
Morphing Aspects: Incompletely Woven Aspects and
Continuous Weaving

Stefan Hanenberg
University of Duisburg-Essen

Department for Computer Science
and Business Information Systems

D-45117 Essen, Germany

shanenbe@ cs.uni-essen.de

Robert Hirschfeld
DoCoMo Communications

Laboratories Europe
Future Networking Lab

D-80687 Munich, Germany

hirschfeld @ docomolab-eu ro.com

Rainer Unland
University of Duisburg-Essen

Department for Computer Science
and Business Information Systems

D-45117 Essen, Germany

unlandr@cs.uni-essen.de

ABSTRACT
Weaving is one of the fundamental mechanisms of aspect-

oriented systems. A weaver composes different aspects with the

base system by determining and adapting all parts where aspect

specific elements are needed eventually. At rnntime, time-

consuming join point checks are necessary to determine if at a

certain join point aspect-specific code needs to be executed.

Current technologies enforce such checks even in locations that

only temporarily or under restrictive conditions (or even never)

execute aspect-specific code. In more complex applications, a

large number of these checks fail and just cause a substantial

runtime overhead without contributing to the system's overall

behavior. The main reason for this flaw is complete weaving, the

way how aspects are woven to an application using current

technologies. In this paper we discuss the problem of unnecessary

join point checks caused by complete weaving. We introduce

morphin 8 aspects - incompletely woven aspects in combination

with continuous weaving - to overcome the problem of futile join

point checks.

1. INTRODUCTION
Aspect-Oriented Programming [17, 20] deals with code fragments

which logically belong to certain concerns but which cannot be

modularized due to limited composition mechanisms of

underlying programming languages and environments. The

resulting code is tangled and scattered. Concerns that cause such

tangling are called crosscutting concerns. Aspect-orientation is

about modularizing crosscutting concerns into distinct modules,

called aspects.

The mechanism for integrating aspect modules with an

application is called weaving. A weaver is responsible for adding

all aspects to the application. In order to specify such integration,

aspect-orientation makes use of a concept called join point. In

[17], join points are introduced as principled points in the

execution of a program. A typical example of a join point is a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redislribute to lists,
requires prior specific permission and/or a fee.
AOSD 04, March 2004, Lancaster UK.
Copyright 2004 ACM 1-58113-842-3/03/000455.00.

method call.

Conventionally, the weaving process is started by the developer at

a certain point in time and for a number of aspects to be

integrated. Thereto, the weaver determines and adapts all

locations in the base system which represent join points at runtime

where potentially or for sure aspect-specific code needs to be

executed. In [22], locations that represent join points during

runtime are called join point shadows. In the following we refer to

shadows whose join points always lead to an execution of aspect-

specific code as unconditional join point shadows, and those

whose join points lead only under some circumstances to aspect-

specific behavior as conditional join point shadows. For

conditional shadows the weaver adds runtime checks determining

whether or not aspect-specific code needs to be executed (we refer

to these runtime checks as join point checks). If such a check

succeeds, the aspect-specific code (the advice code according to

AspectJ terminology [18]) is executed.

One property of this conventional approach to weaving is that the

set of join point shadows associated with a woven aspect remains

the same for the aspect's lifetime. In the following we refer to this

kind of weaving as complete weaving. Complete weaving is a

process which determines and adapts all join point shadows

including the creation of corresponding join point checks upfront

and in advance. After weaving, all shadows in the application

where aspect-specific code might be executed are adapted.

Consequently, the set of join point shadows associated to an

aspect is fixed and does not change at runtime. Aspect-oriented

systems like AspectJ [18], Hyper/J [24] and Sally [12] that

provide pure static weaving, i.e. weaving at compile time,

necessarily need to perform a complete weaving since all join

point shadows to be adapted have to be determined at a certain

point in time (at compile time~).

In more complex applications complete weaving can lead to a

huge number of adapted join point shadows whose join point

checks fail and just produce runtime overhead. Especially

shadows with join points that rarely trigger the execution of

aspect-specific code in the execution of the program are useless

I It should already be emphasized here that the term complete weaving is
not equivalent to static weaving. A form of complete weaving also
occurs in systems that provide dynamic weaving. This will be discussed
in more detail in section 6.

46

time-consumers because most of the time the corresponding join

point checks do not succeed and with that do not invoke an

aspect's advice. In the worst case an aspect adapts a large number

of join point shadows that never invoke an aspect's advice. In

such cases the adapted shadows cause runtime overhead without

ever accomplishing any benefit at all.

A large number of conditional shadows that rarely or never lead

to an advice's execution are often not tolerable, especially not in

performance critical parts of the system. Thus, it is desirable to

reduce the number of conditional join point shadows as much as

possible to reduce the number of failing and with that unnecessary

join point checks.

In order to reduce the number of conditional join point shadows

we introduce the concept of morphing aspects which are

incompletely woven aspects in combination with continuous

weaving, an extension of dynamic weaving [16, 26]. In the next

section we provide two typical examples of aspects based on

complete weaving that illustrate the necessity of handing the

problem of conditional shadows whose join points rarely or never

execute an aspect's advice. In section 3, we introduce the concept

of morphing aspects. We discuss dependency relationships among

join points and describe how they can be used to adapt join point

shadows at a later point in time. In section 4, we discuss

implementation issues of morphing aspects by proposing an

implementation in AspectS [16]. We give an overview of some

experiments with morphing aspects in section 5. After comparing

morphing aspects to related work in section 6 we discuss and

conclude our paper in section 7.

2. E X A M P L E S
According to for example [16, 20] and [11, 30, 32] tracing and

subject-observer implementations are well-known and accepted

candidates for discussions and illustrations of aspect-oriented

programming. Because of its popularity we use AspectJ in those

examples to better illustrate the problems associated with

complete weaving 2.

2.1 T r a c i n g
A woven tracing aspect captures messages sent to or from

particular objects, e.g. to a log f'de. Usually, developers want to

trace the control flow starting at a certain point in the execution of

a program. For example, a developer wants to capture the

behavior of critical modules in order to analyze their behavior

either later or right at runtime.

