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Abstract. In this paper we investigate the problem of morphing (i.e., continuously de-
forming) one simple polygon into another. We assume that our two initial polygons have the
same number of sidesn, and that corresponding sides are parallel. We show that a morph
is always possible through an interpolating simple polygon whosen sides vary but stay
parallel to those of the two original ones. If we consider a uniform scaling or translation of
part of the polygon as an atomic morphing step, then we show thatO(n logn) such steps are
sufficient for the morph. Furthermore, the sequence of steps can be computed inO(n logn)
time.

1. Introduction

In computer graphics a recent area of interest has beenmorphing, i.e., continuously
transforming one shape into another. Morphing algorithms have numerous uses in shape
interpolation, animation, video compression, as well as obvious entertainment value.
Some of the relevant graphics papers are [6], [8], and [7]. In general there are numerous
ways to interpolate between two shapes and little has been said about criteria for com-
paring the quality of different morphs and notions of optimality. A common problem
with many morphing algorithms is that although locally the geometry of the interpo-
lated shape remains faithful to the original shapes, global properties such as symmetry,
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Fig. 1. Two parallel polygons.

simplicity (i.e., freedom from self-intersection), etc., can be easily violated. In fact, the
very existence of morphs that can maintain high-level global properties of the interpo-
lated shapes is often far from obvious.

In this paper we address a two-dimensional morphing problem posed by John F.
Hughes. We are given two simple polygonsP andQ, which are assumed to be oriented
counterclockwise. The polygonsP and Q are parallel, where this is taken to mean
that P and Q have the same number of sides and their sides can be put in one to one
correspondence in cyclic order so that corresponding sides are parallel and oriented the
same way. This is equivalent to saying that the two polygons have the same sequence
of angles. The morphing problem is to interpolate betweenP andQ via a continuously
changing polygonR(t), wheret denotes time. We setR(0) = P and R(1) = Q. We
require thatR(t) remains parallel toP andQ at all times, and that it also remains simple.
See Fig. 1.

We provide a discrete solution to Hughes’s problem. We take as our basic operation
the uniform scaling and/or translation of a contiguous part of a polygon parallel to itself.
We call such a step aparallel moveof the corresponding polygonal chain. The affected
edges in a parallel move expand or contract so as to keep the two endpoints of the chain
on the lines supporting the two adjacent edges to the chain. Also, no parallel move is
allowed that would cause any moving edge or vertex to pass over another vertex or edge
of the polygon. It is clear that any number of parallel moves keep a simple polygon
parallel to itself and simple. Our main result is that ifn denotes the number of sides of
P andQ, thenO(n logn) parallel moves always suffice to morphP to Q. We present
an algorithm of the same complexity that computes such a sequence of moves.

The problem of constructing a simple polygon given a sequence of angles has a
substantial history in computational geometry. Culberson and Rawlins [1] first raised this
question and gave an algorithm that constructs such a polygon in timeO(nD), where the
assumption is that all angles are rational multiples ofπ by a fraction whose denominator
is bounded byD. Vijayan and Wigderson improved this result by constructing such a
polygon in linear time with no restriction on the angles being rational (reported in [11]).
The result of the present paper paper shows that all simple polygons realizing the same
sequence of angles are homotopic to each other within this class of polygons. This in
itself is an interesting result which, according to Hughes, had been in the folklore but
never formally proven. Some of the trickiness involved can be seen in the two polygons
of Fig. 2. These are oppositely spiraling polygons, but they are still parallel and therefore
morphable.

The main idea of this paper is to use parallel moves to transform each polygon to a
reduced form in which the side lengths are of widely different scales. Once both polygons
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Fig. 2. These oppositely spiraling polygons are still morphable.

are in reduced form, we can use a sequence of elementary local transformations to morph
one reduced form to the other. In a reduced form, small-scale structures do not interfere
with larger-scale parallel moves—when a large-scale edge translates, any smaller-scale
structures adjacent to its endpoints translate along as if they were part of the endpoints.
We establish a correspondence between these transformations in reduced polygons and
(classical) rotations in binary trees. The catch, however, is that our trees have weights on
the leaves and induced weights on the internal nodes. These weights correspond roughly
to the polygon angles. Our mapping from polygons to trees is such that all weights of
leaves or internal nodes must be in the range(−1,+1). Although the problem of using
single rotations to transform one binary tree to another is well studied and is known to be
solvable in a linear number of rotations, these methods are not applicable to our situation,
as not all rotations maintain the weight condition on the trees. The combinatorial essence
of our morphing algorithm becomes then a theorem about rotating one weighted binary
tree into another while satisfying the weight conditions. This in itself is an interesting
combinatorial problem.

In our setting, the leaves of a binary tree have arbitrary real weights in the open
interval (−1,+1). The weight of an internal node is the sum of the leaf weights in its
subtree. An internal node isvalid if its weight is in the interval(−1,+1). A tree is valid
if all its nodes are valid. A rotation is valid if it transforms one valid tree into another.

Given two validn-leaf trees with thesameweight sequence at the leaves, but different
internal structure, we show how to transform one tree into the other using only valid
rotations. Our algorithm requires onlyO(n logn) rotations; we can also compute these
rotations in the same time bound.

We note that for rectilinear polygons the morphing problem is easier, and a solution
is already known [10]. We also remark that our transformation to a reduced form is
unattractive from a practical point of view, as it may change wildly the scale of different
features of the original polygons. We discuss at the end of the paper some concrete and
interesting algorithmic issues that arise in keeping small the overall distortion of the
original polygons during the morph process.

2. Reduced Forms of Polygons

Our morphing algorithm works by transforming each of the two polygonsP andQ into
a reduced form. We first transformP to its reduced form, then morph the reduced form
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Fig. 3. The two kinds of parallel moves.

of P to that ofQ, and then undo the transformations that reducedQ. We will be able to
map the morphing of the reduced forms to the purely combinatorial tree rotating problem
mentioned above.

A reduced formof polygonP is a polygon parallel toP with a particular hierarchical
structure. A reduced form ofP can be obtained fromP by O(n) elementary parallel
moves. Reduced forms are not unique, but instead depend on the order in which the
parallel moves are performed. In what follows, when we refer to “the reduced form,” we
mean the reduced form produced by a particular reduction process.

We allow two types of parallel moves, defined as follows: (1) Suppose there exists a
circle that intersects exactly two edges of the polygon. Then we may shrink or expand
the structure inside the circle uniformly, as long as the intersections of the polygon with
the circle do not change. (2) Suppose there exist two disjoint circles, each intersecting
an edgeeof the polygon and one other edge. Then we may translateeand move the two
circles and their contents uniformly along withe, such that each circle’s intersections
with the polygon are stationary in the reference frame of the circle. In both cases we
enforce the condition that the polygon always intersects each circle in exactly two fixed
places. See Fig. 3.

A reduced form ofP is based on a process of eliminatingP’s edges one by one.
Consider an edgee of polygon P whose endpointsu andv are shared with adjacent
edgeseu andev. If we translatee parallel to itself while keeping the rest of the polygon
fixed, u andv move along the lines supportingeu andev, lengthening or shortening
those edges as well ase itself. Suppose that at least one ofe, eu, andev gets shorter ase
translates. Then one of the edges will eventually be reduced to zero length, ife does not
hit another part ofP first. See Fig. 4.

We show in Lemma 2.1 below that every polygon has at least one edge translation
that reduces an edge to zero length, while keeping the polygon simple. Hence we can
iteratively reduce the polygon to a triangle: at each ofn−3 steps, we eliminate one edge
of P by translation. For certain degenerate polygons, it is possible that the elimination
process will terminate with a parallelogram instead of a triangle. This case does not
pose any additional difficulties for our algorithm, and so we ignore this possibility from
here on.
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Fig. 4. Translating an edge.

The reduced form of a polygon models the edge elimination process in its structure.
To compute it, we run the edge elimination process as above, except that instead of
reducing edges to zero length, we reduce them to infinitesimal length. Suppose that
the edge elimination process eliminates an edgee, coalescing its verticesu andv to
become the common endpoint of adjacent edgeseu andev. In the reduced form of the
polygon, verticesu andv are kept separate, joined by an infinitesimal edgee. We imagine
drawing an infinitesimal disk that containsu andv, centered on the intersection of the
lines supportingeu andev. (If the supporting lines are parallel, we drop the centering
requirement.) In the remainder of the elimination process, the disk translates along with
the intersection of the supporting lines, acting like a finite-size vertex. Because the disk
and its contents are infinitesimal, we are sure that no translating edge touches the disk
unless it also touches the corresponding vertex in the original edge elimination process.
The infinitesimal edge is hidden inside the disk and does not participate directly in the
remainder of the elimination process. See Fig. 5.

