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ABSTRACT 

Painful diabetic neuropathy (PDN) is a long-term complication of diabetes. Defining 

symptoms include mechanical allodynia (pain due to light pressure or touch) and morphine 

hyposensitivity.  In our previous work using the streptozotocin (STZ)-diabetic rat model of 

PDN, morphine hyposensitivity developed in a temporal manner with efficacy abolished at 3-

months post-STZ and maintained for 6-months post-STZ. As this time course mimicked that 

for the temporal development of hyposensitivity to the pain-relieving effects of the furoxan 

nitric oxide (NO) donor, PRG150 (3-methylfuroxan-4-carbaldehyde) in STZ-diabetic rats, we 

hypothesized that progressive depletion of endogenous NO bioactivity may underpin the 

temporal loss of morphine sensitivity in STZ-diabetic rats. Furthermore, we hypothesized that 

replenishment of NO bioactivity may restore morphine sensitivity in these animals. Diabetes 

was induced in male Dark Agouti rats by intravenous injection of STZ (85 mg/kg). Diabetes 

was confirmed on day 7 if blood glucose concentrations were ≥15 mM.  Mechanical 
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allodynia was fully developed in the bilateral hindpaws by 3-weeks of STZ-diabetes in rats 

and this was maintained for the study duration.  Morphine hyposensitivity developed in a 

temporal manner with efficacy abolished by 3-months post-STZ.  Administration of dietary 

L-arginine (NO precursor) at 1 g/day to STZ-diabetic rats according to a 15-week prevention 

protocol initiated at 9-weeks post-STZ prevented abolition of morphine efficacy. When given 

as an 8-week intervention protocol in rats where morphine efficacy was abolished, dietary L-

arginine at 1 g/day progressively rescued morphine efficacy and potency. Our findings 

implicate NO depletion in the development of morphine hyposensitivity in STZ-diabetic rats.   

 

Indexing words: L-arginine; mechanical allodynia, morphine; morphine hyposensitivity; 

nitric oxide (NO); painful diabetic neuropathy (PDN); prevention protocol, intervention 

protocol; STZ-diabetic rats  

 

Introduction 

Painful diabetic neuropathy (PDN) is a type of peripheral neuropathic pain that develops in 

the long nerves in a ‘stocking and glove’ distribution, and that affects up to 20% of patients 

with diabetes1,2.  PDN symptoms include lancinating, burning and shooting pains as well as 

mechanical allodynia, a type of pain evoked by non-noxious mechanical stimuli such as light 

pressure or touch1,2.  In our previous work, we showed that single bolus doses of the furoxan 

nitric oxide (NO) donor, PRG150 (3-methylfuroxan-4-carbaldehyde), evoked dose-dependent 

pain relief in STZ-diabetic rats. However, the efficacious bolus doses of PRG150 at 14 and 

24 weeks of STZ-diabetes were 3-4 orders of magnitude higher than that required at 10-

weeks post-STZ or in non-diabetic control rats3.  
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In other work by our group in diabetic rats assessed in longitudinal studies over prolonged 

periods, morphine hyposensitivity developed in a temporal manner and was fully developed 

by approximately 3 months of diabetes with it being maintained for at least 6 months4-6. 

Interestingly, this time course mimicked that for progressive development of hyposensitivity 

to the pain-relieving effects of the furoxan NO donor, PRG150, in STZ-diabetic rats3 as well 

as clinical reports of the ineffectiveness of morphine for the symptomatic relief of PDN1,2.  

Together, our previous findings suggest that temporal depletion of NO bioactivity in 

advanced diabetes may have a key role in the pathobiology of the associated morphine 

hyposensitivity.  

 

Endogenous NO is synthesized from the precursor, L-arginine, by three NO synthase (NOS) 

enzymes, viz endothelial NOS, neuronal NOS and inducible NOS7.  Under normal conditions 

in vivo, NO is a highly diffusible gas with a half-life of only a few seconds that regulates 

many physiological processes7. However, after peripheral nerve injury, on-going ectopic 

firing of injured primary afferents induces central sensitization in the dorsal horn of the spinal 

cord that is underpinned by persistent activation of the N-Methyl-D-Aspartate 

(NMDA)/NOS/NO signaling cascade and glial cell activation, to markedly increase NO 

formation at multiple levels of the somatosensory nervous system8-10.  In diabetes, there is 

increased generation of superoxide that reacts with elevated levels of NO to increase 

formation of the neurotoxin, peroxynitrite, resulting in nitrooxidative stress and the 

development of PDN11,12.   
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From the foregoing, we developed the hypothesis that progressive depletion of endogenous 