~ o i d start(l {
step1 () ; ~ pointcut pc () :

e flow(execution (
| if (aCondition) ~ void ComplexComp. start ()))
b step2(); c ~ && execution(* *.*(..));

before() : pc() {
~oid stepl () { ; } . . . 10g message . . .
~Oid sUep2 () { s t e p 2 1 {) ; } i
[v o i d s t e p 2 1 () { . . . } i

Figure 1. Tracing aspect in AspeeLl logging methods in the

control flow starting at method s t a r t in C o ~ l e x C o m n .

2 Please note, that the intention here is neither to discuss AspectJ in detail
nor to compare the here proposed approach with AspectJ. The intention
here is to discuss the impact of complete weaving on the number of join
point checks in the woven application.

A typical approach to implementing tracing in AspectJ is to use

the o f low pointcut designator [18]. Figure 1 shows the

corresponding code in AspectJ where a tracing aspect

T r a c e C o m p u t a t i o n logs all messages once the control flow

passes method s t a r t in class CoraplexComp which starts a

complex computation 3. One advantage of this implementation is

the declarative pointcut definition that describes all join points

where the tracing aspect needs to execute some advice. Hence,

developers do not need to examine the code on their own, i.e. they

do not need to determine what methods are potentially called

within the control flow starting from method start in class

ComplexComp.

step1 () ;
if (aCondition) bar2() ;

}
pl

p}u~ia void steP2()

) ~i~e~i b ~

publ io void seep211) {

Figure 2. An illustration

/ ~liaI.~c.,D-°~Jl' adv±ce ~ ' ; ' I

.JdbXi¢ void aMeehodlnB () I
g+ _. nCF owJ±) adv oe,,, I

= shadow adaptation

[' - - " ' - - 1 = shadow adaptation that
never Invokes advice

. . . . = join point check

of the woven tracing aspect

induding additional classes A and B.

However, this implementation has some drawbacks due to

complete weaving. In general, the exact computation of methods

that are executed within a certain control flow is impossible. For

example, it is hard to compute upfront whether the condition in

m e t h o d ~ t a r t will ever be satisfied and methods s t e p 2 , and

s t e p 2 1 (and methods invoked by s t e p 2 1) will ever be invoked

from the control flow passing s t a r t . To guarantee the correct

behavior of the aspect the weaver must consider these methods in

addition to methods s t a r t and s t e p l , which will be

definitively invoked in the control flow. For all these methods the

weaver has to determine whether they can also be executed in

control flows that do not pass method start. In such cases the

weaver needs to decorate shadows with join point checks that

check at runtime if the current method is part of the control flow

to be traced or not. If a large number of different control flows in

the application use methods of ComplexComp (other than

s t a r t) the join point checks fall most of the time and only cause

runtime overhead. If the condition in method s t a r t is never

satisfied, the join point checks at method s t e p 2 and s t e p 2 1

only cause runtime overhead when they are invoked from

different methods without ever executing the advice in

T r a c e C o m p u t a t i o n at all. The problem becomes even bigger

if b a r 2 1 executes a large number of other methods. The

corresponding shadows would also never invoke the advice in

TraceComputation.

3 This use of the cflow construct for implementing tracing corresponds

(with minor changes) to the implementation like for example proposed
in [31]. A similar use for a different purpose can be found for example
in [6].

47

In AspectJ the situation is somewhat different. AspectJ hardly

analyzes control flows. For the example from Figure 1 AspectJ

determines all methods matching the last part of the pointcut, i.e.

(e x e c u t i o n (* *. * (. .))), and creates corresponding join

point checks• Since this matches every existing method, AspectJ

creates checks for every existing method in the entire system

(except for those in system libraries). Figure 2 illustrates the code

woven by AspectJ, not only for class ComplexComputation
but also for two additional classes 3, and B also present at

weaving-time. Before executing the original code of any method

in the system, join point checks are performed. The benefit of this

approach is that no cost-intensive computation is necessary which

would slow down the compilation process. On the other hand the

performance of the whole system decreases in the presence of the

woven aspect. This implies that the performance decreases even

in classes like k and B whose methods will never be executed in

the control flow of interest• Performance measurements in [4]

showed that a single woven c f l o w substantially decreases the

overall performance of the system.

The overall problem in the tracing examples is that it is usually

not fully computable at weave-time what methods are invoked

within the control flow of interest• Consequently, a large number

of conditional shadows exist in the system whose execution

causes runtime overhead but rarely lead to an execution of the

aspect specific code.

2.2 Subject-Observer Protocol
Perhaps the most frequently used example in the area of aspect-

oriented programming is the implementation of the observer

design pattern [9] as discussed for example in [11, 30, 32]. The

pattern permits a set of objects (called observers) to be attached to

other objects (called subjects) to become informed about their

state changes.

I + observers
• . . J + attachObserver(Observer o)
mir°~ce° l + detachObserver(Obselver o
comamer I + notifyObserversO {...

I ~ : . ~ :> 'l~ +container [

I f °°Fleldl I 11

~ 7 ~: " i;' ii;i,7~iii',!iii ii!!;i; ;)~7

po ln tcu t stateOhanges(Subiect s):
,set(* Subject+.') &&
target(s) &&
l(set(* Subject+.observers));

after(Subject s): stateChanges(s) {
} s.nottfyObserversO;

define that an assignment to any field declared in Subject: (i.e.

an assignment to a field declared in a class implementing

S u b j e c t) yield the notification of observers. The pointcut

language of AspectJ does not permit to declare the state change of

every referenced object for a given subject (cf. [14, 11] for further

discussion). So, developers have to enumerate explicitly every

class whose objects should inform observers about state changes

(in Subj ectConnector). In order to permit the observation of

Foo instances and its referenced objects of type

G e n e r i c O b j e c t , the developer connects S u b j e c t to both

classes (Figure 3).

Again, the implementation suffers from some drawbacks resulting

from complete weaving. In general, it is not possible to fully

determine what instances are ever referenced by subjects. For

example, it is usually not computable if instances of class C1, C2,

etc. are ever referenced by an instance of Foo at runtime.

Consequently, join point checks need to be created that check at

runtime at every field assignment, whether the current object is

referenced by an instance of Foo. These checks become

problematic if a class is frequently used in the application, whose

instances are in fact never referenced by a Foo at runtime.

v o i d m e e h o d A () { v o i d m e l : h o d A () {

Foof = new FOO (); Foo f = new Foo ();

f. fooFieldl = ... ; f.fooFieldl ;

for (-) { . . .