When the edge elimination process terminates, the reduced form of the polygon
consists of a triangle with somemicrostructureat its vertices. Each vertex is contained
in a disk, and the three disks are disjoint. If we look inside a disk, we see twoinfinite
edges—the ones that cross the disk boundary—and a singlefiniteedge joining them. The
vertices where the finite edge joins the infinite edges have microstructure themselves:
they are contained inside smaller disks that are disjoint from each other and completely
inside the surrounding disk; each smaller disk contains recursively similar structures.

If we ignore the disks of the reduced form and look only at the edges, we see that the
reduced form of a polygonP is a special hierarchical morph ofP: the reduced form is
parallel toP, and it is obtained fromP by parallel moves that preserve simplicity.

The following lemma shows that at least one edge reduction is always possible.

Fig. 5. A reduced form.
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Fig. 6. Parallel translation for a good edgee. Thex indicates the side that is reduced to zero length.

Lemma 2.1. Let P be a simple polygon of n sides. Then there always exists a side e of
P so that a parallel move of e toward the interior of P will reduce to zero length either
e itself or one of its adjoining two sides.

Proof. We call an edgee of P goodif its parallel move eliminates an edge, andbad
otherwise. In Figs. 6–10 the translating edgee will always be drawn vertical and the
interior of P will be to its right. Thus, ife is a good edge, its parallel move terminates
in one of two cases, as depicted in Fig. 6.

If edgee is bad, its parallel move will be obstructed by a nonneighboring vertexv or
sides of P. These cases are depicted in Fig. 7. In either case, letv denote the first point
of contact between the translating edgee and the rest of the boundary ofP. Note that,
in both cases, the initial position ofe and the pointv define a triangle1e into which the
boundary of the polygonP does not enter.

We want to argue thatP always has a good edge. We will show this by associating
with a bad edgee a positive real numberξ(e), which we shall term thecostof e. We
defineξ(e) = 0 for a good edge. We will show that ife is a bad edge, then there is
another edgef in P with ξ(e) > ξ( f ) ≥ 0. This will imply that if e is the (an) edge of
minimum cost inP, thenξ(e) = 0 andemust be good—for otherwise there would have
to be another edge of strictly lower cost.

For a bad edgeewe define its costξ(e) as follows: letd be the line segment of shortest
length between the stopping pointv ande. It is clear thatd is contained in1e and thatd
dividesP into two subpolygons,PL (the one in our figures lying belowd, and in general

Fig. 7. The translation of a bad edgee is stopped atv.
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Fig. 8. The definition of the costξ(e) of an edgee.

the one lying to the left ofd viewed as oriented fromv to e) andPU . We defineξ(e) > 0
to be the length of the perimeter ofPL , includingd itself. See Fig. 8.

To prove our claim we consider the successor edgef to e as we proceed aroundP
(andPL ) counterclockwise. Letg be the successor edge tof . We distinguish three cases,
according to the angles betweene, f , andg:

Case A. Supposee and f make a reflex angle, as in Fig. 9. Now we translatef parallel
to itself toward the interior ofP. Either f will prove to be good, or it will get stopped at
another pointw, which must be a point ofPL , as the whole area swept out by the parallel
move of f is in PL . The shortest segmentd′ joiningw to f partitionsPL and generates
another subpolygonP′L , which clearly has a strictly smaller perimeter thanPL . Thus the
edge f has the property thatξ(e) > ξ( f ) ≥ 0.

Case B1. Supposee and f make a convex angle, but the angle fromf to g is reflex.
Then we translateg toward the interior ofP. Again, eitherg will prove to be good, or it
will hit an obstructing pointw which must be inPL , because again the entire area swept
out by the parallel translation is contained inPL—and the argument continues exactly
as above to show thatξ(e) > ξ(g) ≥ 0. See Fig. 10.

Case B2. If both the angles frometo f and from f to g are convex, we choose to translate
f toward the interior ofP. Let u be the upper endpoint ofe. The crucial observation is
that as f translates, it will either prove to be good, or it will get stopped by a point of
PL , before it has a chance to enter PU . See Fig. 10.

Fig. 9. When thee to f angle is reflex.
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Fig. 10. When thee to f angle is convex.

Note that in cases A and B1, it was clearly impossible for the translating edge to enter
PU . In the current case, because the interior of1e is free of any portions of the polygon
boundary, verticesu andv will stop the translating edgef before it can hit any vertex or
edge ofPU . If f reachesu, then it is good; if it is stopped byv, then we are in the usual
case where the parallel move is stopped by a part of the boundary ofPL . In all cases we
can conclude thatξ(e) > ξ( f ) ≥ 0.

The preceding reducibility lemma can be extended to an algorithm that computes a
reduced form of a polygon inO(n log2 n) time.

Lemma 2.2. Let P be a simple polygon with n sides. A reduced form of P can be
computed in O(n log2 n) time. The reduction uses at most n− 3 edge translations.

Proof. The algorithm uses a query data structure that maintains the current polygon and
supports queries of the form “Does the translation of a query edgee toward the polygon
interior eliminate some edge?” When agoodedge is found (one whose translation does
eliminate an edge), the translation is performed and the query data structure is updated.
Each query or update takesO(log2 n) time. There aren − 3 edge translations, and we
show that there areO(n) queries, so the total time of the algorithm isO(n log2 n).

As the algorithm runs, it maintains a set of contiguous edgesB = {i, i + 1, . . . , j −
1, j } of the current polygon that are known to be bad (i.e., their inward translation hits
the polygon boundary before any edge is eliminated). The algorithm executes a single
basic stepO(n) times. Each step tests edgej +1 (the next edge afterB) for reducibility.
If edge j + 1 is bad, the algorithm setsB = B ∪ { j + 1} and goes on to the next step.
If edge j + 1 is good, the algorithm translates it to eliminate an edge (eitherj , j + 1,
or j + 2). The algorithm resetsB = B\{ j − 1, . . . , j + 3}, removing all edges that are
modified or whose neighbors are modified by the translation of edgej + 1, and goes on
to the next step. (Note that with a wraparound of polygon indices,i andi + 1 may be
removed fromB, as well asj − 1 and j .) At most four edges are removed fromB, and
the remaining edges are all bad: for eachk ∈ B, edgesk−1,k, andk+1 are unmodified,
and because the translation of edgej + 1 shrinks the interior ofP, edgek’s translation
is still stopped by some point ofP not on edgesk− 1, k, or k+ 1.

Because Lemma 2.1 guarantees the existence of a good edge, this algorithm always
succeeds in reducingP to a triangle. The final size ofB is at least〈number of bad edges
found〉 − 4〈number of good edges found〉; the final size must be zero, so the number of
bad edges found is at most 4n. Hence the algorithm performs at most 5n queries.
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Queries are implemented using the dynamic geodesic triangulation of Goodrich and
Tamassia [3]. A geodesic triangulation is a partition of the polygon interior intoO(n)
“geodesic triangles” whose vertices are also polygon vertices. A geodesic triangle is a
simple polygon with exactly three convex vertices and three reflex chains joining them.
For any polygon edgee, let Ae be the trapezoidal region thate sweeps over when it
translates until an edge is eliminated orecontacts a nonneighboring part of the polygon
boundary. Because any line segment insideP intersectsO(logn) geodesic triangles [3],
Ae also intersectsO(logn) geodesic triangles.

Using the data structure of Goodrich and Tamassia, we can detect inO(log2 n) time
whether an edgee is good or bad, spendingO(logn) time per geodesic triangle inter-
sected. For each geodesic triangleτ adjacent toe, we find the first contact between the
translating edgee and the boundary ofτ in O(logn) time by binary search. Similarly,
we find O(1) adjacent geodesic triangles into whiche can translate without hitting any
vertex or polygon edge on the boundary ofτ , and explore them recursively. Trapezoid
Ae is determined either by the endpoints ofe’s adjacent edges (whene is good) or by
one of theO(logn) geodesic triangle contact points (whene is bad).

The dynamic data structure of Goodrich and Tamassia can maintain geodesic tri-
angulations in a set of simple polygons as the polygons are modified by slicing along
straight cuts and gluing adjacent polygons along a common edge. If the total number
of polygon vertices isn, each slice or gluing takesO(log2 n) time. These operations
suffice to maintain a geodesic triangulation asP is reduced: at each reduction step we
slice P along the cuts supporting the edges ofAe, then glue together the fragments that
constitute the reduced polygonP\Ae.

The following lemma, due to Welzl, gives an alternative proof thatO(n) edge transla-
tions suffice to reduce a polygon to a triangle. Although the number of edge translations
required is not optimal, as in Lemma 2.1, the reduction algorithm can be implemented
to run in O(n logn) time.

Lemma 2.3[12]. Given a simple polygon P with n vertices, we can reduce it to a
triangle by a sequence of O(n) edge translations, each of which preserves simplicity
and n− 3 of which shorten some edge to zero length.

Proof. The reduction algorithm repeatedly translates edges toward the interior of the
polygon. It maintains a set offrozenedges that have already been translated and may
not be translated again. It works in a subpolygon ofP, and maintains the invariant that
at most two (adjacent) edges of the current subpolygon are frozen.