NO bioactivity may have a key role in the temporal development of morphine hyposensitivity 

in STZ-diabetic rats and that replenishment of endogenous NO bioactivity may restore 

morphine sensitivity in these animals. To test our hypothesis, STZ-diabetic rats were 

administered dietary L-arginine (NO precursor) at 1 g/day (2.5% in ground rodent chow) 

according to either a 15-week prevention protocol (Group 1) commencing at 3-weeks prior to 

the abolition morphine efficacy (9-weeks post-STZ) or an 8-week intervention protocol 

commencing at 14- or 30- weeks post-STZ administration (Groups 2-3, respectively). 

RESULTS 

Mechanical hypersensitivity in the hindpaws of STZ-diabetic rats  

The mean (±SEM) paw withdrawal thresholds (PWTs) in the bilateral hindpaws of drug-

naïve STZ-diabetic Dark Agouti (DA) rats were significantly lower (P≤0.05) than those for 

control non-diabetic rats (11.9±0.2g). Specifically, in Group 1 STZ-diabetic DA rats (Fig. 1), 

the mean (±SEM) PWTs decreased significantly (F(3,71) =265.4, P≤0.05; one-way ANOVA 

with Tukey’s multiple comparisons test) from 11.9 (±0.2)g in non-diabetic rats to 6.8 (±0.3)g 

by 9-weeks post-STZ administration.  In Group 2 STZ-diabetic rats (Fig. 1), the mean 

(±SEM) hindpaw PWTs at 14 and 24 weeks post-STZ administration were significantly 

reduced (F(2,11)=14.6, (P≤0.05) one-way ANOVA with Tukey’s multiple comparisons test) to 

3.8 (±0.2)g and 3.1 (±0.3)g respectively. These data show that mechanical allodynia was fully 

developed (PWTs ≤6g) for at least 24-weeks post-STZ administration. In Group 3 rats (Fig. 

1), the mean (±SEM) hindpaw PWT at 24-weeks post-STZ administration was 3.1 (±0.1)g 

which differed significantly (P>0.05; unpaired t-test) from that in non-diabetic rats at 11.9 

(±0.2)g. Overall, dietary L-arginine treatment of STZ-diabetic rats for up to 15-wks did not 

reverse mechanical allodynia in the bilateral hindpaws (see details in Supplementary Results). 
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Dietary L-arginine prevents loss of morphine efficacy in STZ-diabetic rats 

Group 1: L-arginine Prevention Protocol 

The dose-response curve for single subcutaneous (s.c.) bolus doses of morphine in STZ-

diabetic DA rats at 9-weeks post-STZ administration is shown in Fig. 2. The corresponding 

mean (±SEM) dose that produced a 50% response (ED50) was 6.1 (±0.3) mg/kg in agreement 

with that for STZ-diabetic DA rats at 3-weeks post-STZ reported previously by our 

laboratory4.  Additionally, the mean (±SEM) ED50 for s.c. morphine (7.0 ± 0.5 mg/kg) after 

3-weeks of dietary L-arginine treatment (12-weeks post-STZ) did not differ significantly 

(F(2,54) = 2.9, P >0.05; one way ANOVA with Tukey’s multiple comparison test) from that 

determined in Group 1 STZ-diabetic DA rats just prior to initiation of the dietary L-arginine 

intervention at 9-weeks post-STZ (Fig. 2). Thus, administration of dietary L-arginine for as 

little as 3-weeks prevented the abolition of morphine efficacy (Fig. 2) that otherwise occurs at 

12-weeks post-STZ as previously reported by our laboratory4,5. After 15-weeks of dietary L-

arginine treatment in the same animals (24-weeks post-STZ), acute s.c. morphine efficacy 

was maintained (Fig. 2) in contrast to its abolition in STZ-diabetic DA rats at 24-weeks post-

STZ that were fed a standard rodent chow diet4. Specifically, after 15-weeks of dietary L-

arginine, the s.c. morphine dose-response curve was shifted to the left (Fig. 2) such that the 

mean (±SEM) ED50 was 5.0 (± 0.9) mg/kg (Fig. 2) c.f. 7.0 (±0.5) mg/kg in the same animals 

at 12-weeks post-STZ administration i.e. after 3-weeks treatment with dietary L-arginine. 