C1 c1 = new Cl(); k for (•.) {

cl.clField ; ~ C1 cl = new C1();

• .. ; } cl.clField ;

} ;}

v o i d methodB() {

C2 c2 = new C2();

c2.c2Field = ;

C3 c3 = new C3() ;

C3.c3Field = ...;

C4 c4 = new C4();

c4.c4Field = ... ;

= shadow adaptat ion

}

-)--.JJ.l

~. void methodB() {

C2 c2 = new C211 ;

c2.c2Field ;

C3 c3 = new C3();

c3. c3Fi@id ;

C4 c4 = new C4();

c4. c4Field ;

}'•i•.

declare parents:
(Foo II GenericObject)
Implements Subject;

Figure 3. A subject-observer implementation in AspectJ

Observers are interested in state changes, i.e. changes of fields

associated with a subject. This includes fields that are directly part

of the subject as well as fields of objects which are directly or

indirectly referenced by the subject (see for example [14, 11]).

Figure 3 illustrates a typical implementation of the subject-

observer protocol in AspectJ based on the container introduction

idiom [13]• SubjectLoader states that observers can be

attached to and detached from instances of S u b j e c t by

introducing appropriate fields and methods to Sub jec t : . The

aspect's pointcut s t a t e C h a n g e s and the corresponding advice

Figure 4. Application using observed classes.

In AspectJ the problem is slightly different. Since AspectJ's

pointcut language does not permit to specify classes whose

objects are referenced by Foo, developers need to add the subject

functionality to each class manually (compare to Figure 3). As a

result, advice activations are inserted for each state change of

instances of GenericObject as well as for its subclasses 4.

Figure 4 illustrates an application with a woven subject-observer

aspect. Advice activations are created for each assignment of

fields declared in G e n e r i c O b j e c t and its subclasses; even in

those cases where the instances are not referenced by an instance

4 Due to limitations of its pointcut language, AspectJ's shadows are
unconditional. However, the shadows have to be conditional logically
because it must be checked whether an object is referenced by a subject
or not.

48

o O o l
0 0 0 0

0 C
0 O 0 0 0

0 0
0 0 0 0 O 0

(a) 0 0 0

0 = potentially assodatecl shadow

0 0 0

0

) 0

D

= shadows Initially adapted at t o t = shadows adaptId at tl

(d)

0

0 0 0 C ~

= shadows adapted at t~ I

Figure 5. A morphing aspect that changes its set of associated join point shadows during runtime.

of FO0. None of the objects one the fight hand side are referenced

by a Foo instance since the objects are newly created. Hence,

advice execution is futile. If subclasses of a e n e r i c O b j e c t are

frequently used in an application the performance decreases

perceivably as every single assignment leads to the execution of

the corresponding advice. Typical examples of such often used

classes are collection classes or classes that serve as root classes

in large frameworks.

The overall problem in the subject-observer examples is that the

set of classes whose instances are referenced by subjects is

usually not computable upfront. Hence, a complete weaver adapts

shadows for field assignments of all classes whose instances are

potentially referenced by a subject. If such classes are frequently

used in the application while their instances are never referenced

by a subject, the shadows just cause a runtime overhead. In the

worst case, there is no observed object in the runtime system at

all, yet still a large number of failing join point checks are

executed.

3. MORPHING ASPECTS AND

CONTINOUS WEAVING
Morphing aspects are a new approach to reduce the number of

join point checks by reducing the number of adapted shadows. In

contrast to the conventional way of complete weaving used by

known AO systems, morphing aspects are incompletely woven
aspects. Morphing aspects are not entirely woven to an

application by a weaving process that begins and ends at a certain

point in time computing and adapting shadows whose join points

possibly execute aspect-specific code. Instead, the necessary

shadows to be adapted are continuously computed and adapted (or

released) by the aspects itself at well-defined points in the

execution of the program, i.e. at certain join points. When a

morphing aspect is woven it starts with a small set of initial join

point shadows and dynamically adapts or releases shadows just

when they are needed. Hence, the number of shadows associated

with a morphing aspect changes during the aspect's lifetime. We

call this process of computation, adaptation and release of an

aspect's shadows morphing. We refer to the whole weaving

process, i.e. initial weaving of morphing aspects, the morphing

during their lifetime and unweaving as continuous weaving.

Figure 5 illustrates a morphing aspect and its set of join point

shadows at runtime. The ovals represent all join point shadows

which are potentially associated with an aspect during its lifetime

as they would have been computed during complete weaving. The

ovals within the aspect's border represent shadows adapted for the

aspect. As long as the aspect is not woven, there are no shadows

adapted for the aspect (Figure 5a). Initially, when the developer

weaves the morphing aspect, a relatively small number of join

point shadows is adapted by the aspects (Figure 5b). The set of

actually adapted shadows changes during the aspect's lifetime. At

a later point in time (Figure 5c) the aspect has nine more shadows

in addition to the original join points. Even later (Figure 5d) five

more shadows were adapted and most of the previous ones were

released. In contrast to this, a completely woven aspect adapts all

shadows which are potentially associated with an aspect (and

creates corresponding join point checks), i.e. all ovals in Figure 5

fight from the beginning. Morphing aspects adapt fewer shadows

in the system. Hence, morphing aspect cause less runtime

overhead due to failing join point checks as there are fewer join

point checks in the system.

As a key eharactefistic of morphing aspects they themselves

determine at runtime at what points in the execution of the

program the adaptation or release of join point shadows is

necessary. Hence, join points in morphing aspects serve two

different purposes. On the one hand the aspect's functionality (like

logging, or notification of observers) is invoked, on the other hand

the morphing process is started whenever particular join points

are reached.

For the specification (and implementation) of morphing aspects

and the corresponding morphing processes, developers are

confronted with the following questions: What are the join points

the aspect gets initially woven to, i.e. what shadows need to be

adapted initially? When does the molrphing process needs to be

carried out? How should the new set of join point shadows be

determined?

In the following section we discuss dependencies among join

points and shadows. Those dependencies determine a minimal set

of shadows that need to be initially adapted. Furthermore, these

dependencies determine what join point shadows can be adapted

at some later point in time. Afterwards, we describe how these

properties can be utilized to specify the morphing process.

