because they are typically over-allocated to meet

their deadlines. Under this assumption, we treat the esti-

mate s=(s1, . . .sK) of a job’s resource requirement as also

being its maximum parallelism for each timestep k. Fur-

ther, we assume by default that the minimum parallelism

of a job is one container (i.e., any requirement sk can be

stretched over time); this assumption can be overridden

by either users or operators, assuming that they have addi-

tional knowledge about the inner working of the jobs. In-

ferring the min-parallelism automatically remains an open

future direction.

6 Packing multiple periodic jobs

In this section, we provide an overview of LowCost – the

algorithm we use to pack multiple periodic jobs.

6.1 Periodic reservations

Regardless of the packing algorithm we shall use, we face

a practical challenge of how to reserve resources for mul-

tiple, possibly infinite, instances of a periodic job. It is

inefficient to calculate and store a separate reservation for

each instance of a periodic job. To address this challenge,

we force the constraint that all instances associated with

the same periodic job would have the same reservation

across runs (namely, the same offset with respect to the

period of the job). E.g., a daily job which requires 10 con-

tainers for one hour between 10am and 4pm maybe forced

to execute between noon to 1pm every day. While this de-

sign choice might reduce the flexibility of a reservation-

packing algorithm, it provides stronger predictability to

users and reduces allocation complexity.

Having a fixed offset for each periodic jobs produces

a repeating pattern in the overall allocation of all peri-

odic jobs. We identify and store the smallest repeating

unit which can accurately capture this recurring pattern

in the set of all periodic jobs. In particular, we use the

Least Common Multiple (LCM) of the time periods as

the length of the internal storage unit. This ensures that

all periodic jobs align with the boundaries of the storage

unit; see Fig. 6 for an illustration. From an algorithmic

perspective, one can determine how to pack multiple pe-

riodic jobs by only focusing on the LCM representation.

This speeds up the packing algorithm, as it does not need

to consider separately each instance of the periodic job.

Figure 6: Illustration of LCM representation for multiple

periodic reservations.

One may argue that the LCM can get very large, due to

slightly “off-kilter” periods of a few jobs (e.g., 58 minute

period). However, as shown in Fig. 1b, the distribution of

periods in our clusters shows that most period values are

divisors of one day. Accordingly, in practice, we set the

LCM to be one day. The small fraction of jobs with peri-

ods that are not amenable (off-kilter or periods larger than

one day) are accommodated using non-periodic reserva-

tions for each instance. We note that the LCM can be

reconfigured in case of many such outliers.

6.2 Problem formulation

Setting. The input for a planning algorithm is a set of pe-

riodic jobs and a time range [0,T ], which represents the

LCM period as described above. These jobs are typically

revealed to the system one by one – i.e., in an online fash-

ion. For simplicity, we describe the algorithmic problem

under the assumption that each job has one instance within

the LCM; we remove this assumption towards the end of

the subsection. Each job j is characterized by a start time

a j, a deadline d j, and a collection of stages k ∈ [1,K j].
Each stage k captures a timestep of the reservation (see

§5), hence is characterized by a total demand of s
j
k con-
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Figure 7: An example of LowCost execution. The new

job has four stages with different number of containers.

Stage 3 is currently being provisioned. Since the stage

demands 16 containers and the total remaining demand is

38 containers, the time-interval for this stage is 16/38 of

the time available, i.e., 16
38

· 19 = 8. The arrow indicates

where the next container of stage 3 would be allocated.

tainers; the stage may also have a minimum parallelism

constraint (or gang size) of gk containers.

Objective and Constraints. The goals of the packing al-

gorithm are to (i) allocate containers to all periodic jobs,

such that their requirements are met by the deadline, and

(ii) minimize the waiting time for non-periodic, ad-hoc

jobs. These goals can be better fulfilled if the cluster

load is balanced over time. Intuitively, a balanced allo-

cation increases the likelihood of accommodating future

jobs (both periodic and non-periodic) that arrive into the

system. As a concrete measure for a balanced allocation,

the objective of LowCost is to minimize the maximal total

allocation over time. We impose the following constraints

on any solution. First, unless strictly necessary, we do

not allow re-scheduling of jobs that are already in the sys-

tem. This is important for business continuity. Second,

because we typically use a sequence of stages to represent

resource skylines, the entire allocation has to be contigu-

ous, i.e., we do not allow “holes” in the allocation.