The generic step of the algorithm picks an arbitrary unfrozen edgee of the current
polygon (initially P) and translates it toward the interior ofP. As the edge translates
parallel to itself, its endpoints move along the lines supporting the two edges adjacent
to e, and those two edges shorten or lengthen. The translation stops when one of two
things happens: (1)e or one of its two neighboring edges is shortened to zero length,
or (2) e collides with some vertexv of P, or a translating endpointv of e collides with
some other edge ofP. See Fig. 11(a).

In case (1) we have eliminated an edge. In case (2) the collision between an edge
and the vertexv has partitioned the polygon in two, and we recursively apply the same
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Fig. 11. Eliminating edges to find a reduced form.

procedure on one of the two pieces. Specifically, we translatee away from the polygon
interior slightly, so the polygon is not completely partitioned by the collision atv (the
amount to back away is upper-bounded by a constant that can be computed from the
geometry of the polygon), and freeze all three edges participating in the collision: the two
edges incident tov, and the edgev hit. Because at most two adjacent edges of the current
polygon were frozen, the same is true of at least one of the two subpolygons created
by the near-partition atv. We recurse on the subpolygon with fewer frozen edges. Each
of the subpolygons is at least a triangle, so each also has fewer edges than the current
polygon.

The recursion bottoms out, in the worst case, when the current polygon is a triangle
with two frozen edges (Fig. 11(b)). Translating the third edge inward eliminates one of
the frozen edges. When a frozen edge is eliminated, it contracts into the vertexv that
caused its freezing. We unfreeze the other two edges that were frozen because ofv. This
restores the invariant: the collision atv originally created two subpolygonsP1 and P2,
each with at least three edges, with one edge belonging to bothP1 and P2. The edge
elimination reduces the total number of edges inP1 andP2 by one or two, to a minimum
of three. The new subpolygon is the union ofP1 and P2; it has at least three edges, at
most two of which are frozen.

The size of the current subpolygon decreases at each recursive call, and the algorithm
eliminates an edge when the current subpolygon is a triangle. Thus the algorithm suc-
cessfully eliminates all the edges ofP (or reducesP to a triangle, if we stop just before
the last elimination). Edges are unfrozen only when we move up one recursive level.
Each unfreezing can be charged to the edge elimination that occurred just before it. The
total number of edge translations is bounded byn plus the number of unfreezings (at
most 2n) and hence isO(n).

Lemma 2.4. Let P be a simple polygon with n sides. In O(n logn) time we can compute
a sequence of O(n) simplicity-preserving edge translations that reduce P to a triangle.

Proof. The procedure of Lemma 2.3 does not say how to determine whether an edge
translation eliminates an edge, so no running time can be associated with it. To establish
a running time for the procedure, we specify the query data structure and the queries to
be performed on it.

We maintain the additional invariant that, in the generic algorithm step, at most three
edges of the current polygon are not in their original positions; the other edges have
exactly the same position and length as in the original polygon. This means that we can
check whether an edge translation hits the polygon boundary before eliminating an edge
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by performing two queries, one on the original polygonP and one on a collection of
at most three modified edges. The latter query can be done by brute force; the former
query requires more sophistication.

To check whether an edgee is good, we compute the translation trapezoidAe in-
troduced in the proof of Lemma 2.2. That lemma uses a dynamic data structure with
O(log2 n) query time. In the present case, we query only the original polygonP, so we
can use a static data structure with better performance.

We use a Steiner triangulation ofP with the property that any trapezoid contained in
the interior ofP intersectsO(logn) triangles [4]. This triangulation can be computed
in linear time. By looking atO(logn) triangles in the neighborhood of an edgee, we
can determine whether the translation ofe eliminates an edge, and, if not, find the first
collision of the edge with the boundary. The search is similar to the one performed on
geodesic triangles in Lemma 2.2, but simpler, because no binary search is required.

To maintain the invariant that at most three edges of the algorithm’s current polygon
are not in their original positions, whenever possible we translate edges that have already
been modified, preferably ones whose neighbors have been modified. We argue that there
are always at most three contiguous modified edges, and the middle edge is not frozen. To
begin, we pick one edge and translate it until it is eliminated or frozen (several neighbors
may be eliminated before the edge is eliminated itself). If the edge is eliminated, we
pick one of the modified neighbors and continue. During this process, only the current
translating edge and its neighbors are not as they were in the original polygon. If the
translating edge collides with the polygon boundary and becomes frozen, we pick the
neighbor of the modified, frozen edge in the new current polygon and translate it. In this
case there are three modified edges: the frozen edge, the translating edge, and its unfrozen
neighbor. A short case analysis shows that whenever a subpolygon is eliminated and some
edges are unfrozen, the new current polygon has at most three contiguous modified edges,
with at least the middle one not frozen.

Using the Steiner triangulation for translation queries on the original polygon, and
brute force on the modified edges, we can perform each translation query inO(logn)
time. The procedure of Lemma 2.3 performsO(n) queries, and all the other algorithmic
bookkeeping adds onlyO(n)work. Hence the complete algorithm takes onlyO(n logn)
time.

The key feature of a reduced form is the hierarchy of edge eliminations, as the
following lemma shows.

Lemma 2.5. If two reduced forms are parallel polygons and have the same hierar-
chical structure, then one can be morphed to the other using a linear number of edge
translations.

Proof. Let P and Q be the two reduced forms. The algorithm follows the hierarchy
of the reduced form. We repeatedly translate edges ofP to be collinear with the corre-
sponding edges ofQ. When we are done, the two polygons are identical. The first step
translates the top-level triangle edges ofP to be collinear with those ofQ, moving the
microstructure disks along with the intersections of the edges. Within each microstruc-
ture disk, we translate the finite edge ofP to be collinear with the corresponding edge
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of Q. (The subdisks translate along with the intersection points of the finite and infinite
edges.) We then recursively make the two polygons identical inside each subdisk.

3. The Tree Representation of a Reduced Form

The hierarchical nature of a reduced form can be represented by a tree structure. The
infinitesimal disks of the reduced form correspond to nodes in a binary tree; a disk and
the two subdisks it contains correspond to a node and its children. Each of the three
top-level disks of the reduced form corresponds to a tree. Logically these three trees
should be joined in a ring; however, to maintain the convenience of a consistent binary
tree representation, we omit the ring edges and work with the trees separately. Each tree
represents the reduced form of a simple bi-infinite chain (one whose initial and final
edges are rays).

In this section through to Section 8 we work only with chains and their corresponding
trees; we show how to morph two parallel chains to each other. In Section 9 we address
the original problem of morphing polygons.

Each node of a tree has an angular weight associated with it, namely, the turn angle at
the corresponding disk, i.e., the difference between the direction angles of the incoming
and outgoing edges of the disk (we assume the polygon is oriented counterclockwise).
For convenience we normalize the weight of each vertex ofP by dividing it byπ , so the
weight is in the range(−1,+1); the sum of the weights over all the vertices is therefore
2. The weight at each disk of the reduced form is the sum of the weights of all the polygon
vertices inside it.

Because the edges incident to each vertex ofP and each disk of the reduced form
make an angle strictly between−π andπ , the weight of each node in the binary tree is in
the open range(−1,+1). We say that a node whose weight is in this range isvalid. If all
the weights in a tree are valid, we say the whole tree is valid. The binary tree associated
with the reduced form of a bi-infinite chain is always valid. The following lemma shows
that the converse is also true.

Lemma 3.1. Any valid tree corresponds to a reduced form of some bi-infinite chain.

Proof. The proof is by recursive expansion. Letr be the root of the tree. The weight of
r corresponds to the total turn of the chain. We draw the infinite chain edges and draw a
circleC centered on the intersection of their supporting lines. Letα andβ be the weights
of the children ofr . Thus(α + β)π is the angle between the two infinite edges. Within
the circle we draw an edge that makes angles ofαπ andβπ with the two infinite edges,
and two smaller circles insideC centered on the endpoints of the new edge. Applying this
process recursively with each subtree and its corresponding circle produces a reduced
form for the tree. (At each step the drawing inside the innermost circle is provisional, to
be replaced when the angle inside the circle is expanded.)

There is one complication that arises when a node has weight zero. In this case the two
infinite edges are collinear, and the process just described does not give us the flexibility
to separate the disks corresponding to the two child nodes. To overcome this difficulty,
we build in flexibility at the parent node: whenever one child of a node has weight zero,
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Fig. 12. Introducing a jog inside a zero-weight disk.

we make the two subdisks contained inC small enough that we can introduce a jog
inside the zero-weight disk and compensate for it by moving the finite edge insideC.
See Fig. 12.

In the remainder of this section we reduce the problem of morphing between two
parallel bi-infinite chains to a problem of transforming one valid tree into another by
rotations. Because we want the tree transformation to correspond to polygon morphing,
we insist that the tree be valid at all times. In particular, the transformation may use only
valid rotations, ones whose initial and final states are both valid. For example, in Fig. 13,
if A, B, andC represent node weights, it must be the case that each ofA, B, C, A+ B,
B+ C, andA+ B+ C lies in the range(−1,1).