3.1 Join Point Dependencies
In order to determine when new shadows need to be adapted or

can be released, developers of a morphing aspect have to analyze

how those join points (and their shadows) which are relevant for

the aspect to be specified depend on each other. Dependencies

among join points describe that a certain join point associated to

an aspect (the dependent join point) can only be reached if

another join point associated with the same aspect has been

reached before. We call the corresponding shadows dependent
shadows. All join points that do not depend on any other join

49

point are independent (and are represented by independent

shadows). On the technical level a dependency between join

points expresses that join point checks of dependent shadows fail

as long as the join points they depend on have not been reached

before. Consequently, shadows for dependent join points do not

need to be adapted as long as the join points they depend on are

not yet reached. This allows the adaptation of dependent shadows

to be shifted to a later point in time. This situation is different for

independent shadows. Their join points potentially occur in the

execution of a program independently of any other join point

associated to the same aspect and the adaptation of their shadows

cannot be shifted to a later point in time. Hence, when the

morphing aspect is initially woven at least all independent join

point shadows need to be adapted.

In the following we illustrate dependencies among join point

shadows for the examples presented in section 2.1 and 2.2. We

represent a potential join point shadow by an oval whereby an

oval's label describes the shadow. A directed edge from a shadow

A to a shadow B represents a dependency relationship which

expresses that the join point represented by shadow A depends on

the join point represented by shadow B. This also implies that

shadow A depends on shadow B. The edge's label describes the

kind of dependency. A shadow without any outgoing edge is an

independent shadow, while a shadow with at least one outgoing

edge is a dependent shadow.

ICC = class ComplexComp I

Figure 6. Dependencies in the tracing example

Figure 6 illustrates the dependencies among join points shadows
for the tracing example introduced in section 2.]. The execution
of method s tep1 or the execution of s tep2 only need to lead to

an execution of aspect-specific code i f method s t a r t in class

ComplexComp is executed and s t a r t invokes either s t e p l or

s t e p 2 : the join point checks for the shadows at s t e p l and

s t e p 2 fail as long as method s t a r t is not executed and invokes

s t e p l or s t e p 2 . Hence, both shadows directly depend on the

shadow for method s t a r t . For the same reasons the shadow at

s t e p 2 1 depends directly on the shadow at s t e p 2 and the

shadows for all methods that are eventually invoked by s t e p 2 1

depend the shadow at s t e p 2 1 . In the tracing example, all join

point shadows either directly or indirectly depend on the shadow

representing the join point for the execution of method s t a r t .

The shadow at s t a r t does not depend on any other shadow, i.e.

this is an independent shadow. On a more abstract level, shadows

of all methods that are either directly or indirectly invoked by

s t a r t depend on the shadow for s t a r t .

The dependencies of join points in the subject-observer aspect are

slightly more complex (Figure 7). The join points (and their

shadows) to be handled by the aspect are the state changes of

subjects (instances of Foo) and their referenced objects. So, all

assignments to fields declared in Foo, G e n e r i c O b j e c t and

subclasses of G e n e r i c O b j e c t are join point shadows, which

are potentially associated with the aspect. Those assignments

execute aspect-specific code only if there is at least one object

observing a Foo instance. This in turn depends on invocations of

method a t t a c h which registers observers. Hence, all shadows

for f o o F i e l d and g o R e f assignments depend on the shadow at

method a t t a c h 5. The same is true for assignments to fields

declared in G e n e r i c O b j e c t and its subclasses. However, their

dependency is more complex. First, when an observer is attached,

those shadows need to be adapted only for classes whose

instances are referenced by a Foo. For example as long as no

G e n e r i c O b j e c t instance is referenced by a Foo g o F i e l d

assignments need to be adapted. Second, assignments to

g o F i e l d depend on the g o R e f assignment since an instance of

G e n e r i c O b j e c t becomes referenced by an instance of Foo by

assigning it to g o g e f . For the same reason all further

assignments to fields declared in subclasses of G e n e r i c O b j e c t

depend on the g o R e f assignment.

I - - " _ _ _ 1

Figure 7. Dependencies in the subject-observer example

As exemplified in Figure 7 the only independent join point is the

one for the invocation of method a t t a c h . In the subject-

observer example the different natures of join points associated to

the subject-observer aspect becomes manifest: the field

assignments depend on a join point which does not lead to an

execution of the aspect-specific code, because field assignments

depend on the execution of method a t t a c h . A field assignment

join point informs the observers about a state change, while the

join point at method a t t a c h does not. In order to emphasize that

fact, we rendered the a t t a c h shadow using a different style

(Figure 7).

3.2 Specifying the Morphing Process
Once the dependencies are determined developers have to decide

how to utilize them for the specification of a morphing aspect's

morphing process. First, developers have to specify what shadows

including corresponding join point checks are to be initially

handled. Next, developers have to specify what initial join points

start the morphing process. Then, developers have to define the

morphing process itself.

At least all independent join point shadows have to be initially

adapted, because they do not depend on any other shadows.

5 For the same reason, field assignments depend on method detach,
because if after invoking detach no object observes Foo no aspect-
specific code need to be executed. For reasons of simplicity we omitted
this dependency in Figure 7.

50

Hence, it is not possible to utilize their dependencies for a late

shadow adaptation. Additionally, the developer can decide to

adapt some additional dependent shadows at initial weave time: In

case the dependent join points are reached very often, the

developer may not want to adapt their shadows just during the

weaving process but fight from the beginning.

The morphing process consists of the following parts. First, the

process has to determine a number of dependent shadows to be

adapted (or to be released). For that purpose, the morphing

process can make use of reflection [21]: the process reflects on

the join point starting the morphing process and computes the

dependent shadows. Second, the morphing process specifies the

join point checks for all shadows to be created. Third, it has to be

determined for each newly adapted shadow whether it 's join

points invoke aspect specific code and/or the morphing process.

In the following we illustrate two reasonable specifications of the

morphing process for the tracing and subject-observer examples

based on the discussion of join point dependencies from section

3.1. The morphing processes proposed here are kept as simple as

possible to illustrate how to utilize join point dependencies.

<Z2ZT>

Icc: ComplexComp I [cc:ComplexComp I

Figure 8. Morphing tracing aspect after initial weaving,

after execution of s t a r t , and after execution of s t e p l .

For the tracing aspect (Figure g) at least one (independent and

unconditional) shadow at method start in ComplexComp has

to be initially adapted. For reasons of simplicity, we decided to

adapt only this shadow to keep the number of join point checks

low and to adapt all dependent shadows as late as possible.

