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ABSTRACT 
Weaving is one of the fundamental mechanisms of aspect- 

oriented systems. A weaver composes different aspects with the 

base system by determining and adapting all parts where aspect 

specific elements are needed eventually. At rnntime, time- 

consuming join point checks are necessary to determine if at a 

certain join point aspect-specific code needs to be executed. 

Current technologies enforce such checks even in locations that 

only temporarily or under restrictive conditions (or even never) 

execute aspect-specific code. In more complex applications, a 

large number of these checks fail and just cause a substantial 

runtime overhead without contributing to the system's overall 

behavior. The main reason for this flaw is complete weaving, the 

way how aspects are woven to an application using current 

technologies. In this paper we discuss the problem of unnecessary 

join point checks caused by complete weaving. We introduce 

morphin 8 aspects - incompletely woven aspects in combination 

with continuous weaving - to overcome the problem of futile join 

point checks. 

1. INTRODUCTION 
Aspect-Oriented Programming [17, 20] deals with code fragments 

which logically belong to certain concerns but which cannot be 

modularized due to limited composition mechanisms of 

underlying programming languages and environments. The 

resulting code is tangled and scattered. Concerns that cause such 

tangling are called crosscutting concerns. Aspect-orientation is 

about modularizing crosscutting concerns into distinct modules, 

called aspects. 

The mechanism for integrating aspect modules with an 

application is called weaving. A weaver is responsible for adding 

all aspects to the application. In order to specify such integration, 

aspect-orientation makes use of a concept called join point. In 

[17], join points are introduced as principled points in the 

execution of a program. A typical example of a join point is a 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redislribute to lists, 
requires prior specific permission and/or a fee. 
AOSD 04, March 2004, Lancaster UK. 
Copyright 2004 ACM 1-58113-842-3/03/000455.00. 

method call. 

Conventionally, the weaving process is started by the developer at 

a certain point in time and for a number of aspects to be 

integrated. Thereto, the weaver determines and adapts all 

locations in the base system which represent join points at runtime 

where potentially or for sure aspect-specific code needs to be 

executed. In [22], locations that represent join points during 

runtime are called join point shadows. In the following we refer to 

shadows whose join points always lead to an execution of aspect- 

specific code as unconditional join point shadows, and those 

whose join points lead only under some circumstances to aspect- 

specific behavior as conditional join point shadows. For 

conditional shadows the weaver adds runtime checks determining 

whether or not aspect-specific code needs to be executed (we refer 

to these runtime checks as join point checks). If such a check 

succeeds, the aspect-specific code (the advice code according to 

AspectJ terminology [18]) is executed. 

One property of this conventional approach to weaving is that the 

set of join point shadows associated with a woven aspect remains 

the same for the aspect's lifetime. In the following we refer to this 

kind of weaving as complete weaving. Complete weaving is a 

process which determines and adapts all join point shadows 

including the creation of corresponding join point checks upfront 

and in advance. After weaving, all shadows in the application 

where aspect-specific code might be executed are adapted. 

Consequently, the set of join point shadows associated to an 

aspect is fixed and does not change at runtime. Aspect-oriented 

systems like AspectJ [18], Hyper/J [24] and Sally [12] that 

provide pure static weaving, i.e. weaving at compile time, 

necessarily need to perform a complete weaving since all join 

point shadows to be adapted have to be determined at a certain 

point in time (at compile time~). 

In more complex applications complete weaving can lead to a 

huge number of adapted join point shadows whose join point 

checks fail and just produce runtime overhead. Especially 

shadows with join points that rarely trigger the execution of 

aspect-specific code in the execution of the program are useless 

I It should already be emphasized here that the term complete weaving is 
not  equivalent to static weaving. A form of complete weaving also 
occurs in systems that provide dynamic weaving. This will be discussed 
in more detail in section 6. 
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time-consumers because most of the time the corresponding join 

point checks do not succeed and with that do not invoke an 

aspect's advice. In the worst case an aspect adapts a large number 

of join point shadows that never invoke an aspect's advice. In 

such cases the adapted shadows cause runtime overhead without 

ever accomplishing any benefit at all. 

A large number of conditional shadows that rarely or never lead 

to an advice's execution are often not tolerable, especially not in 

performance critical parts of the system. Thus, it is desirable to 

reduce the number of conditional join point shadows as much as 

possible to reduce the number of failing and with that unnecessary 

join point checks. 

In order to reduce the number of conditional join point shadows 

we introduce the concept of morphing aspects which are 

incompletely woven aspects in combination with continuous 

weaving, an extension of dynamic weaving [16, 26]. In the next 

section we provide two typical examples of aspects based on 

complete weaving that illustrate the necessity of handing the 

problem of conditional shadows whose join points rarely or never 

execute an aspect's advice. In section 3, we introduce the concept 

of morphing aspects. We discuss dependency relationships among 

join points and describe how they can be used to adapt join point 

shadows at a later point in time. In section 4, we discuss 

implementation issues of morphing aspects by proposing an 

implementation in AspectS [16]. We give an overview of some 

experiments with morphing aspects in section 5. After comparing 

morphing aspects to related work in section 6 we discuss and 

conclude our paper in section 7. 

2. E X A M P L E S  
According to for example [16, 20] and [11, 30, 32] tracing and 

subject-observer implementations are well-known and accepted 

candidates for discussions and illustrations of aspect-oriented 

programming. Because of its popularity we use AspectJ in those 

examples to better illustrate the problems associated with 

complete weaving 2. 

2.1 T r a c i n g  
A woven tracing aspect captures messages sent to or from 

particular objects, e.g. to a log f'de. Usually, developers want to 

trace the control flow starting at a certain point in the execution of 

a program. For example, a developer wants to capture the 

behavior of critical modules in order to analyze their behavior 

either later or right at runtime. 