Let T1 andT2 be two valid trees with the same sequence of weights at the leaves.
Sections 4–8 show how to transformT1 to T2 using only valid rotations. We now show
how to interpret a tree rotation as a morphing operation that transforms one reduced form
into another. LetA, B, andC be the tree nodes involved in the rotation, grouped((A B)C)
before and(A (B C)) after the rotation. The tree structure((A B)C) corresponds to a
disk of the reduced form in which the edges beforeA and afterC are infinite, the edge
BC is finite, and the edgeAB is infinitesimal, contained in a subdisk. Of course,A, B,
andC are vertices only at this level of the reduced form; they may have microstructure of
their own. See Fig. 13. We want to morphAB, BC, and the two infinite edges such that
AB becomes finite andBC infinitesimal.

Lemma 3.2. Let A, B, and C be the turn angles of a four-edge bi-infinite chain, and
suppose the angles A+ B, B + C, and A+ B + C are all valid. Then either of the

Fig. 13. A tree rotation and the corresponding morph of a reduced form.
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Fig. 14. Each finite edge may be eliminated by translating an infinite edge.

edgesAB andBC can be reduced to zero length by translating the infinite edge adjacent
to it.

Proof. Let⇀eA be the infinite edge incident toA, and define⇀eB to be the ray parallel to⇀eA

whose origin isB. Let⇀eC be the infinite edge incident toC. EdgeAB can be shortened to
zero length by translating⇀eA if and only if BC and⇀eC do not enter the infinite trapezoid
bounded by⇀eA, AB, and⇀eB. (See Fig. 14.) If edgeBC enters the trapezoid, then angle
A + B is invalid; if the infinite edge⇀eC enters the trapezoid, then angleA + B + C
is invalid. By assumption, both angles are valid, soAB can be shortened. A similar
argument forBC finishes the proof.

The following lemma shows that a reduced form allows us enough flexibility to apply
Lemma 3.2.

Lemma 3.3. In a reduced form, the disk sizes can be chosen so that the infinite edges
incident to any disk are free to translate a distance at least equal to the diameter of the
disk.

Proof. The proof is top-down. The base case is easily established: the top-level infinite
edges of a chain are unconstrained. (In the top-level triangle of a polygonal reduced
form, keeping the disk radius at most one-fourth of the minimum edge length of the
triangle establishes the base case.) Within each diskD of a reduced form, there are two
infinite edgesf andg, joined by a finite edgee. The endpoints ofeare contained in two
subdisks concealing microstructure. In the inductive step we assume thatf andg are
able to translate at least the diameter ofD, so they can certainly translate at leastδ =
the maximum diameter of a subdisk. Edgee appears infinite from the vantage point of
each of its disks. When we translatee relative to the disk defined by(e, f ), the other
disk translates uniformly along with the intersection of the lines supportinge and g.
Therefore, we chooseδ small enough that translatingeby δ relative to one subdisk does
not move the other subdisk out ofD.

To morph((A B)C) to (A (B C)), we erase the disk aroundAB, then translate the
infinite edges to lengthenAB and shortenBC, leaving vertexB (and its microstructure)
fixed. OnceAB is of finite length andBC is infinitesimally short, we draw a new disk
aroundBC, leaving A at the top level. During these translations and regroupings, we
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may scale the microstructure atA, B, andC uniformly if necessary. (Unless the infinite
edges are parallel, we can actually do the rotation without translating the infinite edges
at all. If they are parallel and we do have to move them, we make sure the movement is
small enough that the condition of Lemma 3.3 is maintained at the other ends of those
edges.)

Because a valid rotation on trees can be mapped directly to a constant-complexity
morph of one reduced form to another, any algorithm for transforming trees via valid
rotations corresponds directly to an algorithm for morphing the reduced forms of two
parallel bi-infinite chains.

Theorem 3.4. Let P and Q be two parallel bi-infinite chains in reduced form, and let
TP and TQ be the two weighted binary trees representing the reduced forms. If there exists
a sequence of k valid rotations that transforms TP into TQ, then there is a corresponding
sequence of O(k) parallel moves that maintains simplicity and continuously deforms P
until it has the same reduced form as Q.

4. Tree Reconciliation via Rotations—Preliminaries

In this section through to Section 8 we address the purely combinatorial problem of
transforming one binary tree into another via a sequence of (single) rotations. If there are
no additional constraints, it is well known that2(n) rotations are necessary and sufficient
to rotate one tree into another in the worst case [2], [9] (the best-known upper bound
is 2n− 6). However, in our setting there is additional structure to cope with. Our trees
haveweightsat their leaves. The internal nodes also have induced weights, namely, the
sum of the leaf weights in all leaves belonging to the subtree rooted at that internal node.
These weights restrict the possible trees we can have, as well as the allowed rotations
between them.

As mentioned earlier, a weighted tree is calledvalid if the weights of all its nodes
(leaves, as well as internal nodes) are reals in the range(−1,+1) (open interval). A
rotation is called valid if it transforms a valid tree into another valid tree. It is clear that
rotations preserve the sequence of leaf weights, but change the grouping structure on
these weights imposed by the tree.

Let T1 andT2 be two validn-leaf binary trees whose leaves have the same weight
sequencew1, . . . , wn. The structures ofT1 andT2 above the leaves are in general not
the same. In particular, the two trees may have vastly different heights, ranging from
2(logn) to2(n). See Fig. 15.

The result mentioned above asserts that one can always go from one tree to the
other via a sequence of rotations. Arbitrary rotations, however, can destroy validity by
generating internal nodes whose weights are outside the range(−1,+1). So the natural
question that arises is whether it is always possible to go fromT1 to T2 via a sequence
of valid rotations and, if so, what is the maximum required length of such a sequence.

Theorem 7.5 shows that the answer to this question is affirmative, and gives an
O(n logn) upper bound on the number of rotations in the sequence. The proof of the
theorem is the subject of the next few sections.
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Fig. 15. Two valid trees with the same weight sequence at their leaves.

We refer to treeT1 as thesource treeandT2 as thetarget tree. The following high-level
algorithm produces a sequence of valid rotations that transformsT1 into T2:

ALGORITHM BASICMORPH

while |T1| > 1 do

1. Letw′ andy′ be a pair of sibling leaves in the target treeT2, and letw
andy be the corresponding leaves in the source treeT1.

2. Perform valid rotations onT1 to makew andy into siblings inT1.
3. Collapsew andy into their parent inT1, and assign the parent node (a

new leaf) the sum of the weights ofw andy. Similarly collapsew′ and
y′ into their parent inT2. This produces two smaller valid trees with
the same weight sequence at the leaves.

endwhile

4.1. Spines and Sibling Operations

The core of Algorithm BasicMorph is Step 2. We call one execution of this step asibling
operation, because it makes two consecutive leaves into siblings. The two consecutive
leaves ofT1 that are made into siblings are joined by a path whose structure, shown in
Fig. 16, is best described in terms ofspines.

A spine is a maximal sequence of nodes and edges that form a path in the tree all of
whose links go in the same direction (all left or all right). Thelengthof a spine is the
number of edges on it. Theinternal nodesof a spine are all except its top and bottom
nodes. For example, in Fig. 16, the path [v..w] is a right spine, and [z..y] is a left spine.
All the nodes of these spines exceptv, w, y, andz are internal.

The top of a right spine is either the root of the tree or the left child of its parent. A
left spine is symmetric. Each leaf is the bottom of exactly one spine, either left or right.
The total length of all the spines in ann-leaf tree is 2n− 2, since every edge belongs to
exactly one spine. We denote bylca(a,b) the lowest common ancestor of two leavesa
andb. In Fig. 16,x = lca(w, y).

We base our procedure for makingw and y into siblings on a sequence ofspine-
contractionsteps, as in the lemma and corollary below.
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Fig. 16. Two adjacent nonsibling leaves.

Lemma 4.1. Among any four consecutive internal nodes along a spine in a valid tree,
at least one can be rotated out of the spine by a valid single rotation.

Proof. Without loss of generality assume that the spine is a left spine, like [z..y] in
Fig. 16. LetA, B, C, andD be the right children of four consecutive internal nodes on
the spine, and letX be A’s sibling, as in Fig. 17(left). By abuse of notation letA, B, C,
D, andX also denote the weights of the nodes. If any consecutive pair of right children,
say(A, B), has a valid sum (−1 < A+ B < 1), then a valid rotation can be applied at
the parent ofB. This makesA andB into siblings whose grandparent lies on the spine,
and removes one edge from the spine. See Fig. 17(right).