Hence, Figure 8 illustrates that only one shadow is initially

adapted for the tracing aspect.

Once a join point of this shadow is reached, the tracing code is

executed and the morphing process starts. The morphing process

determines all methods that potentially are invoked by the method

enabling the process. The shadows for all these methods are

adapted. The corresponding join point checks examine if the

method is invoked within the control flow being traced 6. If the

join point check succeeds, the tracing code is executed and the

morphing process starts once again. Whenever a method within

the control flow is left, all dependent shadows are released. So, if

a ComplexComputation receives a message start (and the

message is logged), the morphing process computes all methods

that are potentially invoked by s t a r t and adapts the

6 There are different ways to implement such a condition. In AspectJ the
current thread is stored when the control flow starts, and each join point
check determines whether the current thread is stored. Languages like
for example SmaUtalk permit to analyze the call stack to determine
whether the current method occurs in the control flow of interest.

corresponding shadows (stepl and step2) (in the middle of

Figure 8). When s t e p l is invoked by start the method is logged

and the morphing process starts once again. Since no other

methods are potentially invoked by method s t e p l no further

shadows are created. If s t e p 2 is not invoked and s t a r t is left

the shadows at s t e p l and s t e p 2 are released (fight hand side

of Figure 8). So, as long as the condition in method s t a r t does

not lead to an execution of s t e p 2 , no shadows for s t e p 2 1 (and

methods invoked by s t e p 2 1) are created.

aVeJue

Figure 9. Subject-observer as a morphing aspect at initial

weave time, after observer attachment, and after
assigning an instance of Cl .

For the subject-observer aspect at least one unconditional shadow

for method a t t a c h needs to be initially adapted 7 (see left hand

side of Figure 9). Similar to the previous example we simply

decided to adapt only this shadow to keep the number of adapted

join point shadows low (and to simplify the morphing process).

An invocation of the method attach in class goo starts the

morphing process.

A simple morphing process for this aspect works as follows. First,

the process adapts shadows for all assignments to fields

f o o F i e l d and g o R e f whose execution leads to notifications of

observers. Second, the process reflects on the Foo instance

whose join point started the morphing process. It determines the

referenced object and adapts the field assignment shadows for

notifying observers. And finally, the morphing aspect adapts the

g o R e f join point to start the morphing process.

Figure 9 illustrates the above described morphing process. After

an observer is attached the morphing process adapts shadows for

all assignments to fields declared in Foo. Furthermore, the

7 Like in the previous section we skip for reasons of simplicity the
discussion about method d e t a c h here which is also an independent
shadow.

51

morphing process determines the object referenced by goField
of object foo . Since in Figure 9 f o o does not refer to any

G e n e r i c O b j e c t no further shadows are adapted. When an

instance of Cl is assigned to f o o the morphing process starts

once more (because assignments of g o R e f start the morphing

process). The process determines the fields of the assigned object.

Since c l is an instance of C1, shadows are adapted for all

assignments to g o F i e l d (declared in G e n e r i c O b j e c t) and

c l F i e l d (declared in Cl).

4. IMPLEMENTATION EXAMPLE
In this section we introduce an exemplary implementation of a

morphing aspect in Aspects (see [16] for a detailed introduction

in AspectS). Aspects is an aspect-oriented system providing

dynamic weaving in the Smalltalk dialect Squeak. We concentrate

here on the implementation of the tracing aspect. For the

morphing implementation of the subject-observer implementation,
please refer to [14] and [3].

InstallAdvlce: anAdv~ce polntcut: aPC I
I "weaves advice anAdvice to pointcut aPC" [

iolnPolntDescrlptorsFrom: eMethod
I jpds I
jpds := Set new.
cMethod messages do: [:sel I

(self ImpiementorsOf: eel) do: [:class
jpds add: (JoinPointDescdptor targstClass: class targetSeiector; ssl)],

^ jpds.
ImplementorsOf: aSymbol

I impiernentors I
impiementors := OrderedColiection new.
Smalltalk allBehaviorsDo: [:class J

(class IncludesSelector: aSymbol) ifTrue: [
Impiementors add: class]].

^ impiementors.

I n i t l e l P o l n t c u t

traclngAdvlce
Install

self InstallAdvlceAt: (self InitialPolntcut)
morphlngAdvlce
^ AsBeforeAfterAdvice new;

qualifier: (...); pointcut: (...);
beforeBIock: [:receiver :args :aspect :client I

...'some caching code'...
self startMorphlngFor: (self currenUoinPoint)];

afterBIock: [:receiver :args :aspect :client :retum [
self cleanupMorphs: (self currentJoinPoint)].

startMorphlngFor, jpd
] jpds clientMethodl
cllentMethod := (jpd targetClass) compiledMethodAt: (jpd targetSelector).
jpds := self joinPointDescdptorsFrom: cllentMethod.
self installAdviceAt: jpds.
... "some caching code' . . .

installAdviceAt: jpds
jpds do: [:jpd I

.., =some caching code'.,.
self installAdvice: morphingAdvice pointcut { jpd };

installAdvlce: traclngAdvica pointcut: { jpd }].
. . .

Figure 10. Tracing as a abstract morphing aspect in
AspectS

AspectS is based on method wrappers [5]. A shadow for a method

execution join point or a method call join point is adapted by

wrapping the receiving method. The method to be wrapped is

specified by a join point descriptor (instance of J o i n P o i n t

D e s c r i p t o r) which refers to a class and to a method selector.

Advice directives in AspectS are runtime objects that refer to a

pointcut. Pointcuts are collections of join point descriptors. If

advice dkectives are installed at runtime, all methods referenced

by the join point descriptors are wrapped. The wrappers handle

execution of qualifiers (which correspond to join point checks)

and the execution of the advice. Advice is implemented by blocks

(see [10] for an introduction to Smalltalk blocks, see [16] for a

detailed description of how advice objects are created and

executed using blocks).

Tracing aspects based on morphing aspects are subclasses of the

(abstract) class M o r p h i n g T r a c e A s p e c t (Figure 10).

M o r p h i n g T r a c e A s p e c t contains the abstract method

i n i t i a l P o i n t c u t that returns the set of join point descriptors

specifying the independent join points whose shadows need to be
initially adapted.