Dietary L-arginine restores morphine efficacy and potency in STZ-diabetic rats 

Group 2: L-arginine Early Intervention Protocol 

Administration of the s.c. morphine ED50 (6.1 mg/kg) determined at 9-weeks post-STZ in 

Group 1 rats (Fig. 2), to Group 2 diabetic rats at 14-weeks post-STZ, showed that the anti-
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allodynic efficacy of morphine was abolished in these animals (Fig. 3). Specifically, the mean 

(±SEM) extent and duration of anti-allodynia (percent maximum possible effect area under 

the curve; %MPE AUC) was only 5.2 (± 2.5) %MPE.h (Fig. 3). However, after 4-weeks of 

the dietary L-arginine intervention in these animals (18 weeks post-STZ), morphine efficacy 

was restored (Fig. 3) such that the mean (±SEM) %MPE AUC for a single s.c. dose of 

morphine at 6.1 mg/kg was 109.8 (± 28.6) %MPE.h (Fig. 3). Four weeks later after 8-weeks 

of the dietary L-arginine intervention (22-weeks post-STZ), morphine efficacy was not only 

retained in these animals (Fig. 3) but there was a significant increase in the potency of single 

s.c. bolus doses of morphine at 6.1 mg/kg (F(2,11) =14.5; P≤0.05; one-way ANOVA with 

Tukey’s multiple comparison test) (Fig. 3). Additionally, the mean (±SEM) %MPE AUC was 

149.5 (± 9.5) %MPE.h which did not differ (F(3,16) = 11.5, P>0.05; one-way ANOVA with 

Tukey’s multiple comparison test) from that for s.c. morphine at 6.1 mg/kg in opioid-naïve 

non-diabetic control rats (136.9 ± 16.1 %MPE.h). 

 

Group 3: L-arginine Late Intervention Protocol 

In STZ-diabetic DA rats where morphine efficacy had been abolished since 12-weeks post-

STZ administration4, an 8-week dietary L-arginine intervention at 1 g/day commencing at 30-

weeks post-STZ (Fig. 1), resulted in restoration of morphine efficacy (Fig. 4). Specifically, 

after 4-weeks of dietary L-arginine, the mean (±SEM) %MPE AUC value evoked by an s.c. 

bolus dose of morphine at 6.1 mg/kg was 62.2 (±15.8) %MPE.h (Fig. 4) did not differ 

significantly (F(4,23) = 31.1, P>0.05; one-way ANOVA with Tukey’s multiple comparison 

test) from that (63.6 ±7.4 %MPE.h) evoked in Group 1 diabetic rats at 9-weeks post-STZ and 

fed a standard rodent chow diet (Fig. 2). Continuation of the late dietary L-arginine 

intervention for a further 4 weeks to 8-weeks in the same animals (30-38 weeks post-STZ) 
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(Fig. 4) resulted in a significant increase (F(4,23) = 31.1, P≤0.05; one-way ANOVA with 

Tukey’s multiple comparison test) in morphine’s anti-allodynic potency (Fig. 4). Specifically, 

the mean (±SEM) %MPE AUC evoked by a single s.c. bolus dose of morphine at 6.1 mg/kg 

was 117.1 (± 15.4) %MPE-h which was approximately 2-fold larger than the respective mean 

(±SEM) %MPE AUC value after 4-weeks of the late dietary L-arginine intervention in the 

same animals (Fig. 4). 

 

Dietary L-arginine: No effect on morphine efficacy or potency in control non-diabetic rats 

Mean (±SEM) food intake for L-arginine treated STZ-diabetic rats was 43.2 (±0.2) g per day 

whereas control non-diabetic rats treated with dietary L-arginine consumed 20.5 (±0.7) g of 

food per day. Thus, in order to give comparable doses of L-arginine to both STZ-diabetic and 

non-diabetic weight-matched control rats, the concentration of L-arginine in the ground 

rodent chow was 2-fold higher for non-diabetic rats at 5% c.f. 2.5% for STZ-diabetic animals. 

For non-diabetic male DA rats, the mean (±SEM) ED50 at 3.0 (± 0.2 mg/kg) for the 

antinociception (%MPE) dose-response curve (Fig. 5) evoked by single s.c. bolus doses of 

morphine did not differ significantly (P>0.05; unpaired t-test) from that (2.5 ± 0.2 mg/kg) for 

non-diabetic male DA rats administered L-arginine (1 g/day) for one week prior to 

antinociceptive testing (Fig. 5).  Thus, chronic administration of dietary L-arginine did not 

alter morphine antinociception in opioid-naïve non-diabetic male DA rats (Fig. 5). 