If no consecutive pair has a valid sum, then|A+ B| ≥ 1 and|C+D| ≥ 1. All four of
A, B, C, andD must have the same sign, so|A+ B+C+D| = |A+ B|+ |C+D| ≥ 2.
The weight at the parent ofD isw = X + A+ B+C + D. Because|X| < 1, we have
|w| > 1, so the initial tree was invalid, a contradiction.

If we partition a spine into consecutive groups of four nodes each and apply the valid
rotation guaranteed by the previous lemma to each group independently, we can reduce
the length of our spine by one-quarter. By iterating this process until the previous lemma
is no longer applicable, we obtain the following spine-contraction corollary. We note
that when no rotation can be applied along a spine, all the weights of the spine nodes
must be of the same sign.

Corollary 4.2. Given a spine of length k, we can reduce it to length at most four by
k − 4 valid rotations at internal nodes. Furthermore, when this procedure terminates,
the original children of the spine will have been regrouped into trees attached to the
contracted spine, each of height at most O(logk).

Fig. 17. A rotation may be performed on any spine with more than four nodes.
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If we apply a spine contraction to the spines [v..w] and [z..y], we can make the least
common ancestorx of leavesw andy be at most five levels above the two leaves. We
can then finish as follows.

Lemma 4.3. If the weights of two adjacent leavesw and y have a valid sum, thenw
and y can be made siblings by at most eight valid single rotations once the spines[v..w]
and[z..y] have been contracted.

Proof. After the spine-contraction process, we can assume that no rotation involving
only internal nodes of spine [v..w] or spine [z..y] is valid. Letl1, . . . , lk denote the weights
of the left children of spine [v..w], in left-to-right order, and similarly letr1, . . . , r j denote
the weights of the right children of [z..y]. Observe that thel ’s all have the same sign; the
same is true for ther ’s. By abuse of notation, letw andy also denote the weights of the
corresponding nodes. Denote the weight atx by x = l1+· · ·+ lk+w+ y+r1+· · ·+r j .
We know|x| < 1.

If l1 has the same sign asx, say positive, thenx > x − l1 > x − 1 ≥ −1, so
x− l1 is valid; if x andl1 are negative, a symmetric argument shows thatx− l1 is valid.
Similarly, if sign(r j ) = sign(x), thenx − r j is valid. If sign(l1) = sign(r j ) 6= sign(x),
then sign(x) = sign(w + y), say positive. Thenx < x − l1 < w + y < 1, andx − l1
is valid (the middle inequality holds because thel ’s andr ’s all have the same sign, and
x− (l1+· · ·+ lk+r1+· · ·+r j ) = w+ y); symmetric inequalities apply ifx is negative.
The same methods show thatx − r j is also valid.

Without loss of generality assumex − l1 is valid. Perform a rotation at edge(v, x),
moving the right child ofv to be the left sibling ofz. The new parent ofz and the moved
node has weightx − l1, which is valid. All the other modified nodes have weights that
were present before the rotation, so the rotation is valid. It shortens by one the length
of the path betweenw andy. After the rotation, we can still apply the argument above
to show that at least one of the edges incident to the lowest common ancestor ofw and
y can be rotated. Performing at most eight rotations, we shorten the path length to two,
makingw andy siblings.

The spine contracting rotations of Corollary 4.2 affect only internal nodes of the spine,
and not the nodes at the tops. However, the rotations of Lemma 4.3 involve the tops of
the spines.

The overall rotation cost of making leavesw andy siblings is proportional to the sum
of the original lengths of the two spines [v..w] and [z..y]. This is two less than the tree
distance ofw andy. We call the latter quantity simply thedistancein T1 betweenw andy.

Our discussion so far, coupled with our overall tree morphing strategy mentioned
earlier, provides a proof thatT1 can be rotated intoT2. In fact, we also get anO(n2)

upper bound on the number of rotations needed, as the distance between any two adjacent
leaves isO(n), and the number of sibling operations is at mostn− 1.

4.2. Spine Normalization

In order to improve theO(n2) tree morphing bound, we must control the distances
between adjacent leaves that are being made into siblings. The chief difficulty is that



Morphing Simple Polygons 19

rotations that reduce one spine length can increase other spine lengths—actually it is
very easy to check that any single rotation will decrease the distance between two pairs
of leaves by one, and it will increase the distance between two other pairs by one. We
can, however, argue that there is a sequence of spine contractions over a whole tree that
reduces the maximum spine length.

Lemma 4.4. Any valid tree on n leaves with maximum spine length k can be rotated
using O(n) rotations into another valid tree whose maximum spine length is O(logk).

Proof. Apply Corollary 4.2 on the left and right spines of the original tree, reducing
them to constant length. Each subtree that was originally a child of the left or right spine
is now at depthO(logk). Let T be such a subtree. Without loss of generality, assume
that the parent ofT is to its left. Apply Corollary 4.2 on the right spine ofT , reducing
it to length at most four. (This process does not modify any ancestors ofT .) Now the
length of the right spine that includesT ’s right spine (including ancestors) isO(logk).
Recursively apply this procedure to the original child trees ofT ’s right spine, until every
node in the tree has participated in one spine-reduction operation.

Spine-reduction does not affect the internal structure of the children of the spine; the
cost of spine-reduction is proportional to the length of the spine. Each spine-reduction
operation is applied to a spine that has not previously been operated upon. Thus the total
work is O(n). By construction, each spine in the final tree consists of at most four nodes
that result from the reduction of that spine, plusO(logk) ancestors that were rotation
nodes in a spine reduction higher up in the tree.

Corollary 4.5. Any valid tree on n leaves can be rotated using O(n log∗ n) valid rota-
tions into another valid tree whose maximum spine length is eight.

Proof. Recall that log∗ n = min(k | log(k) n ≤ 1), where log(k) n is thek-fold compo-
sition log(log · · · (n)). The function log∗ n grows very slowly: log∗ n = o(log(k) n) for
any constantk. By applying Lemma 4.4O(log∗ n) times, we reduce the maximum spine
length toO(1).

We apply Lemma 4.4 until the maximum spine length does not decrease. To prove
that the maximum spine length is at most eight, note that the number of valid rotations at
internal nodes that can be applied in parallel to a spine of lengthk is at leastb(k− 1)/4c.
The maximum lengthening of child spines is equal to the number of phases of parallel
rotations needed to reduce the spine to length four. We denote this quantity by a function
h(k), which satisfies the following recurrence:

h(4) = 0,

h(k) = h(k− b(k− 1)/4c)+ 1, for k > 4.

Simple calculation shows thath(k) ≤ k − 4 for all k ≥ 4, with strict inequality for
k > 8. If we apply Lemma 4.4 to a tree with maximum spine lengthk, the resulting
tree has maximum spine length at mosth(k) + 4. This is less thank if k > 8. If the
maximum spine length is originally more than eight, applying Lemma 4.4 shortens it;
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applying Lemma 4.4 repeatedly shortens it to at most eight. Becauseh(k) = O(logk),
the number of times that Lemma 4.4 must be applied isO(log∗ n).

We call the operation of transforming a tree into one whose maximum spine length
is eight anormalization.

In the next three sections we describe an algorithm that uses onlyO(n logn) ro-
tations to morph one tree into another. The number of rotations needed to perform a
sibling operation in Step 2 of BasicMorph is the sum of the spine lengths above the two
consecutive leaves. To achieve the rotation bound, we focus on the spines that participate
in sibling operations. We identify those spines a priori and maintain them at constant
length. The cost of a single sibling operation is therefore constant; however, we need
O(logn) rotations to restore the spine length bound after each sibling operation.

5. Node Inclinations and the Inclination Invariant

The pattern of sibling operations (though not the exact sequence) is completely deter-
mined by the target treeT2. Each sibling operation collapses a pair of sibling leaves of
T2 into their parent node, while keeping the rest of the target tree unchanged.

At some time during the run of the algorithm, each leaf of the target tree collapses into
its parent. Internal nodes of the target tree become leaves when their children collapse
into them, and then they collapse into their parents. For each node, the direction of the
edge to its parent is fixed. If a target tree node is a left child, then it will be paired with
a leaf to its right when it eventually collapses into its parent. We say that a leaf that is
a left child in the target tree isright-inclined, because it will merge with a leaf to its
right.

Although leaf inclinations are defined on the target tree, they are useful because of
what they tell us about the source tree. Ifa′ is a right-inclined leaf in the target tree, then
the corresponding leafa in the source treeis also right-inclined: it will merge with a
leaf to its right when it participates in a sibling operation.

5.1. Merge Centers

Consider the sequence formed by taking the leaf inclinations in left-to-right order. The
sequence is composed of alternating runs of right and left inclination. Each alternation
from right inclination to left inclination is associated with a pair of sibling leaves in the
target tree. Each such pair is a possible site for a sibling operation, and we call the gap
between the two such leaves amerge center. Because the leaf inclinations are the same
in the two trees, the merge centers are also the same.

The number of merge centers is nonincreasing as the algorithm runs: Each sibling
operation removes the two leaves adjacent to a merge center, replacing them by a single
leaf whose inclination is determined by the target tree. The new leaf may or may not
belong to a merge center. No other leaves change inclination. See Fig. 18.