I J

InltlalPointcut
^ OrderedCollection

with: (JotnPoJntDescdptor
targetClass: CompiexComp targetSeiector. #start)

traclngAdvlce
^ AsBeforeAfterAdvica new

qualifier: (...); polntcut: ...;
beforeBIock: [:rec :args :aspect :client

=Write message on screen"].

Figure 11. Concrete tracing aspect as a morphing aspect.

The aspect refers to two advice objects, both returned by

corresponding methods tracingAdvice and

morphingAdvice. The (abstract) method tracingAdvice
returns the advice to be executed during tracing,

r n o r p h i n g A d v i c e provides the advice starting the morphing

process. Our morphing advice contains two blocks which are

invoked before and after the corresponding join point is reached.

The before block starts the morphing process on the given join

point by invoking method startMorphingFor. Method

s t a r t M o r p h i n g F o r determines the mntime-object for the

invoked method and computes all join points descriptors that

depend on that method (see methods

joinPointDescriptorsFrom: and implementorsOf :
in class MorphingAspect in Figure 10). A shadow is adapted

for each of those join point descriptors that invokes the morphing

advice as well as the tracing advice (method

installAdviceAt :pointcut :). In order to use the
morphing trace aspect developers have to extend

MorphingTraceAspect and override initialPointcut
and tracingAdvice. Figure II illustrates a sample class
MorphingComplexComputationStartTracer. A tracing
aspect is inifiaily woven by instantiafing the corresponding class

and invoking method i n s t a l 1.

Creating and integrating shadows (i.e. method wrappers) in

Aspects is a time-consuming task, yet to be optimized. Hence, it

s According to the Smalltalk meta-object protocol (cf. [10]) method
implementations have runtime representations.

52

is typically not desirable to start the morphing process at every

possible join point. For example, if the methods to be traced are

executed quite often, the time consumed for the morphing process

can be higher than the benefit of dismissed join point checks.

Therefore, the implementation of the tracing aspect in Aspects

uses lazy morphing by default. Dependent shadows are adapted

whenever the join points they depend on are reached and the

morphing process did not already start at these join points. Lazy

morphing does not release shadows during morphing. Instead,

shadow adaptations reside in the system until the developer

uninstalls the whole aspect. So, every execution of the morphing

process potentially increases the number of adapted shadows for

the aspect, but does not delete any.

The use of lazy morphing turned out to be practical in a number

of experiments. Those experiments showed that the number of

shadows adapted by lazy morphing is still significantly smaller

than a complexly woven trace aspect.

5. EXPERIMENTAL RESULTS
Table 1 summarizes a number of performance measurements in

Aspects on a Pentium 4.2 GHz with the Squeak Virtual Machine

version 3.4.4. The Smalltalk image contained the Comanche Http

Server [7] as well as the Squeak CommandShell [8]. Overall, the

image contained more than 2200 classes with more than 35000

compiled methods. We measured 100000 times the execution time

for the adaptation and release of shadows, the execution time for

(empty) methods and the execution time for methods with adapted

shadows whose join point checks always pass as well as with

shadows whose checks always fail. We implemented the adapted

shadow with the successful join point check by an empty around

advice whose join point condition immediately succeeds without

any additional computation. We implemented the adapted shadow

with the falling join point check by a join point condition that

immediately fails without any additional computation. Our

measurement showed that the execution of an unconditional

shadow was approximately 90 times slower than the execution of

an empty method. The execution of a dead shadow was about 9

times slower than the execution of an unconditional shadow 9.

Table 1. Experimental Results for shadow creation,

deletion and method execution time (in ms) in AspectS

[A v e i ~ : I ' M ~ I M ~ ! ~ I

o . m 3 o . x = s , o. ,s I
I

[i~oa~ ~ 10.000~ 0.000~ o.ooosl
!10.03~. 0 . 0 ~ o.03~x I

IMe~i~,tthfSjffr~j~,jo~[i~l~i| 0 . 3 2 6 9 0 . 2 5 5 5 0 . 3 2 8 2 I

Next, we created a single (lazy) morphing tracing aspect to trace

the execution commands in the command shell. The

corresponding advice simply wrote all messages to the screen.

The initial weaving of the tracing aspect adapts just a single join

point shadow and took 0.45 milliseconds. As soon as the method

to be traced has been invoked for the first time, the morphing

process started for 35 times creating 253 shadows. This process

9 The reason for the slow execution of dead shadows lies in the way how
wrappers and wrapped methods are implemented. Wrappers store the
wrapped method in a field. When a join point check fails the original
method is executed by calling the time-consuming value: method.

took about 9.5 seconds. Starting the control flow afterwards did

not lead to any additional execution of the morphing process.

From then on the execution of the method to be traced took about

2.5 seconds.

We compared this result with a corresponding complete weaving

(see Table 2). The computation of all potentially invoked methods

was not practicable (the computation took more than 3900

seconds). Hence, we did the same approach like AspectJ to weave

the aspect to all existing methods in the image (except some

system methods). To do so, we wove the aspect to more than

35000 methods. This complete weaving took about 6.8 seconds.

The control flow execution afterwards took the same time like the

morphing tracing aspect.

Table 2. Tracing in an experimental environment as

morphing aspect and completely woven aspect

l : . 3 0 3949,1

Table 3. Consumed Time for tracing control flow in a

completely, and an incompletely woven aspect.

[~l 9.33 s I

i~'!: I ,.s4(.9.s,. 0.,s =.) J
As a result, this experiment showed that the initial weaving of the

morphing aspect and the first tracing of the control flow took

about 9.54 seconds while the completely woven aspect and a first

execution of the control flow took about 9.33 seconds (Table 3).

The difference of 0.19 seconds is the price for using a morphing

aspect instead of a completely woven one. However, the number

of adapted shadows by using a morphing aspect is ordy 1% of the

number of adapted shadows of the completely woven aspect.

These shadows decrease the performance of the whole system,

because each shadow whose join point check fails cause the

mntime overhead of more than 0.3 milliseconds (according to

Table 1). Preliminary experiments showed for example that the

response time of the http server contained in the image was a few

hundred times slower than before weaving the tracing aspect,

because weaving the tracing aspect according to the weaving

strategy of AspectJ also adapted a large number of shadows even

in those classes that will never be invoked in the control flow to

be traced.

6. RELATED WORK
Dynamic weaving in combination with just-in-time aspects as

proposed in [26, 27] is closely related to morphing aspects. Just-

in-time aspects are dynamically woven to the system when they

are really needed. Furthermore, just in time aspects are woven to

the application in one atomic step (see [27], page 101).