~ o i d  start(l { 
step1 ( ) ; ~ pointcut pc ( ) : 

e flow(execution ( 
| if (aCondition) ~ void ComplexComp. start ()) ) 
b step2(); c ~ && execution(* *.*(..)); 

before() : pc() { 
~oid stepl () { ; } . . . 10g message . . . 
~Oid sUep2 () { s t e p 2 1  {)  ; } i 
[ v o i d  s t e p 2 1 ( )  { . . .  } i 

Figure 1. Tracing aspect in AspeeLl logging methods in the 

control flow starting at method s t a r t  in C o ~ l e x C o m n .  

2 Please note, that the intention here is neither to discuss AspectJ in detail 
nor to compare the here proposed approach with AspectJ. The intention 
here is to discuss the impact of complete weaving on the number of join 
point checks in the woven application. 

A typical approach to implementing tracing in AspectJ is to use 

the o f  low pointcut designator [18]. Figure 1 shows the 

corresponding code in AspectJ where a tracing aspect 

T r a c e C o m p u t a t i o n  logs all messages once the control flow 

passes method s t a r t  in class CoraplexComp which starts a 

complex computation 3. One advantage of this implementation is 

the declarative pointcut definition that describes all join points 

where the tracing aspect needs to execute some advice. Hence, 

developers do not need to examine the code on their own, i.e. they 

do not need to determine what methods are potentially called 

within the control flow starting from method start in class 

ComplexComp. 

step1 ( ) ; 
if (aCondition) bar2() ; 

} 
pl 

p}u~ia void steP2() 

) ~i~e~i b ~ ... . . . . . . . . . . . . .  

publ io  void seep211) { 

Figure 2. An illustration 

/ ~liaI.~c.,D-°~Jl' adv±ce ~ ' ; ' I 

.JdbXi¢ void aMeehodlnB () I 
g+ _. nCF owJ±) adv oe,,, I 

= shadow adaptation 

[ ' - - " ' - - 1  = shadow adaptation that 
never Invokes advice 

. . . .  = join point check 

of the woven tracing aspect 

induding additional classes A and B. 

However, this implementation has some drawbacks due to 

complete weaving. In general, the exact computation of methods 

that are executed within a certain control flow is impossible. For 

example, it is hard to compute upfront whether the condition in 

m e t h o d ~ t a r t  will ever be satisfied and methods s t e p 2 ,  and 

s t e p 2 1  (and methods invoked by s t e p 2 1 )  will ever be invoked 

from the control flow passing s t a r t .  To guarantee the correct 

behavior of the aspect the weaver must consider these methods in 

addition to methods s t a r t  and s t e p l ,  which will be 

definitively invoked in the control flow. For all these methods the 

weaver has to determine whether they can also be executed in 

control flows that do not pass method start. In such cases the 

weaver needs to decorate shadows with join point checks that 

check at runtime if the current method is part of the control flow 

to be traced or not. If a large number of different control flows in 

the application use methods of ComplexComp (other than 

s t a r t )  the join point checks fall most of the time and only cause 

runtime overhead. If the condition in method s t a r t  is never 

satisfied, the join point checks at method s t e p 2  and s t e p 2 1  

only cause runtime overhead when they are invoked from 

different methods without ever executing the advice in 

T r a c e C o m p u t a t i o n  at all. The problem becomes even bigger 

if b a r 2 1  executes a large number of other methods. The 

corresponding shadows would also never invoke the advice in 

TraceComputation. 

3 This use of the cflow construct for implementing tracing corresponds 

(with minor changes) to the implementation like for example proposed 
in [31]. A similar use for a different purpose can be found for example 
in [6]. 
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In AspectJ the situation is somewhat different. AspectJ hardly 

analyzes control flows. For the example from Figure 1 AspectJ 

determines all methods matching the last part of the pointcut, i.e. 

( e x e c u t i o n  ( * *. * ( . . )  ) ), and creates corresponding join 

point checks• Since this matches every existing method, AspectJ 

creates checks for every existing method in the entire system 

(except for those in system libraries). Figure 2 illustrates the code 

woven by AspectJ, not only for class ComplexComputation 
but also for two additional classes 3, and B also present at 

weaving-time. Before executing the original code of any method 

in the system, join point checks are performed. The benefit of this 

approach is that no cost-intensive computation is necessary which 

would slow down the compilation process. On the other hand the 

performance of the whole system decreases in the presence of the 

woven aspect. This implies that the performance decreases even 

in classes like k and B whose methods will never be executed in 

the control flow of interest• Performance measurements in [4] 

showed that a single woven c f l o w  substantially decreases the 

overall performance of the system. 

The overall problem in the tracing examples is that it is usually 

not fully computable at weave-time what methods are invoked 

within the control flow of interest• Consequently, a large number 

of conditional shadows exist in the system whose execution 

causes runtime overhead but rarely lead to an execution of the 

aspect specific code. 

2.2 Subject-Observer Protocol 
Perhaps the most frequently used example in the area of aspect- 

oriented programming is the implementation of the observer 

design pattern [9] as discussed for example in [11, 30, 32]. The 

pattern permits a set of objects (called observers) to be attached to 

other objects (called subjects) to become informed about their 

state changes. 

I + observers 
• . . J + attachObserver(Observer o) 
mir°~ce° l  + detachObserver(Obselver o 
comamer I + notifyObserversO {... 