 

General Health 

Following induction of diabetes with STZ, there was a 12-13% decrease in mean (±SEM) 

body weight (see details in Supplementary Results) and there was a marked increase in blood 

glucose concentrations (from 6 mM to >20 mM) (Supplementary Results). Dietary 
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administration of L-arginine at 1 g/day mixed in rodent chow to STZ-diabetic rats for up to 

15-wks did not adversely alter body weight (P>0.05) and it had no significant effect on 

elevated blood glucose concentrations (P>0.05) (see details in Supplementary Results). 

 

DISCUSSION 

Our findings show for the first time that dietary administration of the endogenous NO 

substrate, L-arginine at 1 g/day according to either a 15-week prevention protocol (Fig 1) or 

an 8-week intervention protocol (Fig. 1) in STZ-diabetic rats modulated the extent and 

duration of pain relief evoked by single s.c. bolus doses of morphine in these animals (Figs. 

2-4). Specifically, 15-weeks of dietary L-arginine given according to a prevention protocol 

initiated at 9-weeks post-STZ administration in rats, it prevented the abolition of morphine 

efficacy that otherwise occurred at 12-weeks post-STZ (Fig. 2) in comparable rats fed a 

standard rodent chow diet4,5. Not only was morphine efficacy maintained in these animals, 

but the potency of morphine did not differ significantly (P > 0.05) from that in the same 

animals prior to commencement of the dietary L-arginine treatment (Fig. 2). 

 

Intriguingly, initiation of a dietary L-arginine (1 g/day) intervention after morphine efficacy 

had been abolished in STZ-diabetic rats, (i.e. at 14 post-STZ for Group 2; Fig. 1), 

progressively rescued morphine efficacy and potency over an 8-week treatment period (Fig. 

3). Administration of the same dietary L-arginine regimen (1 g/day for 8-weeks) to STZ-

diabetic rats commencing at 30-weeks post-STZ, also progressively restored morphine 

efficacy and potency in the bilateral hindpaws of these animals (Fig. 3).  
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In weight-matched control, non-diabetic rats, dietary L-arginine at 1 g/day had no significant 

(P > 0.05) effect on morphine potency relative to that for control non-diabetic rats fed a 

standard rat chow diet (Fig. 5).  Our findings are aligned with previous work by others13 

whereby a single intraperitoneal (i.p.) bolus dose of L-arginine at 200 mg/kg given 10 min 

prior to morphine had no significant effect on levels of antinociception in mice.  

 

The restoration of morphine efficacy in STZ-diabetic rats administered the L-arginine dietary 

intervention for 8-weeks occurred despite the ongoing neuropathic pain state that remained 

unaltered in these animals during the 8-weeks of L-arginine treatment.  The mechanism by 

which L-arginine progressively rescued morphine efficacy and potency over the 8-week 

treatment period in STZ-diabetic rats without altering the underlying peripheral neuropathic 

pain state, is unclear.  However, NO formed from the dietary L-arginine, may have attenuated 

perineurial hypoxia and the associated oxidative stress, as well as reducing otherwise 

elevated levels of diacylglycerol and activated protein kinase C (PKC), that are produced as a 

consequence of persistent hyperglycemia in diabetes14,15. Of particular importance to the 

present work, PKC mechanisms are implicated in desensitization of the opioid receptor16-22 as 

well as the development of diabetic complications16. A role for PKC in the development of 

opioid hyposensitivity in diabetes is supported by observation that supraspinal pre-treatment 

of STZ-diabetic rats with the PKC inhibitor, calphostin C, prevented the development of 

opioid hyposensitivity23,24. 

 

In recent work by others in STZ-diabetic rats exhibiting opioid hyposensitivity, MOP 

receptor immunoreactive primary sensory neurons were co-localized with activated PKC 

isoforms as well as with the receptor for advanced glycation end products (RAGE)16. Using a 

range of measures including administration of a selective PKC inhibitor, intrathecal RAGE 
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siRNA, or inhibition of advanced glycation end product (AGE) formation to prevent both 

RAGE-dependent PKC activation and desensitization of the MOP receptor, opioid analgesic 

efficacy was restored16. In other work in rats with advanced diabetes at 12-weeks post-STZ, 

the inhibitory effects of intraplantar bolus doses of morphine on capsaicin-induced 

nocifensive behavior were impaired25. Also, there was a markedly reduced inhibitory effect 

of morphine on capsaicin-induced TRPV1 current in DRG neurons from these animals25. 