Consequently, just in time aspects do not perform any additional

53

join point checks as long as they are not woven. In that way just

in time aspects overcome the problem of unnecessary shadows in

comparison to static weaving. Nevertheless, just-in-time aspects

are woven completely because of the atomicity property. Hence,

after dynamically (and completely) weaving an aspects the

problem of unnecessary shadows arises just like in static woven
systems.

Another approach that relates to our work on morphing aspects is

the selective just-in-time weaver as proposed in [28], an extension

to the work of just-in-time aspects. The (Java based) selective

weaver permits developers to choose between two different kinds

of join point shadows: either as breakpoints in the JVM or as

statically embedded hooks. While breakpoints can be created

much faster, their execution is time consuming (see [28] for a

detailed discussion on the performance issues). Embedded hooks

on the other hand execute faster while their creation is quite slow

in comparison to that of breakpoints. Selective just-in-time

weavers try to overcome the performance overhead caused by

frequently executed shadows by embedding such shadows

statically. From that point of view a selective weaver and

morphing aspects are similar. The selective weaver causes a

performance overhead for embedding hooks in order to achieve a

performance advantage for the further execution of the program.

Similarly, the morphing process executed by morphing aspects

causes a performance overhead to achieve a performance

advantage for the further execution of the program. However, the

main difference between both approaches is that a selective

weaver does not reduce the number of conditional shadows.

The virtual machine Steamloom [4] belonging to the aspect-

oriented language Caesar [23] also tackles the problem of time-

consuming join point checks. Steamloom implements join point

checks and advice invocations at the virtual machine level. In [4]

the performance of advice making use of the join point checks on

VM level and the statically woven aspects in AspectJ based on the

cflow construct is measured. The result shows that the Steamloom

VM has a significant performance advantage over the completely

woven approach of AspectJ. The intention of Steamloom and

morphing aspects is very similar, since both tackle the

performance overhead caused by join point checks. The

difference between Steamioom and the implementation of

morphing aspects as proposed in this paper is that while weaving

in Steamloom is performed by redirecting messages at the VM

level our AspectS-based implementation carries out changes to

the runtime representation of methods at the application level.

Besides the approaches that provide pure dynamic weaving there

are also approaches that remove unnecessary runtime checks

based on a static analysis. For example [22] describes a partial

evaluator based on the definitional interpreter specified in [33] to

reduce the number of unnecessary join point checks. In [29] a

reduction of join point checks is achieved by a static analysis of

the call stack. Currently, we do not have any experimental results

that compare the number of failing join point checks caused by

these approaches with the number of failing join point checks

caused by morphing aspects within an experimental environment.

7. DISCUSSION AND CONCLUSION
In this paper we addressed the problem of unnecessary join point

shadows caused by complete weaving. We motivated the problem

by illustrating two typical examples for aspect-oriented

programming and their implementation in the aspect language

AspectJ.

We proposed morphing aspects to overcome the problem of

unnecessary join point checks. Morphing aspects are incompletely

woven aspects that change their set of join point shadows at

runtime based on a continuous weaving process. With incomplete

weaving, not every shadow within the base system whose join

points potentially execute aspect-specific code is adapted. Instead,

morphing aspects utilize dependencies among join points and

their shadows that permit to delay the adaptation of shadows just

to the point when join points they depend on are reached. As a

result, the number of adapted shadows of a morphing aspect is

much smaller in comparison to that of completely woven aspects.

This is because dependent join point shadows are not adapted

initially, but at a later point in time when they are actually

needed. Experiments with morphing aspects in the aspect-oriented

system Aspects showed that by using morphing aspect the

number of join point shadows is significantly reduced. In that way

the performance overhead caused by failing join point checks is

reduced, too. However, it should be noted that the performance

overhead of join point checks in Aspects is quite high as shown in

section 5. Hence, the benefit of morphing aspects in such a system

is much higher than in systems where join point checks are less
expensive.

The benefit of realizing an aspect as a morphing aspect depends

on a number of influencing factors. In general, a prerequisite for

the successful application of morphing aspects, is a large number

of falling join point checks during the execution of a program.

According to the example we gave in section 2, such prerequisite

is fulfilled if, for example, a tracing aspect is to be implemented

in an application with a large number of threads that never invoke

the method where tracing should begin. Also, such prerequisite is

fulfilled if instances of a class are only very rarely observed

during the execution of a program. The prerequisite is usually not

fulfilled, if the aspects in the system hardly rely on join point

checks, i.e. if the woven application mainly consists of

unconditional join point shadows.

The morphing process needs additional time to determine and

create dependent join point shadows. Developers must trade-off

between the runtime overhead caused by unnecessarily introduced

runtime checks caused by unnecessary adapted shadows and the

overhead caused by the morphing process itself.

Morphing aspects impose a number of requirements on the

underlying aspect-oriented system. This restricts their application

to a number of systems. As most fundamental requirement the

underlying system must permit dynamic weaving, i.e. weaving of

aspects during runtime. A number of systems such as PROSE [26,

27], AspectS [16], JAC [25], Object Teams [32, 15], or Caesar

[23] fulfill this requirement while systems like AspectJ [18] or

Sally [12] do not. As another requirement morphing aspects

typically require the computation of dependent shadows at

runtime, i.e. the shadows to be associated with an aspect are

statically not known. However, not every system providing

dynamic weaving permits the computation of join points at

runtime. For example, Object Teams assumes that the shadows
are statically declared.

As far as we know there is currently no approach like morphing

aspects and continuous weaving that utilizes dependencies among

54

join points and join point shadows to determine join point
shadows to be adapted (or released) during an aspect's lifetime.

As future work morphing aspects and selective weavers [28]
should be combined in order to gain the benefit of both reducing
unnecessary shadows as well as reducing the execution time of

join point shadows. Thereto, it needs to be analyzed how far the
morphing idea can applied to more static and complex languages
like Java which provide only limited reflective capabilities.

8. REFERENCES
[1] Aksit, M. (ed.): Proceedings of the 2nd International

Conference on Aspect-Oriented Software Development,
Boston, MA, March 17 - 21, ACM, 2003.

[2] Aksit, M.; Mezini, M.; Unland, R. (eds.): Objects,
Components, Architectures, Services, and Applications for a
Networked World, LNCS 2591, Springer-Verlag, 2003.