I ~ : . ~  :> 'l~ +container [ 

I f °°Fleldl  I 11 

~ 7  ~: " i;' ii;i,7~iii',!iii ............. ii!!;i; ; )~7 

po ln tcu t  stateOhanges(Subiect s): 
,set(* Subject+.') && 
target(s) && 
l(set(* Subject+.observers)); 

after(Subject s): stateChanges(s) { 
} s.nottfyObserversO; 

define that an assignment to any field declared in Subject: (i.e. 

an assignment to a field declared in a class implementing 

S u b j e c t )  yield the notification of observers. The pointcut 

language of AspectJ does not permit to declare the state change of 

every referenced object for a given subject (cf. [14, 11] for further 

discussion). So, developers have to enumerate explicitly every 

class whose objects should inform observers about state changes 

(in Subj ectConnector). In order to permit the observation of 

Foo instances and its referenced objects of type 

G e n e r i c O b j e c t ,  the developer connects S u b j e c t  to both 

classes (Figure 3). 

Again, the implementation suffers from some drawbacks resulting 

from complete weaving. In general, it is not possible to fully 

determine what instances are ever referenced by subjects. For 

example, it is usually not computable if instances of class C1, C2,  

etc. are ever referenced by an instance of Foo at runtime. 

Consequently, join point checks need to be created that check at 

runtime at every field assignment, whether the current object is 

referenced by an instance of Foo. These checks become 

problematic if a class is frequently used in the application, whose 

instances are in fact never referenced by a Foo at runtime. 

v o i d  m e e h o d A ( )  { v o i d  m e l : h o d A ( )  { 

Foof = new FOO (); Foo f = new Foo (); 

f. fooFieldl = ... ; f.fooFieldl .... ; 

for ( - )  { . . .  

C1 c1 = new Cl(); k for (•.) { 

cl.clField .... ; ~ C1 cl = new C1(); 

• .. ; } cl.clField .... ; 

} . . . . . .  ;} 

v o i d  methodB() { 

C2 c2 = new C2(); 

c2.c2Field = .... ; 

C3 c3 = new C3() ; 

C3.c3Field = ...; 

C4 c4 = new C4(); 

c4.c4Field = ... ; 

= shadow adaptat ion 

} 

-)--.JJ.l ............ 

~. void methodB() { 

C2 c2 = new C211 ; 

c2.c2Field .... ; 

C3 c3 = new C3(); 

c3. c3Fi@id .... ; 

C4 c4 = new C4(); 

c4. c4Field .... ; 

}'•i•. 

declare parents: 
(Foo II GenericObject) 
Implements Subject; 

Figure 3. A subject-observer implementation in AspectJ 

Observers are interested in state changes, i.e. changes of fields 

associated with a subject. This includes fields that are directly part 

of the subject as well as fields of objects which are directly or 

indirectly referenced by the subject (see for example [14, 11]). 

Figure 3 illustrates a typical implementation of the subject- 

observer protocol in AspectJ based on the container introduction 

idiom [13]• SubjectLoader states that observers can be 

attached to and detached from instances of S u b j e c t  by 

introducing appropriate fields and methods to Sub jec t : .  The 

aspect's pointcut s t a t e C h a n g e s  and the corresponding advice 

Figure 4. Application using observed classes. 

In AspectJ the problem is slightly different. Since AspectJ's 

pointcut language does not permit to specify classes whose 

objects are referenced by Foo, developers need to add the subject 

functionality to each class manually (compare to Figure 3). As a 

result, advice activations are inserted for each state change of 

instances of GenericObject as well as for its subclasses 4. 

Figure 4 illustrates an application with a woven subject-observer 

aspect. Advice activations are created for each assignment of 

fields declared in G e n e r i c O b j  e c t  and its subclasses; even in 

those cases where the instances are not referenced by an instance 

4 Due to limitations of its pointcut language, AspectJ's shadows are 
unconditional. However, the shadows have to be conditional logically 
because it must be checked whether an object is referenced by a subject 
or not. 
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D 
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(d) 

0 

0 0 0  C ~  

= shadows adapted at t~ I 

Figure 5. A morphing aspect that changes its set of associated join point shadows during runtime. 

of FO0. None of the objects one the fight hand side are referenced 

by a Foo instance since the objects are newly created. Hence, 

advice execution is futile. If subclasses of a e n e r i c O b j  e c t  are 

frequently used in an application the performance decreases 

perceivably as every single assignment leads to the execution of 

the corresponding advice. Typical examples of such often used 

classes are collection classes or classes that serve as root classes 

in large frameworks. 

The overall problem in the subject-observer examples is that the 

set of classes whose instances are referenced by subjects is 

usually not computable upfront. Hence, a complete weaver adapts 

shadows for field assignments of all classes whose instances are 

potentially referenced by a subject. If such classes are frequently 

used in the application while their instances are never referenced 

by a subject, the shadows just cause a runtime overhead. In the 

worst case, there is no observed object in the runtime system at 

all, yet still a large number of failing join point checks are 

executed. 

3. MORPHING ASPECTS AND 

CONTINOUS WEAVING 
Morphing aspects are a new approach to reduce the number of 

join point checks by reducing the number of adapted shadows. In 

contrast to the conventional way of complete weaving used by 

known AO systems, morphing aspects are incompletely woven 
aspects. Morphing aspects are not entirely woven to an 

application by a weaving process that begins and ends at a certain 

point in time computing and adapting shadows whose join points 

possibly execute aspect-specific code. Instead, the necessary 

shadows to be adapted are continuously computed and adapted (or 

released) by the aspects itself at well-defined points in the 

execution of the program, i.e. at certain join points. When a 

morphing aspect is woven it starts with a small set of initial join 

point shadows and dynamically adapts or releases shadows just 

when they are needed. Hence, the number of shadows associated 

with a morphing aspect changes during the aspect's lifetime. We 

call this process of computation, adaptation and release of an 

aspect's shadows morphing. We refer to the whole weaving 

process, i.e. initial weaving of morphing aspects, the morphing 

during their lifetime and unweaving as continuous weaving. 