We note that the resulting online scheduling problem is

hard already for single-stage jobs – Even the offline prob-

lem is NP-hard, as it generalizes the makespan minimiza-

tion problem on multiple machines (e.g., [34]).

Requirements. We highlight the main requirements from

a packing algorithm. The offline version of our planning

problem can be casted as a Mixed Integer Linear Program

(MILP). However, we prefer a quicker and “lighter” solu-

tion in terms of the running complexity. The main reason

for not relying on rather costly solvers, is that Morpheus

may often update the reservation plan. For example, upon

arrival of a new periodic job, or as a consequence of

changes in the resource estimations (hence reservation)

of a job. On a related note, we need an incremental so-

lution. That is, we wish to keep the reservations steady

for jobs that are already in the system, and do not exhibit

substantial changes in their resource demand.

6.3 Packing with LowCost

Cost function. LowCost uses a cost-based approach

for allocation of containers that takes into account

current cluster allocation and the resource demand of

each job – each time slot t is associated with a cost

c(t). By default, the cost function c : N → R repre-

sents the current load of the cluster. Formally, c(t) =

max
{

load(MEM,t)
capacity(MEM,t) ,

load(cores,t)
capacity(cores,t)

}

, where load(·, t) rep-

resents the total allocation of the resource at time t, and

capacity(·, t) represents its capacity.

The basic algorithm. In a nutshell, the idea behind Low-

Cost is to allocate each incoming job in a way that is cost-

efficient with respect to maxt c(t). To that end, LowCost

follows a greedy procedure which places containers itera-

tively at cost-efficient positions.

In more detail, LowCost handles the stages one by one

in reverse chronological order. For each stage k, LowCost

first sets a time interval I j,k = [τ l
j,k,τ

r
j,k] during which the

stage can be allocated. τr
j,k is set right before the alloca-

tion of stage k+1. The length of I j,k is set proportional to

the ratio between the demand of the stage and the total de-

mand of the remaining stages, i.e.,
s

j
k

∑
k
k′=1

s
j

k′

; see Fig. 7 for

an example. To accommodate the contiguous allocation

constraint, the eligible time steps for allocating the next

gang of a given stage are [τcur
j,k − 1,τr

j,k], where τcur
j,k is the

leftmost timestep which includes some non-zero value for

the current allocation to the stage. LowCost repeats the

above procedure for different end points, and chooses the

allocation with the minimum cost.

Multiple instances. Finally, a periodic job may have mul-

tiple instances within the LCM (e.g., an hourly job j,

where the LCM is one day). As mentioned earlier, we

place all the instances of the job with the same offset with

respect to the period of the job (e.g., all instances of j

should start at the same time-of-day). We incorporate this

constraint in LowCost as follows. Observe that we essen-

tially need to decide on the placement of a single instance.

To do so, for each timestep within the job’s period, we set

the cost as the maximal cost across all timesteps with the

same offset with respect to the period. For example, the

cost seen by j at the 5-th minute would be the maximum

over the costs at 12:05, 1:05, etc. LowCost then places a

single instance based on these costs, and repeats the as-

signment for all instances within the LCM.

We wish to analyze in isolation the consequences of this

choice. Accordingly, for the analysis sake, we assume

that all periodic jobs have the same skyline requirement
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for their instances, but still jobs can differ in their period.

Under these assumptions, we measure the performance of

LowCost using the standard measure of competitive ratio.

The competitive ratio of an online algorithm is the ratio

of cost (for our problem, the maximal height of the allo-

cation) incurred by the online algorithm compared to the

offline optimal solution. Let Pmin,Pmax denote the mini-

mum and maximum period of jobs within the LCM. We

have the following guarantee:

Theorem 6.1 Under the above assumptions, LowCost is

O
(

log
(

Pmax
Pmin

)

)

-competitive for the objective of minimiz-

ing the maximum height of the allocation.