The inclination of nodes in the target tree is determined by that tree’s structure, but
the inclination of nodes in the source tree is less obvious, since the structure of the source
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Fig. 18. The target tree: leaf inclinations, merge centers, and the results of performing sibling operations at
all the merge centers.

tree differs from that of the target tree. We define the inclination of a source tree node
to be the union of the inclinations of its leaf descendants. Thus every node has some
inclination, and some are inclined both left and right (such nodes areboth-inclined; nodes
inclined only one way aresingly inclined). The labels in Fig. 19 show the inclinations
of a, b, andlca(a,b).

5.2. The Invariant

If leavesa andb participate in a sibling operation, the cost of the operation depends on
the lengths of the right spine abovea and the left spine aboveb. Any left spineinvolving
a or right spineinvolving b has no effect on the cost of this sibling operation. For this
reason, we maintain the following invariant:

Inclination Invariant. If a node in the source tree is right inclined (left inclined), then
the portion of the right (left) spine above it to which it belongs (if any) has constant
length.

The Inclination Invariant is established initially by the normalization operation (Corol-
lary 4.5), which ensures that all spines have constant length (≤ 8).

Fig. 19. Leavesa andb in the source tree are ready for a sibling operation.
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Fig. 20. +/− / = indicate changes in spine lengths due to the rotation.

Lemma 5.1. If the Inclination Invariant holds, then the two leaves at any merge center
are joined by a constant length path in the source tree.

Proof. The path consists of two spines, which have constant length by the Inclination
Invariant, plus two edges linking the spines to the lowest common ancestor of the two
leaves.

Before describing how to restore the Inclination Invariant after a sibling operation,
we must understand the effect of rotations on spine lengths. The following lemma sum-
marizes those effects.

Lemma 5.2. Let subtrees A and B be two children of a spine, consecutive in left-to-
right order. If a rotation is applied, making A and B into sibling grandchildren of the
spine, then the left spine of A and the right spine of B are lengthened by one. No other
spine gets longer.

Proof. See Fig. 20.

6. Restoring the Invariant

In this section we describe how to restore the Inclination Invariant after it has been inval-
idated by rotations. Although this may in general require many rotations, by restricting
the invalidating rotations to subtrees containing only a few merge centers, we can ap-
ply some of the ideas from balanced tree algorithms to restore the invariant with only
O(logn) rotations.

We choose the constantc implied by the Inclination Invariant to be nine (required by
Lemma 6.2 below). We first consider restoring the invariant for a subtree in which all
nodes have the same inclination.

Lemma 6.1. Let T′ ⊆ T1 be a subtree of the source tree, and suppose that all the left
(right) spines in T′ have length at most c, for some constant c≥ 8, except for one spine
longer than c that is incident to the root of T′. Then, with O(log|T ′|) rotations, we can
shorten the long spine by one edge, while keeping all other left(right) spines of T′ no
longer than c. No spine in T1− T ′ becomes longer.

Proof. We prove the lemma for left spines; the other case is symmetric. Lemma 4.1
implies that there are at least two possible rotation sites on the spine that do not involve
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the top node of the spine. (Because the top node is not involved, neither of the possible
rotations lengthens the single spine that extends fromT ′ up into the rest of the tree.)
Each rotation takes two children of the spine and makes them into sibling grandchildren
of the spine (Lemma 5.2). The two rotations can be chosen to involve two disjoint pairs
of children. Let the two pairs be(A, B) and(C, D), each pair ordered left-to-right, and
denote byAB andC D the two possible subtrees, children of the spine, produced by the
two possible rotations.

We shorten the long spine ofT ′ by performing the rotation that involves the smaller
of the subtreesAB andC D. Without loss of generality suppose that|AB| ≤ |C D|,
and soAB is chosen. BecauseAB andC D are disjoint, it follows that|AB| ≤ 1

2|T ′|.
The rotation lengthens exactly one left spine: the left spine ofAB is one edge longer
than the left spine ofA before the rotation. The length of the left spine ofAB may
increase toc + 1, in which case we recursively apply the same algorithm to shorten
it. Because|AB| ≤ 1

2|T ′|, the number of rotations needed to reduce the maximum left
spine length toc obeys the recurrencet (m) ≤ t (m/2)+ 1, wherem is the subtree size.
This well-known recurrence solves tot (m) = O(logm), completing the proof.

We subdivide the leaf-sequence of the source tree into blocks of leaves with the
same inclination. The breakpoints between consecutive blocks are calledinclination
reversals. Each inclination reversal where the inclination changes from right to left is a
merge center. Thus the total number of inclination reversals in any subsequence of the
leaves containingk merge centers is at most 2k+ 1.

Lemma 6.1 is not directly applicable to the general case of sibling operations, be-
cause we cannot limit invariant violations to subtrees with only a single inclination.
(In such singly inclined subtrees, the Inclination Invariant requires a length bound on
spines of only one orientation, and Lemma 6.1 applies.) To remedy this problem, we
prove in the next section that we can always restrict the invariant violations to subtrees
containing only a constant number of inclination reversals. Therefore, the following
lemma lets us restore the invariant with onlyO(logn) rotations in the general case as
well.

Lemma 6.2. Let T′ ⊆ T1 be a subtree of the source tree in which the Inclination
Invariant holds(with constant c≥ 9), except for one left(right) spine of length greater
than c incident to the root of T′. Suppose that there are at most k inclination reversals
among the leaves in the left(right) subtree of T′. Then, using O(

√
k log|T ′|) valid

rotations, we can shorten the long spine by one edge, and ensure that the Inclination
Invariant holds for all other spines in T′. No spine in T1− T ′ becomes longer.

Proof. As in the proof of Lemma 6.1 above, the long spine has at least two disjoint
rotation sites not involving the top node of the spine. (Because the top node is not involved,
neither of the possible rotations lengthens the single spine that extends fromT ′ up into
the rest of the tree.) Let the two pairs of subtrees involved in these rotations be(A, B)
and(C, D), and denote byAB andC D the subtrees that result from the rotations. Let
kAB andkC D, respectively, denote the number of inclination reversals among the leaves
of the subtreesAB andC D.
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We shorten the long spine ofT ′ by performing the rotation that involves the subtree
with the smaller number of inclination reversals; suppose thatkAB ≤ kC D, and so the
first rotation is chosen. BecauseAB andC D are disjoint, it follows thatkAB ≤ k/2. The
rotation lengthens two spines: the left spine ofA and the right spine ofB are lengthened
by one. This increase in length may result in a violation of the Inclination Invariant. We
restore the invariant recursively on the left and right spines ofAB separately, choosing
rotations strictly below the root ofAB. (One of the two spines includes the edge from
the root ofAB to its parent. However, becausec ≥ 9, the spine length below the root of
AB is at least nine, and two independent rotations are always available below the root.)
Since the rotations are below the root ofAB, the two recursive invariant restorations are
independent. If eitherA or B is singly inclined, then we apply Lemma 6.1 to restore the
Inclination Invariant in that subtree.

The inclination reversals inAB are divided between the subtreesA andB, meaning
thatkA+ kB ≤ kAB. (Equality holds unless an inclination reversal falls betweenA and
B.) The number of rotations needed to restore the invariant is bounded from above by a
functiong(k,m) satisfying the following recurrence:

g(k,m) ≤ max{g(k1,m1)+ g(k2,m2)+ 1 | k1+ k2 ≤ bk/2c andm1+m2 ≤ m},
g(0,m) = ⌊

log2 m
⌋
,

wherek is the number of inclination reversals in a subtree, andm is the subtree size. To
remove the dependence on two variables, we upper bound the first inequality by

g(k,m) ≤ g(k1,m)+ g(k2,m)+ 1.

The resulting system of inequalities is satisfied by

g(k,m) = (
√

k+ 1)
⌊
log2 m

⌋
,

as can easily be verified. This completes the proof.

7. Choosing a Sibling Operation

Lemma 6.2 shows that correcting violations of the Inclination Invariant is relatively
inexpensive, as long as the number of inclination reversals in the subtree below the
violating spine is small. This section shows how to choose sibling operations that are
not too destructive: the invariant-violating spines they induce have onlyO(1) inclination
reversals below them.

Let x be a merge center, and letvx be the lowest common ancestor (LCA) ofx in
the source tree; a merge center corresponds to two consecutive leaves, and the LCA of
these leaves is defined as the LCA of the merge center. Nodevx is both-inclined, since
its subtree includes two leaves that are inclined toward each other. By the Inclination
Invariant, the top of the spine that extends up fromvx is a constant number of edges
away. Let this spine top, which is a strict ancestor ofvx unless the latter is the root, be
called theancestral-spine topof x, and denotedwx.

At each execution of Step 2 of the main algorithm, we select a merge center at which
to perform a sibling operation using the following criterion:
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Merging Criterion.