Figure 5 illustrates a morphing aspect and its set of join point 

shadows at runtime. The ovals represent all join point shadows 

which are potentially associated with an aspect during its lifetime 

as they would have been computed during complete weaving. The 

ovals within the aspect's border represent shadows adapted for the 

aspect. As long as the aspect is not woven, there are no shadows 

adapted for the aspect (Figure 5a). Initially, when the developer 

weaves the morphing aspect, a relatively small number of join 

point shadows is adapted by the aspects (Figure 5b). The set of 

actually adapted shadows changes during the aspect's lifetime. At 

a later point in time (Figure 5c) the aspect has nine more shadows 

in addition to the original join points. Even later (Figure 5d) five 

more shadows were adapted and most of the previous ones were 

released. In contrast to this, a completely woven aspect adapts all 

shadows which are potentially associated with an aspect (and 

creates corresponding join point checks), i.e. all ovals in Figure 5 

fight from the beginning. Morphing aspects adapt fewer shadows 

in the system. Hence, morphing aspect cause less runtime 

overhead due to failing join point checks as there are fewer join 

point checks in the system. 

As a key eharactefistic of morphing aspects they themselves 

determine at runtime at what points in the execution of the 

program the adaptation or release of join point shadows is 

necessary. Hence, join points in morphing aspects serve two 

different purposes. On the one hand the aspect's functionality (like 

logging, or notification of observers) is invoked, on the other hand 

the morphing process is started whenever particular join points 

are reached. 

For the specification (and implementation) of morphing aspects 

and the corresponding morphing processes, developers are 

confronted with the following questions: What are the join points 

the aspect gets initially woven to, i.e. what shadows need to be 

adapted initially? When does the molrphing process needs to be 

carried out? How should the new set of join point shadows be 

determined? 

In the following section we discuss dependencies among join 

points and shadows. Those dependencies determine a minimal set 

of shadows that need to be initially adapted. Furthermore, these 

dependencies determine what join point shadows can be adapted 

at some later point in time. Afterwards, we describe how these 

properties can be utilized to specify the morphing process. 

3.1 Join Point Dependencies 
In order to determine when new shadows need to be adapted or 

can be released, developers of a morphing aspect have to analyze 

how those join points (and their shadows) which are relevant for 

the aspect to be specified depend on each other. Dependencies 

among join points describe that a certain join point associated to 

an aspect (the dependent join point) can only be reached if 

another join point associated with the same aspect has been 

reached before. We call the corresponding shadows dependent 
shadows. All join points that do not depend on any other join 
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point are independent (and are represented by independent 

shadows). On the technical level a dependency between join 

points expresses that join point checks of dependent shadows fail 

as long as the join points they depend on have not been reached 

before. Consequently, shadows for dependent join points do not 

need to be adapted as long as the join points they depend on are 

not yet reached. This allows the adaptation of dependent shadows 

to be shifted to a later point in time. This situation is different for 

independent shadows. Their join points potentially occur in the 

execution of a program independently of any other join point 

associated to the same aspect and the adaptation of their shadows 

cannot be shifted to a later point in time. Hence, when the 

morphing aspect is initially woven at least all independent join 

point shadows need to be adapted. 

In the following we illustrate dependencies among join point 

shadows for the examples presented in section 2.1 and 2.2. We 

represent a potential join point shadow by an oval whereby an 

oval's label describes the shadow. A directed edge from a shadow 

A to a shadow B represents a dependency relationship which 

expresses that the join point represented by shadow A depends on 

the join point represented by shadow B. This also implies that 

shadow A depends on shadow B. The edge's label describes the 

kind of dependency. A shadow without any outgoing edge is an 

independent shadow, while a shadow with at least one outgoing 

edge is a dependent shadow. 

ICC = class ComplexComp I 

Figure 6. Dependencies in the tracing example 

Figure 6 illustrates the dependencies among join points shadows 
for the tracing example introduced in section 2.]. The execution 
of method s tep1 or the execution of s tep2 only need to lead to 

an execution of aspect-specific code i f  method s t a r t  in class 

ComplexComp is executed and s t a r t  invokes either s t e p l  or 

s t e p 2 :  the join point checks for the shadows at s t e p l  and 

s t e p 2  fail as long as method s t a r t  is not executed and invokes 

s t e p l  or s t e p 2 .  Hence, both shadows directly depend on the 

shadow for method s t a r t .  For the same reasons the shadow at 

s t e p 2 1  depends directly on the shadow at s t e p 2  and the 

shadows for all methods that are eventually invoked by s t e p 2 1  

depend the shadow at s t e p 2 1 .  In the tracing example, all join 

point shadows either directly or indirectly depend on the shadow 

representing the join point for the execution of method s t a r t .  

The shadow at s t a r t  does not depend on any other shadow, i.e. 

this is an independent shadow. On a more abstract level, shadows 

of all methods that are either directly or indirectly invoked by 

s t a r t  depend on the shadow for s t a r t .  

The dependencies of join points in the subject-observer aspect are 

slightly more complex (Figure 7). The join points (and their 

shadows) to be handled by the aspect are the state changes of 

subjects (instances of Foo) and their referenced objects. So, all 

assignments to fields declared in Foo, G e n e r i c O b j e c t  and 

subclasses of G e n e r i c O b j  e c t  are join point shadows, which 

are potentially associated with the aspect. Those assignments 

execute aspect-specific code only if there is at least one object 

observing a Foo instance. This in turn depends on invocations of 

method a t t a c h  which registers observers. Hence, all shadows 

for f o o F i e l d  and g o R e f  assignments depend on the shadow at 

method a t t a c h  5. The same is true for assignments to fields 

declared in G e n e r i c O b j  e c t  and its subclasses. However, their 

dependency is more complex. First, when an observer is attached, 

those shadows need to be adapted only for classes whose 

instances are referenced by a Foo. For example as long as no 

G e n e r i c O b j e c t  instance is referenced by a Foo g o F i e l d  

assignments need to be adapted. Second, assignments to 

g o F i e l d  depend on the g o R e f  assignment since an instance of 

G e n e r i c O b j  e c t  becomes referenced by an instance of Foo by 

assigning it to g o g e f .  For the same reason all further 

assignments to fields declared in subclasses of G e n e r i c O b j  e c t  

depend on the g o R e f  assignment. 