[3] AspectS, version 0.5, Homepage, http://www.prakinf.tu-
ilmenau.de/~hirsch/Projects/Squeak/AspectS/

[4] Bockisch, C.; Haupt, M.; Mezini, M.; Ostermann, K.:
Virtual Machine Support for Dynamic Join Points, 3rd
International Conference on Aspect-Oriented Software
Development (AOSD), Lancaster, UK, March, 2004.

[5] Brant, J., Foote, B., Johnson, R. E., Roberts, D.; Wrappers
to the Rescue, In: Proceedings of the 12th European
Conference on Object-Oriented Programming ECOOP,
LNCS 1445, Springer-Verlag, 1998, pp. 396-417.

[6] Cibran, M.; D'Hondt, M.; Jonckers, V.: Aspect-Oriented

Programming for Connecting Business Rules. In: Proc. of
the 6th International Conference on Business Information
Systems (BIS'03). Colorado Springs, USA, June 2003.

[7] Comanche http server, version 6.1,
http://squealdab.org/comanche/httpserver/index.html

[8] CommandShell for Squeak - Version 3.0.1,
http://minnow.cc.gatech.edu/squeak/1914

[9] Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J.: Design
Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley, 1995.

[10] Goldberg, A.; Robson, D.: Smalltalk 80 - The Language and
its Implementation, Addison-Wesley, 1983.

[11] Gybels, K.; Brichau, J.: Arranging Language Features for
More Robust Pattern-based Crosscuts, In: [1], pp. 60-69.

[12] Hanenberg, S.; Unland, R.: Parametric Introductions, In:
[1], pp. 80-89.

[13] Hanenberg, S.; Schmidmeier, A.; Unland, R.: AspectJ

Idioms for Aspect-Oriented Software Construction, 8th
European Conference on Pattern Languages of Programs
(EuroPLoP), Irsee, Germany, June 25-29, 2003.

[14] Hanenberg, S.; Hirschfeld, R; Unland, R.: Aspect Weaving:
Using the Base Language's Introspective Facilities to
Determine Join Points, In: Workshop on Advancing the
State-of-the-Art in Run-Time Inspection (at ECOOP), 2003,
http:llwww.st.informatik.tu-darmstadt.delpageslworkshopsl
ASARTI03! HanenbergASARTI03.pdf.

[15] Herrmann, S.: Object Teams: Improving Modularity for
Crosscutting Collaborations, In: [2], pp. 248-264.

[16] Hirschfeld, R.: AspectS - Aspect-Oriented Programming
with Squeak, In: [2], pp. 216-232.

[17] Kiczales, G.; Lamping, J.; Mendhekar, A.; Maeda, C.;
Lopes, C.; Loingtier, J.-M.; Irwing, J.: Aspect-Oriented
Programming. In: Proceedings of European Conference on
Object-Oriented Programming (ECOOP), LNCS 1241,
Spnnger-Verlag, 1997, pp. 220-242.

[18] Kiczales, G.; Hilsdale, E.; Hugunin, J.; Kersten, M.; Palm,

J.; Griswold William G.: An Overview of AspectJ, In:
Proceedings of European Conference on Object-Oriented
Programming (ECOOP), LNCS 2072, Spnnger-Verlag,
2001, pp. 327-353.

[19] Kiczales, G. (ed.): Proceedings of the 1st International

Conference on Aspect-Oriented Software Development,
Enschede, The Netherlands, April 22-26, ACM, 2002.

[20] Lopes, C: AOP: A Historical Perspective. In: Filman, R.;
Elrad, T.; Aksit, M.; Clarke, S. (eds.): Aspect-.Oriented
Software Development, Addison-Wesley, 2004 (to appear).

[21] Maes, P.: Concepts and Experiments in Computational
Reflection, Proceedings on Object-Oriented Programming
Systems, Languages and Applications (OOPSLA), Orlando,
Florida, 1987, pp. 147- 155.

[22] Masuhara, H.; Kiczales, G.; Dutchyn, C.: A Compilation and
Optimization Model for Aspect-Oriented Programs,
Proceedings of Compiler Construction (CC2003), LNCS
2622, Springer-Verlag, 2003, pp.46-60.

[23] Mezini, M.; Ostermann, K.: Conquering Aspects with
Caesar, In: [1], pp. 90-99.

[24] Ossher, H.; Tarr, P.: Using multidimensional separation of
concerns to (re)shape evolving software. Communication of
the ACM, 44 (10), 2001, pp. 43-50.

[25] Pawlack, R.; Seinturier, L.; Duchien, L. Florin, G.: JAC: A
Flexible Solution for Aspect-Oriented Programming in Java,
Proceedings of Reflection 2001, Kyoto, Japan, September
25-28, 2001, LNCS 2192, Springer, 2001, pp. 1-24.

[26] Popovici, A.; Gross, T.; Alonso, G.: Dynamic Weaving for
Aspect-Oriented Programming, In: [19], pp. 141 - 147.

[27] Popovici, A.; Gross, T.; Alonso, G.: Just in Time Aspects,
In: [1], pp.100-109.

[28] Sato, Y; Chiba, S.; Tatsubori, M.: A Selective Just-in-Time
Aspect Weaver, Proceeding of the Second International
Conference on Generative Programming and Component
Engineering (GPCE), Erfurt, Germany, September 2003, pp.
189-208.

[29] Sereni, D; de Moore, O.: Static Analysis of Aspects, In: [1],
pp. 30-39.

[30] Stein, D.; Hanenberg, S.; Unland, R.: A UML-based aspect-

oriented design notation for Aspect J, In: [19], pp. 106 - 112.

[31] Skotiniotis, T., Lieberherr, K., Lorenz, D. H.: Aspect
Instances and their Interactions, Workshop on Software-

engineering Properties of Languages for Aspect
Technologies at AOSD'03, http://www.daimi.au, dk/

~eemst/splat03/, 2003

[32] Veit, M.; Herrmann, S.: Model-View-Controller and Object
Teams: a Perfect Match of Paradigms, In: [1], pp. 140-149.

[33] Wand, M.; Kiczales, G.; Dutchyn, C.: A Semantics for
Advice and Dynamic Join Points in Aspect-Oriented
Programming. to appear in ACM Transactions on
Programming Languages and System (TOPLAS), 2003.

55