The proof follows by showing that LowCost leads to an

efficient (constant-competitive) schedule when jobs have

the same period. The log-factor arises due to the range

of possible job periods. Intuitively, this result implies that

there is bounded performance loss due to the combination

of our design and algorithmic choices.

Non-periodic jobs. So far we described how we reserve

resources for periodic jobs. We now briefly address how

Morpheus handles non-periodic jobs. The design of Mor-

pheus assumes that periodic jobs have strict priority over

non-periodic (mostly ad-hoc) jobs. This is commensurate

with our analysis, which indicates that the bulk of peri-

odic jobs are (business-critical) production jobs (see §2).

Accordingly, when Morpheus needs to allocate resources

to a new periodic job, it ignores most of the scheduled

non-periodic jobs (excluding periodic jobs that are han-

dled as non-periodic ones), and then attempts to reallocate

resources for non-periodic jobs in case they need more re-

sources. Specifically, Morpheus places the non-periodic

using the same logic of the basic LowCost algorithm, de-

scribed above. The only difference is that the plan for the

lower-priority non-periodic jobs uses the residual capac-

ity, after subtracting the chunk used for periodic jobs.

7 Dynamic Reprovisioning

While reservations can eliminate sharing-induced unpre-

dictability, they provide little protection against inherent

unpredictability arising from hard-to-control exogenous

causes, such as infrastructure issues (e.g., hardware re-

placements (see §2), lack of isolation among tasks of mul-

tiple jobs, and framework code updates) and job-centric

issues (changes in the size, skew, availability of input data,

changes in code/functionalities, etc.).

Although eliminating all the causes of unpredictabil-

ity is very hard, we can mitigate their impact on SLO at-

tainment during runtime, by dynamically modifying the

current instance of a periodic reservation. To that end,

we design a dynamic reprovisioning mechanism which is

triggered when a job execution appears to be headed for

an SLO violation.

Dynamic Reprovisioning Algorithm (DRA). The Dy-

namic Reprovisioning Algorithm (DRA) we currently

employ in Morpheus continuously monitors the resource

consumption of the job, compares it with the resources

allocated in the reservation and intuitively “stretches”

the skyline of resources to accommodate a slower-than-

expected job execution. Reprovisioning is triggered when

a job resource demand (used containers plus pending ask)

exceeds the resources allocated in the skyline. Extra re-

sources are granted for up to T seconds (default 1min), af-

ter which DRA is reevaluated again. The amount of extra

resources is based on the job’s instantaneous demand, but

capped at ρ ∗max(Rrecent) where Rrecent is the amount of

resources allocated in the skyline in the last few minutes

(default 2min), and ρ is a fudge factor (default value 2)

that allows an elastic job to use extra parallelism to make

up for lost time; note that DRA verifies that the job does

not get more resources than it requests. Given this pro-

posed reprovisioning, DRA updates the current instance

of the periodic reservation (by increasing it locally). This

is done by invoking LowCost, which ensures the update is

accepted only if enough resources exist in the plan.
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chance for 
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Figure 8: Resource consumption over time for 100 runs of

TPC-H Query1 on 2200 parallel containers (job running

alone in the cluster).

The proposed heuristics cope well with the inherent un-

predictability we observed in Section 2.2. We show this

by plotting in Fig. 8 the resource consumption over time

for the TPC-H Query1 (100 runs, and highlighting 3 ran-

dom ones in red/green/blue). DRA kicks in for jobs that

have straggling Map2 tasks, which translates in a delayed

start of Red1 stage. By extending the 1000 containers

allocation at the end of Red1 by an extra minute we al-

low most jobs to complete effectively. Similar analysis

has been performed for other TPC-H queries with equally

good results, and in §9 we validate DRA performance on

large production traces.

DRA is simple to implement and rather robust, how-

ever deeper understanding of the application-framework

could lead to more precise reprovisioning decisions. In
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Morpheus’ pluggable architecture, this could be achieved

by borrowing techniques from [15, 41, 19].