I - - "  _ _  _ 1 

Figure 7. Dependencies in the subject-observer example 

As exemplified in Figure 7 the only independent join point is the 

one for the invocation of method a t t a c h .  In the subject- 

observer example the different natures of join points associated to 

the subject-observer aspect becomes manifest: the field 

assignments depend on a join point which does not lead to an 

execution of the aspect-specific code, because field assignments 

depend on the execution of method a t t a c h .  A field assignment 

join point informs the observers about a state change, while the 

join point at method a t t a c h  does not. In order to emphasize that 

fact, we rendered the a t t a c h  shadow using a different style 

(Figure 7). 

3.2 Specifying the Morphing Process 
Once the dependencies are determined developers have to decide 

how to utilize them for the specification of a morphing aspect's 

morphing process. First, developers have to specify what shadows 

including corresponding join point checks are to be initially 

handled. Next, developers have to specify what initial join points 

start the morphing process. Then, developers have to define the 

morphing process itself. 

At least all independent join point shadows have to be initially 

adapted, because they do not depend on any other shadows. 

5 For the same reason, field assignments depend on method detach, 
because if after invoking detach no object observes Foo no aspect- 
specific code need to be executed. For reasons of simplicity we omitted 
this dependency in Figure 7. 
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Hence, it is not possible to utilize their dependencies for a late 

shadow adaptation. Additionally, the developer can decide to 

adapt some additional dependent shadows at initial weave time: In 

case the dependent join points are reached very often, the 

developer may not want to adapt their shadows just during the 

weaving process but fight from the beginning. 

The morphing process consists of the following parts. First, the 

process has to determine a number of dependent shadows to be 

adapted (or to be released). For that purpose, the morphing 

process can make use of reflection [21]: the process reflects on 

the join point starting the morphing process and computes the 

dependent shadows. Second, the morphing process specifies the 

join point checks for all shadows to be created. Third, it has to be 

determined for each newly adapted shadow whether it 's join 

points invoke aspect specific code and/or the morphing process. 

In the following we illustrate two reasonable specifications of the 

morphing process for the tracing and subject-observer examples 

based on the discussion of join point dependencies from section 

3.1. The morphing processes proposed here are kept as simple as 

possible to illustrate how to utilize join point dependencies. 

<Z2ZT> 

Icc:  ComplexComp I [ cc:ComplexComp I 

Figure 8. Morphing tracing aspect after initial weaving, 

after execution of s t a r t ,  and after execution of s t e p l .  

For the tracing aspect (Figure g) at least one (independent and 

unconditional) shadow at method start in ComplexComp has 

to be initially adapted. For reasons of simplicity, we decided to 

adapt only this shadow to keep the number of join point checks 

low and to adapt all dependent shadows as late as possible. 

Hence, Figure 8 illustrates that only one shadow is initially 

adapted for the tracing aspect. 

Once a join point of this shadow is reached, the tracing code is 

executed and the morphing process starts. The morphing process 

determines all methods that potentially are invoked by the method 

enabling the process. The shadows for all these methods are 

adapted. The corresponding join point checks examine if the 

method is invoked within the control flow being traced 6. If the 

join point check succeeds, the tracing code is executed and the 

morphing process starts once again. Whenever a method within 

the control flow is left, all dependent shadows are released. So, if 

a ComplexComputation receives a message start (and the 

message is logged), the morphing process computes all methods 

that are potentially invoked by s t a r t  and adapts the 

6 There are different ways to implement such a condition. In AspectJ the 
current thread is stored when the control flow starts, and each join point 
check determines whether the current thread is stored. Languages like 
for example SmaUtalk permit to analyze the call stack to determine 
whether the current method occurs in the control flow of interest. 

corresponding shadows (stepl and step2) (in the middle of 

Figure 8). When s t e p l  is invoked by start the method is logged 

and the morphing process starts once again. Since no other 

methods are potentially invoked by method s t e p l  no further 

shadows are created. If s t e p 2  is not invoked and s t a r t  is left 

the shadows at s t e p l  and s t e p 2  are released (fight hand side 

of Figure 8). So, as long as the condition in method s t a r t  does 

not lead to an execution of s t e p 2 ,  no shadows for s t e p 2 1  (and 

methods invoked by s t e p 2 1 )  are created. 

aVeJue 

Figure 9. Subject-observer as a morphing aspect at initial 

weave time, after observer attachment, and after 
assigning an instance of Cl .  

For the subject-observer aspect at least one unconditional shadow 

for method a t t a c h  needs to be initially adapted 7 (see left hand 

side of Figure 9). Similar to the previous example we simply 

decided to adapt only this shadow to keep the number of adapted 

join point shadows low (and to simplify the morphing process). 

An invocation of the method attach in class goo starts the 

morphing process. 

A simple morphing process for this aspect works as follows. First, 

the process adapts shadows for all assignments to fields 

f o o F i e l d  and g o R e f  whose execution leads to notifications of 

observers. Second, the process reflects on the Foo instance 

whose join point started the morphing process. It determines the 

referenced object and adapts the field assignment shadows for 

notifying observers. And finally, the morphing aspect adapts the 

g o R e f  join point to start the morphing process. 