These changes were associated with a loss of functional MOP but not TRPV1 receptors in 

primary sensory neurons with all changes reversed by intrathecal infusion of nerve growth 

factor (NGF)25.  NO plays a role in NGF-mediated neurotrophic responses. Hence, it is 

plausible that chronic dietary administration of L-arginine in STZ-diabetic rats to replenish in 

vivo NO bioactivity and modulate NGF-TrkA signaling pathways26, underpins the rescue of 

morphine analgesic efficacy in advanced diabetes herein. 

 

In the Zucker Diabetic Fatty rat model of Type 2 diabetes, morphine hyposensitivity in 

animals with advanced diabetes at 29 weeks of age, was underpinned by reduced MOP 

receptor function in the spinal cord that appeared to be due to reduced basal G-protein 

activity6. In other work in rats with advanced diabetes (12-weeks post-STZ administration), 

hyposensitivity to the pain-relieving effects of single intrathecal (i.t.) bolus doses of the MOP 

receptor agonist, fentanyl, was accompanied by a reduction in MOP immunoreactivity in 

small diameter sensory neurons, a reduction in membrane-bound MOP binding sites and 

impaired MOP receptor G-protein coupling in the dorsal horn of the spinal cord27. 

Pretreatment with intrathecal bolus doses of NGF reversed these changes and rescued opioid 

responsiveness25.  
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Although dietary supplementation with L-arginine restored morphine efficacy and potency in 

STZ-diabetic rats herein, this treatment had only a minor effect on baseline PWTs. These 

findings are in contrast to work by others where administration of L-arginine as a prevention 

protocol in the drinking water (2.6 g/L for 3-weeks; water consumption 276 mL/day) 

prevented the development of both mechanical and thermal hypersensitivities in the hindpaws 

of STZ-diabetic rats28. This difference may be because L-arginine treatment commenced at 

the time of diabetes onset rather than at 9, 14 or 30-weeks post-STZ administration as was 

done in the present work. 

 

As L-arginine has the potential to stimulate hormonal secretion including that of growth 

hormone, glucagon, prolactin and insulin29, we assessed the effect of chronic dietary L-

arginine on blood glucose levels in rats with advanced STZ-induced diabetes. Importantly, 

we show that irrespective of when the dietary L-arginine intervention was initiated in the 

interval 9 to 30-weeks post-STZ administration, it did not alter the markedly elevated blood 

glucose levels (>20 mM) in these animals (Supplementary Results).  Our findings are aligned 

with other work whereby intravenous injection of a bolus dose of L-arginine (150 mg/kg) 

followed by chronic infusion (10 mg/kg/min for 60 min), did not significantly alter (P>0.05) 

blood glucose levels in either non-diabetic or STZ-diabetic rats30.  Furthermore, chronic L-

arginine administration in the drinking water at 1.25 mg/ml for 4 weeks commencing at 12 

weeks post-STZ administration or at 1.0 mg/ml for 12 weeks after diabetes induction31,32 did 

not significantly alter (p > 0.05) hyperglycemia in these animals, mirroring the profoundly 

elevated blood glucose levels measured in STZ-diabetic rats herein.     
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Irrespective of the cellular mechanisms involved in the restoration of morphine efficacy in 

rats with advanced STZ-diabetes and given dietary L-arginine treatment at 1 g/day for either 

15-weeks according to a prevention protocol or 8-weeks according to an intervention 

protocol, our findings suggest that NO donors may restore opioid analgesic efficacy in 

patients with advanced diabetes.  If so, it may be possible to provide improved pain relief in 

diabetic patients whose PDN is poorly relieved by clinically available drug treatments 

recommended by the Neuropathic Pain Special Interest Group of the International 

Association for the Study of Pain, such as the gabapentinoids and the tricyclic 

antidepressants33.   

 In summary, our findings are the first to provide in vivo evidence linking depletion of NO 

bioactivity with the development of morphine hyposensitivity in the STZ-diabetic rat model 

of PDN.  Specifically, treatment of STZ-diabetic rats with dietary L-arginine at 1 g/day for 

15-weeks according to a prevention protocol prevented the abolition of morphine efficacy 

that otherwise occurred in STZ-diabetic rats at 12-weeks post-STZ administration. 