Adjusting LowCost to facilitate reprovisioning. The po-

sition of the original reservation allocation with respect to

the [TinAvail,ToutRead] window is critical for the effective-

ness of dynamic reprovisioning. In order to improve the

success probability of reprovisioning, it is necessary to

allocate resources far away from the deadline (allowing

sufficient slack in time for the reprovisioning algorithm

to compensate a slower than expected run). However, in

case of high variance in input data availability, it is benefi-

cial to place the allocation close to the deadline (to ensure

that data is available before allocation and thus reduce

the probability of reprovisioning). To account for this

trade-off, we adjust LowCost’s cost function for “prob-

lematic” jobs (e.g., jobs with high CV for Tstart −TinAvail,

ToutRead −Tend) by adding an alignment penalty . Specif-

ically, the penalty is linearly proportional to the absolute

time-distance between the mid-point of the allocation, and

the mid-point between the start time and the deadline (i.e.,
a j+d j

2
). This penalty incentivizes allocations that are not

too close to neither the start or the deadline of the job.

This trades the two dangers of allocating resources before

the input is available, and not having enough slack after

the allocation before the deadline.

8 Implementation

We implement the design of §3 as extensions to Apache

Hadoop / YARN [51]. Referring back to the architecture

of Fig. 3, we implement the three components of Mor-

pheus as follows. First, the automatic inference engine

operates as a standalone service. It continuously con-

sumes provenance and telemetry data and submits reser-

vation requests to the Resource Manager (RM)—YARN’s

centralized scheduler component [51]—via its REST end-

point. Second, the reservation placement component im-

plements LowCost as in-process functionality of the RM.

Third, the dynamic reprovisioning mechanism is imple-

mented as a monitoring thread in the RM, which observes

job resource requests and triggers resizing of reservations.

Each of the above components is highly pluggable and

can easily be specialized to leverage framework-specific

knowledge, such as [19, 41, 15].

In the rest of this section, we discuss some of the engi-

neering challenges in building a production-ready system.

Scalability. Morpheus’ periodic reservations are instanti-

ated as per-job queues in the RM. Each queue’s capacity

continuously grows and shrinks according to the provi-

sioning skyline. YARN’s RM scheduler [51], is designed

to support a small number of infrequently reconfigured

queues (e.g., one per division of a company). Hence, the

implementation leveraged strict consistency via locking

for queue updates. This limited Morpheus’ scalability to

levels far below our production needs. We address this by

substantially reworking the RM scheduler locking mecha-

nisms through a combination of finer-granularity locking

and lock-free data structures. The key intuition is that

the RM operates as an asynchronous event-driven sys-

tem based on heartbeats and, therefore, is amenable to

operating with relaxed consistency. We carefully study

the effects of our changes and confirm that they induce

very small and transient inconsistencies, that are natu-

rally resolved without visible impact within milliseconds.

This results in a sustained scalability orders of magnitude

higher than the baseline. We showcase this experimen-

tally running on a 2700-node cluster in §9.3.

Cold-Start. An obvious concern for a system that relies

on history to make inference is how to handle cold-start

scenarios, such as non-recurring jobs or initial runs of

a new recurring job. We have three lines of defense to

cope with this problem: (a)Backward compatibility: Our

approach by design is able to support running jobs with

existing fair-queueing infrastructure mode. (b) Manual

SLOs and job resource models: The APIs supporting the

sign-off (step 3) in our job lifecycle can be used to sup-

ply a manually defined SLO and job resource model (both

for periodic and non-periodic jobs [13]). (c) Application-

specific tools: Given a fixed application framework (e.g.,

Hive/Giraph/Scope/Spark) it is possible to build tools that

leverage sample runs and careful modeling to predict the

behavior of the full-scale execution of the jobs. We exper-

imentally integrated with Predict [41] to support Giraph

computations, as well as recently enabled similar func-

tionalities for Hive/Tez/MapReduce with the Perforator

[15] effort. In [15], we take Hive queries and perform car-

dinality estimation via lightweight profiling of UDFs. We

then use this accurate cardinality estimates together with

explicit models of Tez/MapReduce pipelining and paral-

lelism and hardware performance profiles to estimate a

job demand model. Perforator is integrated with our in-

frastructure, but complete integration between Morpheus

and Perforator technologies is part of our future work.