Figure 9 illustrates the above described morphing process. After 

an observer is attached the morphing process adapts shadows for 

all assignments to fields declared in Foo. Furthermore, the 

7 Like in the previous section we skip for reasons of simplicity the 
discussion about method d e t a c h  here which is also an independent 
shadow. 
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morphing process determines the object referenced by goField 
of object foo .  Since in Figure 9 f o o  does not refer to any 

G e n e r i c O b j e c t  no further shadows are adapted. When an 

instance of Cl  is assigned to f o o  the morphing process starts 

once more (because assignments of g o R e f  start the morphing 

process). The process determines the fields of the assigned object. 

Since c l  is an instance of C1, shadows are adapted for all 

assignments to g o F i e l d  (declared in G e n e r i c O b j e c t )  and 

c l F i e l d  (declared in Cl). 

4. IMPLEMENTATION EXAMPLE 
In this section we introduce an exemplary implementation of a 

morphing aspect in Aspects (see [16] for a detailed introduction 

in AspectS). Aspects is an aspect-oriented system providing 

dynamic weaving in the Smalltalk dialect Squeak. We concentrate 

here on the implementation of the tracing aspect. For the 

morphing implementation of the subject-observer implementation, 
please refer to [14] and [3]. 

InstallAdvlce: anAdv~ce polntcut: aPC I 
I "weaves advice anAdvice to pointcut aPC" [ 

iolnPolntDescrlptorsFrom: eMethod 
I jpds I 
jpds := Set new. 
cMethod messages do: [:sel I 

(self ImpiementorsOf: eel) do: [:class 
jpds add: (JoinPointDescdptor targstClass: class targetSeiector; ssl)], 

^ jpds. 
ImplementorsOf: aSymbol 

I impiernentors I 
impiementors := OrderedColiection new. 
Smalltalk allBehaviorsDo: [:class J 

(class IncludesSelector: aSymbol) ifTrue: [ 
Impiementors add: class]]. 

^ impiementors. 

I n i t l e l P o l n t c u t  

traclngAdvlce 
Install 

self InstallAdvlceAt: (self InitialPolntcut) 
morphlngAdvlce 
^ AsBeforeAfterAdvice new; 

qualifier: (...); pointcut: (...); 
beforeBIock: [:receiver :args :aspect :client I 

...'some caching code'... 
self startMorphlngFor: (self currenUoinPoint)]; 

afterBIock: [:receiver :args :aspect :client :retum [ 
self cleanupMorphs: (self currentJoinPoint)]. 

startMorphlngFor, jpd 
] jpds clientMethodl 
cllentMethod := (jpd targetClass) compiledMethodAt: (jpd targetSelector). 
jpds := self joinPointDescdptorsFrom: cllentMethod. 
self installAdviceAt: jpds. 
... "some caching code' . . .  

installAdviceAt: jpds 
jpds do: [:jpd I 

.., =some caching code'.,. 
self installAdvice: morphingAdvice pointcut { jpd }; 

installAdvlce: traclngAdvica pointcut: { jpd }]. 
. . .  

Figure 10. Tracing as a abstract morphing aspect in 
AspectS 

AspectS is based on method wrappers [5]. A shadow for a method 

execution join point or a method call join point is adapted by 

wrapping the receiving method. The method to be wrapped is 

specified by a join point descriptor (instance of J o i n P o i n t  

D e s c r i p t o r )  which refers to a class and to a method selector. 

Advice directives in AspectS are runtime objects that refer to a 

pointcut. Pointcuts are collections of join point descriptors. If 

advice dkectives are installed at runtime, all methods referenced 

by the join point descriptors are wrapped. The wrappers handle 

execution of qualifiers (which correspond to join point checks) 

and the execution of the advice. Advice is implemented by blocks 

(see [10] for an introduction to Smalltalk blocks, see [16] for a 

detailed description of how advice objects are created and 

executed using blocks). 

Tracing aspects based on morphing aspects are subclasses of the 

(abstract) class M o r p h i n g T r a c e A s p e c t  (Figure 10). 

M o r p h i n g T r a c e A s p e c t  contains the abstract method 

i n i t i a l P o i n t c u t  that returns the set of join point descriptors 

specifying the independent join points whose shadows need to be 
initially adapted. 

I J 

InltlalPointcut 
^ OrderedCollection 

with: (JotnPoJntDescdptor 
targetClass: CompiexComp targetSeiector. #start) 

traclngAdvlce 
^ AsBeforeAfterAdvica new 

qualifier: (...); polntcut: ...; 
beforeBIock: [:rec :args :aspect :client 

=Write message on screen" ]. 

Figure 11. Concrete tracing aspect as a morphing aspect. 

The aspect refers to two advice objects, both returned by 

corresponding methods tracingAdvice and 

morphingAdvice. The (abstract) method tracingAdvice 
returns the advice to be executed during tracing, 

r n o r p h i n g A d v i c e  provides the advice starting the morphing 

process. Our morphing advice contains two blocks which are 

invoked before and after the corresponding join point is reached. 

The before block starts the morphing process on the given join 

point by invoking method startMorphingFor. Method 

s t a r t M o r p h i n g F o r  determines the mntime-object for the 

invoked method and computes all join points descriptors that 

depend on that method (see methods 

joinPointDescriptorsFrom: and implementorsOf : 
in class MorphingAspect in Figure 10). A shadow is adapted 

for each of those join point descriptors that invokes the morphing 

advice as well as the tracing advice (method 

installAdviceAt :pointcut :). In order to use the 
morphing trace aspect developers have to extend 

MorphingTraceAspect and override initialPointcut 
and tracingAdvice. Figure II illustrates a sample class 
MorphingComplexComputationStartTracer. A tracing 
aspect is inifiaily woven by instantiafing the corresponding class 

and invoking method i n s t a l  1. 