Additionally, treatment of STZ-diabetic rats that were insensitive to the pain-relieving effects 

of single s.c. bolus doses of morphine, with dietary L-arginine at 1 g/day for 8-weeks 

according to an intervention protocol progressively rescued morphine efficacy and potency in 

these animals without significantly altering the underlying peripheral neuropathic pain state.   

Materials and Methods 

In vivo experimentation 

Animals 

Ethics approval was from the Animal Ethics Committee of The University of Queensland 

(Brisbane, Australia). Male DA rats were purchased from the Central Animal Breeding 

House, The University of Queensland. Rats were housed in pairs in a temperature controlled 
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room (21 ± 2oC; mean ±SD) with a 12 h/12 h light/dark cycle.  Rats had free access to rodent 

chow and water, and were acclimatized prior to initiation of experimentation.   

 

Reagents and Materials 

L-arginine hydrochloride, streptozotocin, citric acid and trisodium citrate were from Sigma 

Aldrich (Sydney, Australia).  Morphine hydrochloride was from the Pharmacy Department, 

Royal Brisbane and Women’s Hospital (Brisbane, Australia). Sodium benzylpenicillin 

(BenpenTM) vials containing 600 mg of powder, ketamine hydrochloride (KetamavTM -100) 

vials (100 mg/ml) and xylazine hydrochloride (Ilium XylazilTM-20) vials (20 mg/ml) were 

from Abbott Australasia Pty Ltd (Sydney, Australia). Sodium chloride ampoules were from 

Delta West Pty. Ltd. (Perth, Australia). Single lumen polyethylene tubing (0.5-mm internal 

diameter) was from Critchley Electrical Products Pty. Ltd. (Auburn, Australia).  Blood 

glucose testing strips (GlucostixTM) were from The University of Queensland Campus 

Pharmacy (Brisbane, Australia) and a glucometer Precision Q.I.DTM was from Medisense 

Australia Pty Ltd (Melbourne, Australia).  Medical grade CO2 and O2 were purchased from 

BOC Gases Australia Ltd. (Brisbane, Australia).  

 

Induction of Diabetes with Streptozotocin (STZ) 

Anaesthesia was induced with a mixture of ketamine (100 mg/kg, i.p.) and xylazine (16 

mg/kg, i.p.) to facilitate insertion of a polyethylene cannula (pre-filled with 0.1 ml of sterile 

saline) into the right common jugular vein.  Cannulae were tested for correct placement by 

withdrawing a small amount of blood.  Diabetes was induced in rats by injection of STZ (85 

mg/kg in 0.1 M citrate buffer at pH 4.5) via the jugular vein cannula3-5. Benzylpenicillin (60 
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mg s.c.) was administered and rats were monitored during surgical recovery.  Diabetes was 

confirmed on day 7 post-STZ in individual rats if daily water intake was 100 mL and blood 

glucose levels (BGLs) were ≥ 15 mM. Non-diabetic rats were used in the control 

experiments.  

L-Arginine dietary administration 

A group of control non-diabetic rats received dietary L-arginine at 1 g/day (5% mixed with 

ground rodent chow) for 7-days. This L-arginine dose was used previously by others in 

hypertensive non-diabetic rats34. A two-fold lower concentration of L-arginine (2.5% mixed 

with ground rodent chow) was used in STZ-diabetic rats because their mean (±SEM) food 

consumption was 2-fold higher at 43.2 (±0.2) g per day compared with 20.5 (±0.7) g/day for 

the non-diabetic group. 

Dosing Solutions and Dose administration 

A stock solution of morphine (45 mg/ml as the free base in sterile saline) was prepared for 

subcutaneous (s.c.) bolus dose administration and aliquots were frozen at approximately –

20oC until required.  On each dosing occasion, an aliquot was thawed and serially diluted 

with sterile saline to produce the required dosing solution.  Rats received a single s.c. 

injection (100 L) of morphine into the scruff of the neck, using a 250 L Hamilton syringe.   