1. Among all ancestral-spine tops defined by merge centers, choose a spine-topw

that is the ancestor of no other ancestral-spine top.
2. Among the merge centers with ancestral-spine topw, choose one whose LCAv

is the ancestor of no other LCA.

Algorithmically, one easy way to accomplish this selection is to sort all merge centers
lexicographically on the key(height(w),height(v)) and select a minimal element from
the sorted list.

This selection criterion is well defined: The LCA function is a one-to-one mapping
between pairs of consecutive leaves along the bottom of the source tree and internal
nodes of the tree. Thus part 2 of the Merging Criterion selects a single merge center,
since there is only one merge center associated with each LCA. Furthermore, since any
internal nodew (except the root) is the top of only one spine, all the LCAs withw as
their spine top lie along one spine (or at most two spines). There is exactly one LCA
(or at most two, ifw is the root) that is the ancestor of no other—it is the lowest on its
spine.

The following lemmas show that a merge center selected according to the Merging
Criterion creates violations of the invariant that are easy to repair.

Lemma 7.1. The rotations needed to process a sibling operation selected according
to the Merging Criterion affect only the spine from the LCAv to its spine topw and the
spines belowv.

Proof. The rotations needed to process the sibling operation involve no nodes abovev

(Lemmas 4.1 and 4.3). The only spine abovev that may be affected is the spine fromv
to its spine topw.

Lemma 7.2. Let v be the LCA of a merge center selected according to the Merging
Criterion. Then there is at most one inclination reversal in each of the left and right
subtrees ofv.

Proof. There is only one merge center belowv, namely, the one withv as its LCA: if
there were another merge center, then either the spine top of that merge center would
lie beloww, contradicting part 1 of the Merging Criterion, or the LCA would lie below
v, contradicting part 2. A subtree containing no merge centers, such as the left or right
subtree ofv, can have at most one inclination reversal among its leaves.

Lemma 7.3. Let v be the LCA and letw be the ancestral-spine top of a merge center
selected according to the Merging Criterion. Let z be the child ofw that is an ancestor
of v. (If v is the root, then letw = z = v.) Then there are O(1) inclination reversals
among the leaf descendants of z.

Proof. We assume for convenience thatw is not the root of the source tree; the proof
is similar whenw is the root.
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Claim 1. O(1) merge centers havew as their spine top.

Each such merge center must have its LCA on the unique spine fromv tow. This spine
has constant length, by the Inclination Invariant. Since each LCA corresponds to a unique
merge center, the claim follows.

Claim 2. All merge centers in the subtree rooted at z havew as their spine top.

The spine of such a merge center cannot end abovew, becausez and the parent ofw are
on the same side (left or right) ofw. The spine of such a merge center cannot end below
w, or elsew would not have been selected by part 1 of the Merging Criterion. The two
claims together prove the lemma.

Lemma 7.4. Suppose that a merge center is chosen by the Merging Criterion. If the
Inclination Invariant holds before the corresponding sibling operation is performed, then
the invariant can be restored after the sibling operation using only O(logn) rotations.

Proof. A sibling operation performsk rotations in the subtree below the LCAv, for
some constantk, and affects only spines below the spine topw (Lemmas 5.1 and 7.1).
These rotations add a total of at most 2k to the lengths of spines belowv and/or extending
up fromv tow (Lemma 5.2).

We restore the Inclination Invariant from the bottom up. We repeatedly pick a spine
that violates the invariant and has no violations below it. Suppose the length of the spine
is c+ j , wherec is the constant in the invariant. If the spine lies belowv, then it has at
most three inclination reversals below it, by Lemma 7.2. The invariant can be restored
on and below the spine withO( j logn) rotations, by Lemma 6.2. If the spine hasw as
its top, then it hasO(1) inclination reversals below it, by Lemma 7.3. Its length can also
be reduced fromc+ j to c by O( j logn) rotations. (The constant of proportionality is
worse for the spine that reaches up tow, but the asymptotic rotation bound is the same
as for the spines belowv.)

Combining the preceding lemmas yields a proof that efficient tree morphing is
possible.

Theorem 7.5. Let T1 and T2 be two valid n-leaf binary trees with the same weight
sequence at the leaves. Then there is a sequence of O(n logn) valid rotations that
transforms T1 into T2.

Proof. We establish the Inclination Invariant initially by normalizing the source tree
(Corollary 4.5), then performn − 1 sibling operations, each chosen according to the
Merging Criterion. Each sibling operation requires a constant number of rotations (Lem-
mas 4.1, 4.3, and 5.1), but it may introduce violations of the invariant. After each sib-
ling operation, we restore the invariant with an additionalO(logn) rotations, using
Lemma 7.4.
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8. The Tree-Morphing Algorithm

The previous section shows that onlyO(n logn) valid rotations are needed to transform
T1 to T2, but does not give an algorithm to identify those rotations in less than quadratic
time. In this section we show how to compute the sequence of rotations inO(n logn)
time. To compute the rotations, we maintain a linear amount of auxiliary data at the nodes
of the source tree and outside the tree. In all of these structures, we represent positions in
the tree as indices into the original list of leaves. Even though the source and target trees
change as leaves are merged into their parents, the leaf indices are computed as though
the leaves were still present.

We maintain the following auxiliary data, identified below by the notation “(DSx)”:

(DS1) An ordered list of inclination reversals, represented as positions in the original
list of leaves.

(DS2) For each merge centerx:
(a) Its lowest common ancestorvx and its ancestral-spine topwx.
(b) A pointer to its position in (DS1), the list of inclination reversals.

(DS3) For each node of the source tree:
(a) Indices of the first and last leaves below the node.
(b) A list of the merge centers for which the node is an LCA or an ancestral-

spine top.
(c) A boolean flag that is TRUE iff any descendant of this node is the ancestral-

spine top of a merge center.
(DS4) A set of merge centers that satisfy the Merging Criterion.

After the initial normalization of the source tree, all of these data can be computed in
linear time by traversing the source and target trees.

We use these data to perform three functions critical to the algorithm: (1) identify
merge centers that satisfy the Merging Criterion, (2) compute subtree sizes as required
by Lemma 6.1, and (3) count inclination reversals in subtrees, as required by Lemma 6.2.
(In fact, we do not compute the actual subtree sizes, but only an approximation that is
sufficient to give anO(logn) performance bound in Lemma 6.1.) As the algorithm runs,
we must maintain the data as (1) the source tree is modified by rotations, and (2) merge
centers move or disappear because of sibling operations.

Lemma 8.1. The data described above are sufficient to perform each of the following
algorithm operations in constant time: (1) identifying merge centers that satisfy the
Merging Criterion, (2) computing subtree sizes, and(3) counting inclination reversals.

Proof. Identifying merge centers that satisfy the Merging Criterion is easy, since they
are maintained as part of the data (DS4).

Lemma 6.1 requires us to compute subtree sizes, which our data structures do not
record. However, we can get an asymptotic bound similar to that of Lemma 6.1 by using
an upper bound on the sizes. When Lemma 6.1 requests the size of the subtree at a node
v, we return one more than the difference of its first and last leaf indices, using the data
(DS3a) stored atv. This counts the “original” size of the subtree, namely, the size it
would have if no leaves had collapsed into their parents. This quantity has the crucial
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property that the value at a node is at most the sum of the values at the node’s children;
its maximum value isn. The analysis in the proof of Lemma 6.1 carries through if we
use original sizes instead of current sizes for the subtrees, and so we get anO(logn)
bound for restoring the Inclination Invariant when there are no inclination reversals in
the subtree.

Lemma 6.2 requires us to count inclination reversals in subtrees, but Lemma 7.3
ensures that there will be onlyO(1) inclination reversals in the subtrees for which the
queries are posed. Once a merge center has been chosen from (DS4), we locate it in the
list (DS1) by following the pointer (DS2b). The inclination reversals that will be counted
during the application of Lemma 6.2 are all within constant distance of this position in
the list. We can answer the counting queries in constant time by examiningO(1) list
elements in the vicinity of the merge center.

Lemma 8.2. The data described above can be maintained in O(1) time per source tree
rotation, and in O(1) amortized time per movement or disappearance of a merge center
because of a sibling operation.

Proof. We consider rotations first. The list of inclination reversals (DS1) is unaffected
by rotations. Likewise the pointers (DS2b) are unaffected. The leaf indices (DS3a) change
only at the rotated nodes. A rotation affects a constant number of nodes in the tree; in
Fig. 13 these nodes areB, C, and their parents. Before the rotation, we identify all the
merge centers whose LCAs or spine tops are at one of these nodes, using (DS3b). There
are onlyO(1) of them for the rotations performed by the algorithm of Theorem 7.5.
After the rotation, some of these LCAs and spine tops may have moved. We compute
their new locations by visitingO(1) nodes in the vicinity of the rotation (because the
tree satisfies the Inclination Invariant, all spines above LCAs have constant length). We
change the affected node variables (DS3b) and likewise change the merge center variables
pointing to those locations (DS2a). The flags (DS3c) may change within a constant-sized
neighborhood of moved spine tops. Spine tops whose flag value is FALSE correspond
to merge centers that satisfy the Merging Criterion. We update the set (DS4) with the
merge centers corresponding to any spine tops whose flag value has changed.