9 Experimental Evaluation

In this section, we demonstrate effectiveness and scalabil-

ity of Morpheus through simulations and cluster runs.

Experimental Settings Our experiments are based on

two production traces and a synthetic benchmarking suite:

Enterprise-trace, a one-month trace of jobs running on a

large 50k-node production COSMOS cluster [9]; Hadoop-

trace, a three-month trace derived from a 4k nodes pro-

duction Hadoop cluster; TPC-H, the standard TPC-H
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Figure 9: Comparison of Morpheus with current user manual provisioning.

benchmark running on Hive/Tez at 10TB scale. The

enterprise-trace has been discussed in §2, and TPC-H is

well documented [12]. The table below presents a break-

down of jobs types and size for our hadoop-trace. Jobs are

clustered into multiple classes based on duration and size.
Hadoop-trace

framework class freq. %
avg avg

duration (sec) parall.

MR/TEZ

S 7% 73 1.5

M 15% 156 19

L 0.6% 2778 469

SPARK

S 39.8% 173 2.6

M 14.52% 605 18

L 7.8% 1400 88

XL 4% 6300 510

XXL 8.6% 24570 1000

MPI - 1.56% 7800 400

For each category we extract salient statistical distri-

butions: job arrival times, workload frequency, job paral-

lelism, and job duration. These distributions are used to

power a Gridmix-based [48] load generator.

9.1 Performance on the enterprise-trace

First, we challenge Morpheus in a simulation based on our

largest dataset, the enterprise-trace. For this data-set we

have full provenance graph (PG) and telemetry informa-

tion, and we can thus test all components of Morpheus.

Sensible SLOs for most jobs. A pressing question we

want to answer is whether the SLOs we derive are repre-

sentative of user expectations. Short of a full-scale user

study, we study a reliable proxy metrics: job success/-

failure. Given job pairs A → B, such that B is the first

consumer of A’s output, we measure from the trace:

P(Bfail | AmissSLO)≈ P(Bfail | Afail)> 4×P(Bfail | AmeetSLO)

This shows that the negative impact of missing a deadline

is comparable with the impact of complete failure of the

job. This is empirically 4× worse for the dependent job B

than if A had met the SLO.

Second, we observe that Morpheus SLO target extrac-

tor successfully derives SLOs for over 70% of the millions

of instances of periodic jobs in the enterprise-trace. For

the remainder we have too little data in our trace to de-

rive SLOs with good confidence (e.g., we only have four

samples in our trace for jobs with weekly periodicity).

SLOs, job modeling, packing, and reprovisioning. In

Fig. 9 we use our enterprise-trace (70% training and 30%

testing) to show Morpheus’ ability to: (A) extract SLOs,

(B) derive job resource models, (C) achieve high SLO at-

tainment gains over the baseline, and (D) pack reserva-

tion efficiently (measured as potential cluster reduction).

In Fig. 9a, we present a CDF of the ratio between the

slack (time between job-completion and deadline) and the

job duration (
ToutRead−Tend

Tend−Tstart
). The majority of jobs have

substantial amount of slack (almost 70% of jobs have

enough slack to serially execute two or more times before

the deadline)—this flexibility is leveraged during packing.

Fig. 9b compares the job provisioning achieved by Mor-

pheus under different assignments of the parameter α with

the user-supplied one (matching our motivation Fig. 2a).

Morpheus drastically outperforms the user, by being con-

sistently closer to the ideal provisioning (1:1 ratio, shown

as vertical dotted line). Different assignment of α affect

how tightly the skyline is fitted, but also how likely we

are to miss an SLO (Fig. 9c). We find that a value of 1%

leads to the best balance, yielding 13× reduction of the

worst-case SLO misses—these are defined as the amount

of SLO violations a periodic job would incur if no oppor-

tunistic (fair-share) capacity is available. Finally Fig. 9d

shows that our packing algorithms manage to handle the

complex skylines produced by the job modeling compo-

nent, and leverage the slack in SLOs to densely pack the

cluster agenda. This matches our important constraint of

not increasing the cluster cost (but actually lowering it).