Treatment Groups 

This study comprised three groups of STZ-diabetic DA rats and one group of non-diabetic 

DA rats.  Morphine bolus dose administration was according to a ‘washout’ protocol with 

four days of washout between successive doses and each rat received a maximum of three 

doses. 
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Group 1 STZ-diabetic rats: L-arginine prevention protocol 

Group 1 DA rats (n=25; 256±3.6g, mean ±SEM) received an intravenous dose of STZ (85 

mg/kg) and were studied longitudinally over a 6-month period. For each testing session, rats 

received single s.c. doses of morphine. Individual animals received (i) one of three bolus 

doses of morphine (Fig. 1) to produce dose-response curves at 9, 12 and 24 weeks post-STZ. 

PWTs were measured in the bilateral hindpaws at regular intervals over a 3-h post-dosing 

period using von Frey filaments. At 9-weeks post-STZ in Group 1 STZ-diabetic rats, dietary 

L-arginine at 1 g/day mixed with ground rodent chow was initiated and continued until study 

completion at 24-weeks post-STZ administration.  

Group 2 STZ-diabetic rats: L-arginine early intervention protocol 

Group 2 STZ-diabetic DA rats (n=17, 239.7±4.9g, mean ±SEM) received an intravenous 

injection of STZ (85 mg/kg) and were studied longitudinally over a 6-month period. 

Individual rats (n=6) received the ED50 dose of s.c. morphine (6.1 mg/kg) determined in 

Group 1 rats at 9-weeks post-STZ to evaluate the acute anti-allodynic responses at 14, 18 and 

22-weeks post-STZ administration (Fig. 2). PWTs were measured in the bilateral hindpaws at 

regular intervals over a 3-h post-dosing period as for Group 1. At 14-weeks post-STZ 

administration, an L-arginine dietary intervention at 1 g/day mixed with ground rodent chow 

was initiated and continued for 8-weeks (Fig. 2).  

Group 3 STZ-diabetic rats: L-arginine late intervention protocol 

Group 3 STZ-diabetic DA rats (n=6, 228.8±4.2 g, mean ±SEM) were a sub-group of the same 

rats used by Nielsen4. These had previously received single s.c. bolus doses of morphine at 3, 

9, 12 and 24-weeks post-STZ administration4. Commencing at 30-weeks post-STZ, these 

animals received dietary L-arginine mixed with ground rodent chow at 1 g/day for 8-weeks 
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(Fig. 3).  After 4- and 8-weeks of dietary L-arginine, rats received a single bolus dose of s.c. 

morphine at 6.1 mg/k; (ED50 in STZ-diabetic rats at 9-weeks post-STZ in Group 1). PWTs 

were measured in the bilateral hindpaws at regular intervals over a 3-h post-dosing period as 

for Groups 1 and 2.   

 

Control non-diabetic rats 

A group of opioid-naïve, non-diabetic DA rats (n = 18; 215.0±2.0 g, mean ±SEM)) received 

one of three bolus doses (Fig. 4) of s.c. morphine.  PWTs were measured in the bilateral 

hindpaws at regular intervals over a 3-h post-dosing period.  Opioid-naïve control DA rats 

that had received dietary L-arginine at 1 g/day mixed in ground rodent chow for 1-week (n = 

18; 236.8±2.5 g, mean ±SEM)) also received a single s.c. bolus dose of morphine and 

underwent antinociceptive testing (Fig. 4).  As STZ-diabetic rats eat twice as much as non-

diabetic rats, the concentration of L-arginine mixed with ground rodent chow administered to 

control non-diabetic rats was doubled to 5% to ensure that L-arginine intake was similar 

between STZ-diabetic rats and the control non-diabetic rats. 

 

Assessment of Paw Withdrawal Thresholds in the Bilateral Hindpaws 

Mechanical allodynia in the bilateral hindpaws, a defining symptom of neuropathic pain, was 

assessed using calibrated Von Frey filaments (2-20g). In brief, rats were placed individually 

into wire mesh cages (20 cm x 20 cm x 20 cm) and allowed to acclimatise. Von Frey 

filaments were used to measure the lowest mechanical threshold to evoke a brisk hindpaw 

withdrawal reflex starting with the 2g filament. The absence of a response after 5 s prompted 

application of the next filament of increasing force. A score of 20g was given to animals that 
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did not respond to any of the filaments.  Pre-drug (morphine) paw withdrawal thresholds 

(PWTs) were the mean of three readings taken 5 min apart. Assessment of bilateral hindpaw 

PWTs was determined pre-dose and at the following times post-morphine administration: 

0.25, 0.5, 0.75, 1.0, 1.5, 2.0 and 3.0 h. 