Creating and integrating shadows (i.e. method wrappers) in 

Aspects is a time-consuming task, yet to be optimized. Hence, it 

s According to the Smalltalk meta-object protocol (cf. [10]) method 
implementations have runtime representations. 
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is typically not desirable to start the morphing process at every 

possible join point. For example, if the methods to be traced are 

executed quite often, the time consumed for the morphing process 

can be higher than the benefit of dismissed join point checks. 

Therefore, the implementation of the tracing aspect in Aspects 

uses lazy morphing by default. Dependent shadows are adapted 

whenever the join points they depend on are reached and the 

morphing process did not already start at these join points. Lazy 

morphing does not release shadows during morphing. Instead, 

shadow adaptations reside in the system until the developer 

uninstalls the whole aspect. So, every execution of the morphing 

process potentially increases the number of adapted shadows for 

the aspect, but does not delete any. 

The use of lazy morphing turned out to be practical in a number 

of experiments. Those experiments showed that the number of 

shadows adapted by lazy morphing is still significantly smaller 

than a complexly woven trace aspect. 

5. EXPERIMENTAL RESULTS 
Table 1 summarizes a number of performance measurements in 

Aspects on a Pentium 4.2 GHz with the Squeak Virtual Machine 

version 3.4.4. The Smalltalk image contained the Comanche Http 

Server [7] as well as the Squeak CommandShell [8]. Overall, the 

image contained more than 2200 classes with more than 35000 

compiled methods. We measured 100000 times the execution time 

for the adaptation and release of shadows, the execution time for 

(empty) methods and the execution time for methods with adapted 

shadows whose join point checks always pass as well as with 

shadows whose checks always fail. We implemented the adapted 

shadow with the successful join point check by an empty around 

advice whose join point condition immediately succeeds without 

any additional computation. We implemented the adapted shadow 

with the falling join point check by a join point condition that 

immediately fails without any additional computation. Our 

measurement showed that the execution of an unconditional 

shadow was approximately 90 times slower than the execution of 

an empty method. The execution of a dead shadow was about 9 

times slower than the execution of an unconditional shadow 9. 

Table 1. Experimental Results for shadow creation, 

deletion and method execution time (in ms) in AspectS 

[ A v e i ~ : I ' M ~ I M ~ ! ~ I  

o . m 3  o . x = s ,  o. ,s I 
I 

[ i~oa~  ~ 10.000~ 0.000~ o.ooosl 
!10.03~. 0 . 0 ~  o.03~x I 

IMe~i~,tthfSjffr~j~,jo~[i~l~i| 0 . 3 2 6 9  0 . 2 5 5 5  0 . 3 2 8 2  I 

Next, we created a single (lazy) morphing tracing aspect to trace 

the execution commands in the command shell. The 

corresponding advice simply wrote all messages to the screen. 

The initial weaving of the tracing aspect adapts just a single join 

point shadow and took 0.45 milliseconds. As soon as the method 

to be traced has been invoked for the first time, the morphing 

process started for 35 times creating 253 shadows. This process 

9 The reason for the slow execution of dead shadows lies in the way how 
wrappers and wrapped methods are implemented. Wrappers store the 
wrapped method in a field. When a join point check fails the original 
method is executed by calling the time-consuming value: method. 

took about 9.5 seconds. Starting the control flow afterwards did 

not lead to any additional execution of the morphing process. 

From then on the execution of the method to be traced took about 

2.5 seconds. 

We compared this result with a corresponding complete weaving 

(see Table 2). The computation of all potentially invoked methods 

was not practicable (the computation took more than 3900 

seconds). Hence, we did the same approach like AspectJ to weave 

the aspect to all existing methods in the image (except some 

system methods). To do so, we wove the aspect to more than 

35000 methods. This complete weaving took about 6.8 seconds. 

The control flow execution afterwards took the same time like the 

morphing tracing aspect. 

Table 2. Tracing in an experimental environment as 

morphing aspect and completely woven aspect 

l : . 3 0  3949,1 

Table 3. Consumed Time for tracing control flow in a 

completely, and an incompletely woven aspect. 

[ ~l 9.33 s I 

i~'!: I ,.s4(.9.s,. 0.,s =.) J 
As a result, this experiment showed that the initial weaving of the 

morphing aspect and the first tracing of the control flow took 

about 9.54 seconds while the completely woven aspect and a first 

execution of the control flow took about 9.33 seconds (Table 3). 

The difference of 0.19 seconds is the price for using a morphing 

aspect instead of a completely woven one. However, the number 

of adapted shadows by using a morphing aspect is ordy 1% of the 

number of adapted shadows of the completely woven aspect. 

These shadows decrease the performance of the whole system, 

because each shadow whose join point check fails cause the 

mntime overhead of more than 0.3 milliseconds (according to 

Table 1). Preliminary experiments showed for example that the 

response time of the http server contained in the image was a few 

hundred times slower than before weaving the tracing aspect, 

because weaving the tracing aspect according to the weaving 

strategy of AspectJ also adapted a large number of shadows even 

in those classes that will never be invoked in the control flow to 

be traced. 

6. RELATED WORK 
Dynamic weaving in combination with just-in-time aspects as 

proposed in [26, 27] is closely related to morphing aspects. Just- 

in-time aspects are dynamically woven to the system when they 

are really needed. Furthermore, just in time aspects are woven to 

the application in one atomic step (see [27], page 101). 

Consequently, just in time aspects do not perform any additional 
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join point checks as long as they are not woven. In that way just 

in time aspects overcome the problem of unnecessary shadows in 

comparison to static weaving. Nevertheless, just-in-time aspects 

are woven completely because of the atomicity property. Hence, 

after dynamically (and completely) weaving an aspects the 

problem of unnecessary shadows arises just like in static woven 
systems. 