The ratio between used and provisioned indicates that we

achieve high-utilization, even though we rely solely on

guaranteed provisioning, while the user compensate with

under-allocation via opportunistic fair-sharing. Note that

our unused capacity is anyway redistributed fairly, but we

do not rely on it to achieve high utilization.

9.2 Breakdown of contributions

Fig. 10a shows a breakdown of contributions of our static

techniques. We fix a target SLO attainment level 5×
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Figure 10: Gain break-down: each technique employed

by Morpheus delivers sizable improvements.

above the baseline, and show the smallest size cluster

required to achieve that under different combinations of

our techniques. In particular, we show that: 1) SLO-

extraction + packing lower the baseline cluster size by 6%,

2) Job resource modeling, i.e., using our skyline instead of

user supplied provisioning, can alone lower cluster size by

16%, and that 3) when combined they achieve 19% total

reduction. Fig. 10b highlights the trade-off between uti-

lization and predictability, by showing how turning on/off

our dynamic reprovisioning we can either: 1) match the

user utilization level, and deliver 13× lower violations, or

2) match the current SLO attainment and reduce cluster

size by over 60% (since we allow more aggressive tun-

ing of the LP, and repair underallocations dynamically).

Hence, each of the techniques we developed is required

and supplies a substantial portion of our overall win.

9.3 Physical deployments and scale tests

In this section, we challenge Morpheus with a combi-

nation of the Hadoop-trace and the TPC-H workloads.

We test our system under 3 environments: (a) 275-node

cluster with 2200 containers (1core, 8GB RAM per con-

tainer), (b) 2700-node cluster (100k containers) and (c)

4000-node production cluster.

Adversarial workload. We validate Morpheus’ ability to

protect jobs from an adversarial workload. In Fig. 12, we

show an hourly periodic workload comprised of several

TPC-H queries running on a 275-node cluster (equivalent

to 2200 containers). The workload imposes heavy load

on the cluster, with container utilization hovering near

100% of the available capacity during most of the experi-

ment. The jobs are submitted periodically within a reser-

vation we derived from historical runs. We then surround

the periodic jobs with thousands of ad-hoc jobs from the

Hadoop-trace which can take upto 75% of the cluster ca-

pacity. Thus, periodic reservations are run against a clus-

ter stressed with production workload. Morpheus success-

fully eliminates all sharing-induced variability. To further

challenge our system, we manually delay the start of one

of the queries. The system immediately reacts by dynami-

time(hours)

0 1 2 3 4 5 6 7 8

time(hours)

0 1 2 3 4 5 6 7 8
0

200

400

600

800

re
s

e
rv

a
ti

o
n

s

0

20

40

60

80

m
e

m
o

ry
 (

T
B

)

Figure 11: Scalability metrics for large scale real cluster

run (on 2700 nodes)

cally reprovisioning the (delayed) job with extra capacity,

compensating for our actions and meeting the target SLO.

Scale test (2700 nodes). We validate Morpheus’ scala-

bility to target production clusters, by running it live on

a 2700-node cluster, scheduling almost 100k concurrent

containers through the ResourceManager. This is a high-

load workload designed to stress the scheduling infras-

tructure. We run a sustained 8hr experiment, with hun-

dreds of reservation submissions per hour. We measure

the system performance both as perceived by the user (not

shown), and as observed by instrumented system compo-

nents (Fig. 11). The key takeaway of this experiment is

three-fold: 1) we demonstrate that Morpheus is able to

sustain high load on a large cluster, 2) we confirm that in a

real deployment Morpheus can achieve high plan utiliza-

tion, 3) we confirm that user-facing latencies are in-line

with production cluster user expectations. We see up to

900 concurrent reservations in the plan, with up to 270

of them active throughout the 8hr run. At peak, aggre-

gate guaranteed capacity exceeds the 92TB of container

memory, reaching maximum cluster capacity. The system

remains responsive throughout the experiment with reser-

vation submission latencies within 10sec.