 

Data Analysis 

The Von Frey scores for individual rats were converted to the Percentage of the Maximum 

Possible Effect (%MPE), using the following formula: 

 

%MPE = (Post-dose threshold – Pre-dose threshold)           100 

  --------------------------------------------------     X    ----- 

  (Maximum threshold – Pre-dose threshold)             1 

  Where maximum threshold = 20 g 

 

%MPE versus time curves were constructed for individual rats. The area under the %MPE vs 

time curve (%MPE AUC value; %MPE.h) was calculated using trapezoidal integration. The 

mean (± SEM) percentage maximum AUC (%Max AUC) for each morphine dose was 

plotted versus the log dose to produce dose-response curves. ED50 doses (mean ± SEM) were 

estimated using non-linear regression of the %Max AUC versus log dose values as 

implemented in the GraphPad™ Prism (v 6.0) statistical analysis package. 
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Statistical Analysis 

A one-way ANOVA with Tukey’s multiple comparison test as implemented in the 

GraphPad™ Prism statistical analysis package was used to assess differences in body 

weights, blood glucose levels and bilateral hindpaw PWTs between the treatment groups.  

One-way ANOVA with Tukey’s multiple comparison test was also used to compare the ED50 

values for morphine for the various treatment groups in STZ-diabetic rats. Unpaired t-tests 

were used to compare various parameters in non-diabetic rats administered dietary L-arginine 

at 1 g/day for one week compared with similar animals fed standard rodent chow. The 

statistical significance criterion was P < 0.05. For statistical comparisons using one-way 

ANOVA, F values are reported as F(df of treatment, residual). 
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Figure Legends 

Figure 1 Schematic diagram of the three L-arginine dosing protocols used in the present 

work. 

 

Figure 2. Dietary L-arginine (1 g/day mixed in ground rodent chow) administered as a 

prevention protocol prevented temporal development of morphine hyposensitivity in adult 

male STZ-diabetic Dark Agouti (DA) rats. Specifically, there was a 2-fold rightward shift in 

the dose-response curve for single s.c. bolus doses of morphine at 9-weeks post-STZ 

administration relative to that for non-diabetic male DA rats. Administration of dietary L-

arginine for 3-weeks (12-weeks post-STZ) prevented the abolition of morphine efficacy that 

otherwise occurred in similar animals4,5. Administration of the dietary L-arginine intervention 

for 15-weeks in the same STZ-diabetic animals not only prevented the development of 

morphine hyposensitivity, but it increased morphine potency by 50%. 

 

Figure 3. Administration of dietary L-arginine according to an intervention protocol rescued 

morphine efficacy and potency in adult male STZ-diabetic DA rats exhibiting marked 

morphine hyposensitivity at 14-weeks post-STZ. Specifically, mean (±SEM) response (% 

maximum possible effect, %MPE) versus time curves for single s.c. bolus doses of morphine 

at 6.1 mg/kg administered to STZ-diabetic rats at 14-weeks post-STZ and then at 4-weeks 

and 8-weeks after initiation of a dietary L-arginine intervention (18- and 22-weeks post-STZ 

respectively) in the same animals showed restoration of morphine efficacy and a progressive 

increase in potency over the 8-week L-arginine treatment period. 
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Figure 4. Dietary L-arginine administered as an intervention protocol rescued morphine 

efficacy and potency in adult male STZ-diabetic DA rats exhibiting abolition of morphine 

efficacy at 24-weeks post-STZ. Specifically, mean (±SEM) response (% maximum possible 

effect, %MPE) versus time curves for single s.c. bolus doses of morphine at 6.1 mg/kg 

administered to STZ-diabetic rats at 24-weeks post-STZ and then again at 4-weeks and 8-

weeks after L-arginine treatment initiation (34- and 38-weeks post-STZ respectively) showed 

restoration of morphine efficacy and a progressive increase in potency over the 8-week L-

arginine treatment period. 

 

Figure 5. Administration of dietary L-arginine to non-diabetic adult male DA rats for one 

week did not alter morphine sensitivity relative to that for similar animals fed standard rodent 

chow. Specifically, the dose-response curve for single s.c. bolus doses of morphine in groups 

of non-diabetic male Dark Agouti rats administered either (i) rodent chow supplemented with 

5% L-arginine for one week or (ii) standard rodent chow for one week, did not differ 

significantly (P>0.05; unpaired t-test). 
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