Another approach that relates to our work on morphing aspects is 

the selective just-in-time weaver as proposed in [28], an extension 

to the work of just-in-time aspects. The (Java based) selective 

weaver permits developers to choose between two different kinds 

of join point shadows: either as breakpoints in the JVM or as 

statically embedded hooks. While breakpoints can be created 

much faster, their execution is time consuming (see [28] for a 

detailed discussion on the performance issues). Embedded hooks 

on the other hand execute faster while their creation is quite slow 

in comparison to that of breakpoints. Selective just-in-time 

weavers try to overcome the performance overhead caused by 

frequently executed shadows by embedding such shadows 

statically. From that point of view a selective weaver and 

morphing aspects are similar. The selective weaver causes a 

performance overhead for embedding hooks in order to achieve a 

performance advantage for the further execution of the program. 

Similarly, the morphing process executed by morphing aspects 

causes a performance overhead to achieve a performance 

advantage for the further execution of the program. However, the 

main difference between both approaches is that a selective 

weaver does not reduce the number of conditional shadows. 

The virtual machine Steamloom [4] belonging to the aspect- 

oriented language Caesar [23] also tackles the problem of time- 

consuming join point checks. Steamloom implements join point 

checks and advice invocations at the virtual machine level. In [4] 

the performance of advice making use of the join point checks on 

VM level and the statically woven aspects in AspectJ based on the 

cflow construct is measured. The result shows that the Steamloom 

VM has a significant performance advantage over the completely 

woven approach of AspectJ. The intention of Steamloom and 

morphing aspects is very similar, since both tackle the 

performance overhead caused by join point checks. The 

difference between Steamioom and the implementation of 

morphing aspects as proposed in this paper is that while weaving 

in Steamloom is performed by redirecting messages at the VM 

level our AspectS-based implementation carries out changes to 

the runtime representation of methods at the application level. 

Besides the approaches that provide pure dynamic weaving there 

are also approaches that remove unnecessary runtime checks 

based on a static analysis. For example [22] describes a partial 

evaluator based on the definitional interpreter specified in [33] to 

reduce the number of unnecessary join point checks. In [29] a 

reduction of join point checks is achieved by a static analysis of 

the call stack. Currently, we do not have any experimental results 

that compare the number of failing join point checks caused by 

these approaches with the number of failing join point checks 

caused by morphing aspects within an experimental environment. 

7. DISCUSSION AND CONCLUSION 
In this paper we addressed the problem of unnecessary join point 

shadows caused by complete weaving. We motivated the problem 

by illustrating two typical examples for aspect-oriented 

programming and their implementation in the aspect language 

AspectJ. 

We proposed morphing aspects to overcome the problem of 

unnecessary join point checks. Morphing aspects are incompletely 

woven aspects that change their set of join point shadows at 

runtime based on a continuous weaving process. With incomplete 

weaving, not every shadow within the base system whose join 

points potentially execute aspect-specific code is adapted. Instead, 

morphing aspects utilize dependencies among join points and 

their shadows that permit to delay the adaptation of shadows just 

to the point when join points they depend on are reached. As a 

result, the number of adapted shadows of a morphing aspect is 

much smaller in comparison to that of completely woven aspects. 

This is because dependent join point shadows are not adapted 

initially, but at a later point in time when they are actually 

needed. Experiments with morphing aspects in the aspect-oriented 

system Aspects showed that by using morphing aspect the 

number of join point shadows is significantly reduced. In that way 

the performance overhead caused by failing join point checks is 

reduced, too. However, it should be noted that the performance 

overhead of join point checks in Aspects is quite high as shown in 

section 5. Hence, the benefit of morphing aspects in such a system 

is much higher than in systems where join point checks are less 
expensive. 

The benefit of realizing an aspect as a morphing aspect depends 

on a number of influencing factors. In general, a prerequisite for 

the successful application of morphing aspects, is a large number 

of falling join point checks during the execution of a program. 

According to the example we gave in section 2, such prerequisite 

is fulfilled if, for example, a tracing aspect is to be implemented 

in an application with a large number of threads that never invoke 

the method where tracing should begin. Also, such prerequisite is 

fulfilled if instances of a class are only very rarely observed 

during the execution of a program. The prerequisite is usually not 

fulfilled, if the aspects in the system hardly rely on join point 

checks, i.e. if the woven application mainly consists of 

unconditional join point shadows. 

The morphing process needs additional time to determine and 

create dependent join point shadows. Developers must trade-off 

between the runtime overhead caused by unnecessarily introduced 

runtime checks caused by unnecessary adapted shadows and the 

overhead caused by the morphing process itself. 

Morphing aspects impose a number of requirements on the 

underlying aspect-oriented system. This restricts their application 

to a number of systems. As most fundamental requirement the 

underlying system must permit dynamic weaving, i.e. weaving of 

aspects during runtime. A number of systems such as PROSE [26, 

27], AspectS [16], JAC [25], Object Teams [32, 15], or Caesar 

[23] fulfill this requirement while systems like AspectJ [18] or 

Sally [12] do not. As another requirement morphing aspects 

typically require the computation of dependent shadows at 

runtime, i.e. the shadows to be associated with an aspect are 

statically not known. However, not every system providing 

dynamic weaving permits the computation of join points at 

runtime. For example, Object Teams assumes that the shadows 
are statically declared. 

As far as we know there is currently no approach like morphing 

aspects and continuous weaving that utilizes dependencies among 
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join points and join point shadows to determine join point 
shadows to be adapted (or released) during an aspect's lifetime. 

As future work morphing aspects and selective weavers [28] 
should be combined in order to gain the benefit of both reducing 
unnecessary shadows as well as reducing the execution time of 

join point shadows. Thereto, it needs to be analyzed how far the 
morphing idea can applied to more static and complex languages 
like Java which provide only limited reflective capabilities. 
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