Production deployment. We validate our system by de-

ploying it in a 4000-node production environment. In this

context, we are only allowed to run a small number of pe-

riodic jobs via reservations, while the bulk of the load is

imposed by ad-hoc and manually provisioned jobs. Fo-

cusing on a periodic run of TPC-H Query3, the runtime

variability was well controlled, despite utilization swings

of whole cluster in excess of 69k cores during the job exe-

cution. During the same period, jobs running without the

protection of reservations observed much larger variance.

10 Related Work

SLO extraction. To the best of our knowledge, we are

the first to propose fully automated extraction of SLOs

from historical data. Close related work focused on semi-

automated, iterative generation of SLOs for databases

[40] and web services [46].

Runtime/provisionining estimation. Substantial re-
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lated work has been devoted both in database and sys-

tems literature to estimate query runtimes, and resource

needs. Runtime prediction has been studied in databases

[33, 10, 21], Big-Data/Cloud [39, 38, 52, 20, 17], and

HPC/Grid computing settings [53, 31, 45]. A large body

of work [54, 32, 11] leveraged known MapReduce job

structure to accurately predict both resource demand and

runtimes across different data input sizes. Our architec-

ture allows using any of these techniques, when the ap-

plication framework is known, while this paper presents

a framework-agnostic solution purely based on history.

History-based modeling has been used in other contexts:

failure-prediction for quality of service (QoS) [18], and

resource allocation in business process management [28,

3, 35].

SLO enforcement. Automatic techniques for meeting

SLOs [59, 19], use a combination of profiling and job

structure knowledge for runtime prediction. PRESS [23]

focuses on meeting SLOs at a single-node level and can

adjust allocated resources online. Jockey [19] provides a

solution for dynamic reprovisioning based on job models

derived from execution history and job’s internal depen-

dencies. It can be used as a framework-specific dynamic

reprovisioning policy. Morpheus provides deadlines and

global arbitration, which are beyond the scope of [19].

Other dynamic enforcement mechanisms include control-

theoretic approaches such as [16, 49].

Online packing and scheduling. The scheduling prob-

lem solved by Morpheus is a significant generalization of

online multidimensional bin-packing problems [4, 25, 7,

5] and online deadline-scheduling problems (see [36, 6]

and references therein). Placement in periodic settings has

also been studied in the context of real-time and multi-

processor machines [8, 47, 14]. However, the combina-

tion of jobs with stage-dependencies, periodicity and and

deadlines requires novel algorithm design.

Cluster Scheduling. There has been a substantial body of

work on cluster scheduling for big-data analytics [22, 29,

58, 50, 24]. Corral [30] leverages job recurrence and pre-

dictable resource requirements to coordinate data and task

placement for higher utilization, but does not consider

SLOs. Based on published material, SLO inference/en-

forcement is not present in Mesos [27], Borg [55], and

Omega [44]. However, Morpheus’ mechanisms can be

adapted to alternative underlying schedulers. Apollo [9]

makes more explicit trade-offs on time vs locality at the

task level, but does not provide job-completion SLOs.

YARN’s reservation system [13] serves as a base for Mor-

pheus, but it left unsolved the SLO and job resource model

derivation, support for periodic reservations, and dynamic

reprovisioning. Moreover, the packing algorithms we

present here outperform the one in [13] even for non-

periodic jobs [1].

11 Conclusion

In this paper, we present Morpheus, a system de-

signed to resolve the tension between predictability and

utilization—that we discovered thorough analysis of clus-

ter workloads and operator/user dynamics. Morpheus

builds on three key ideas: automatically deriving SLOs

and job resource models from historical data, relying on

recurrent reservations and packing algorithms to enforce

SLOs, and dynamic reprovisioning to mitigate inherent

execution variance. We validate our design and imple-

mentation against large production traces, and on a 2700-

node cluster. Morpheus reduces worst-case SLO viola-

tions by 5-13×, while concurrently reducing the cluster

footprint by 14-28%. Overall, Morpheus enables pre-

dictable performance with less resource provisioning—a

win-win for operators and users.
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