When a merge center moves or disappears, there is no change to the structure of
the source tree. The leaf indices (DS3a) do not change, and the LCAs and spine tops
corresponding to unchanged merge centers likewise remain unchanged. We update the
list of inclination reversals (DS1) at the position of the changed merge center. If the
merge center moves, it is because two sibling leaves collapse into their parent, and the
new merge center is defined by the parent and its sibling in the target tree. The position
of the new merge center in the list (DS1) is the same as that of the one from which it is
derived, so (DS1) and (DS2b) are trivial to update. Because of the Inclination Invariant,
the LCA and spine top for the new merge center can be computed in constant time by
walks on the source tree, and variables (DS2a) and (DS3b) are easily updated.

If the merge center simply moves, then flag values (DS3c) and the set (DS4) change
only for spine tops in the vicinity of the old spine top. When the merge center disappears,
because the parent of the two collapsing leaves has no sibling leaf in the target tree, the
flag values may be affected nonlocally. Flag values change from TRUE to FALSE on
a path of arbitrary length above the disappearing merge center. We argue that the total
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number of flag changes is neverthelessO(n+m), wherem is the number of rotations or
merge center movements. There are initiallyO(n) flags set to TRUE. The total number of
changes from FALSE to TRUE isO(m), because each rotation or merge center movement
affects onlyO(1) flags. It follows that the number of changes from TRUE to FALSE is
O(n+m), which proves the claim. The amortized cost of updating flag values (DS3c)
is O(1). Updating the set (DS4) after a flag change takes at mostO(1) time per flag
change.

By combining Theorem 7.5 and Lemmas 8.1 and 8.2, we obtain our main theorem
on tree morphing.

Theorem 8.3. Let T1 and T2 be two valid n-leaf binary trees with the same weight
sequence at the leaves.Then we can transform T1 into T2 using O(n logn) valid rotations.
Furthermore, the sequence of rotations can be computed in O(n logn) time.

9. Morphing Polygons

In this section we use the tools of the preceding sections to show how to morph one
polygon to another parallel polygon. This is more difficult than morphing bi-infinite
chains, because we cannot guarantee that the reduced forms of two parallel polygons
will have the same top-level triangle. We show below that each morphing operation
that involves two of the top-level trees can be transformed withO(1) parallel moves to
involve a single tree.

Let the reduced form of polygonP be a triangleABC; each of the verticesA, B, and
C has a corresponding tree representing its microstructure. LetA′, B′, andC′ denote the
vertices and the trees for the top-level triangle ofQ. In the tree model, our algorithm for
morphingP to Q is the same as Algorithm BasicMorph: we pick a pair of leaves that
are siblings in one ofA′, B′, andC′, rotate them to be siblings in one ofA, B, andC,
and then collapse the pair into their parent in both the source and target trees. This works
fine if the two leaves belong to the same treeA, B, or C: we simply apply the algorithm
of Theorem 8.3 to that tree. If the two leaves belong to different trees, however, we must
morph the polygon to bring the two leaves into the same tree before we can apply the
algorithm of Theorem 8.3.

Lemma 9.1. Let A and B be two trees representing the microstructure of adjacent
angles in the top-level triangle of a reduced form. Let x be the rightmost leaf of A and
let y be the leftmost leaf of B, such that x and y represent adjacent turns in the polygon.
Let the total length of the spines containing x and y be k. If the sum of the weights of
x and y is valid, then x and y can be made into sibling leaves of the same tree(i.e.,
contained in the same bottom-level microstructure disk) by O(k) parallel moves.

Proof. We first perform all applicable valid rotations on the spines containingx and
y, shortening each spine to length at most four. As a result, all of the subtrees hanging
off the spine abovex have the same sign for their weights, and the same is true for the
subtrees of the spine abovey. See Fig. 21.
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Fig. 21. Bringing x andy together.

We next perform all possible valid rotations at the root ofA that shorten the spine
abovex. When we finish, eitherx is a child of the root, or the first two subtrees of the
spine have weights whose sum is invalid. We processy andB similarly.

Recall that each subtree ofA or B has a total weight corresponding to an angle
between two consecutive sides in one stage of the reduction process forP. Positive
weight corresponds to convex angles and negative to reflex angles. The total weight for
each ofA andB is of course positive.

For the proof we need to process the treeA according to a number of cases. Because
of the assumption that the subtrees hanging off the spine ofA have the same sign and
that the total weight ofA is positive, only three cases are possible. We callA convexif x
corresponds to a convex angle ofP, and so do the other subtrees of the spine ofA. We call
A pointyif x only is convex, while the other subtrees of the spine correspond to concave
(reflex) angles. The final case, in which we callA lumpy, is whenx itself is concave
(reflex); then the other subtrees of the spine must all be convex. We make symmetric
definitions fory and the spine ofB. Figure 22 depicts the geometry of these three cases.

Because of the rotations performed at the root ofA, x is a child of the root in the
convex and pointy cases (the spine is one edge long). To see this, note that ifA is pointy,
the subtree of the spine abovex has negative weight, and the sum of those weights must
be greater than−1, since adding the weight ofx gives a positive number. Similarly, if
A is convex, the subtrees have positive weight with sum less than 1, since adding the
(positive) weight ofx produces a valid weight. In both cases, there can be only one
subtree of the spine abovex—rotations at the root combine all the original subtrees. A
symmetric claim holds ifB is convex or pointy.

If A is lumpy, we distinguish between two cases, shown in Fig. 23. Letebe the top-level
edge joiningA to B, and let f be the second-level edge atA. Inside the microstructure
disk atA, f is the finite edge; it joins the turns represented by the children of the root of
A. Denote the left and right subtrees ofA by AL andAR.

In case (1),f points towarde; in terms of tree weights, the weight atAR is negative.
In this case we translatef away from the polygon interior, so that the microstructure
containingx slides towardB. See Fig. 23(1). When the microstructure gets sufficiently
close toB, we can enclose it along withB in a higher-level microstructure disk. In tree
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Fig. 22. Classification ofx as convex, pointy, or lumpy.

terms, we removeAR from A and join it to the old treeB as its left sibling. BecauseAR

has negative weight andB has positive weight, the new tree is valid.
In case (2),f points away frome(the weight ofAR is positive). Letg be the finite edge

inside the microstructure disk forAR, and letARL andARR be the left and right subtrees
of AR. By construction, the sum of the weights ofAL andARL is greater than one, and
so the weight ofARR is negative. That is,g points towarde. We translateg away from
the polygon interior, so that the microstructure forARR slides towardB. See Fig. 23(2).
As in case (1), we makeARR into the left sibling ofB. We are left with a (possibly
nonconvex) quadrilateral as the top-level structure, with the four angles represented by

Fig. 23. Moving a leaf in a lumpy tree.
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Fig. 24. Moving a leaf in a pointy tree.

AL , ARL, ARR+ B, andC (the original third angle of the triangle). One more parallel
translation reduces the polygon to a triangle (unless the quadrilateral happens to be a
parallelogram).

If B is lumpy, the same construction can be used symmetrically.
Now suppose thatA is pointy, whileB is convex (or symmetricallyB is pointy andA

is convex). Note that, since the sum of the weights ofx andy is valid, the edge beforex
in A and the edge aftery in B must meet abovee (i.e., the other side fromABC). Thus
a parallel translation ofe away fromABC will eliminate e and causex andy to come
together in the same tree. This also means that at most one ofA andB can be pointy.

Because both spines have been shortened as much as possible,x is the right subtree
of A andy is the left subtree ofB. The edges beforex and aftery are the finite edges in
the top-level microstructure ofA andB. If we “unreduce”A andB by one level, those
edges belong to the top-level polygon (a 5-gon), and we can translatee to bringx andy
together. One more edge elimination reduces the polygon to a triangle again. See Fig. 24.

The final case to consider is when bothA andB are convex. In this case we can again
bringx andy together by translating edgeeaway fromABC. All the arguments involved
are the same as in the previous case, but simpler. See Fig. 25.

The operations required to bringx andy into the same tree do not increase the lengths
of the spines abovex andy in the tree representation. HenceO(1) further rotations suffice
to makex andy into siblings.

We apply Lemma 9.1 only when no other sibling operation applies, that is, only when
no merge center is contained inside any of the three source trees. This implies that there
are at most three merge centers, and the total number of inclination reversals is at most six.

Fig. 25. Moving a leaf in a convex tree.
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Lemma 9.2. The data structures of Section8 can be maintained during the tree rota-
tions and parallel moves of Lemma9.1at constant cost per operation.

Proof. The data structures of Section 8 refer to positions by leaf indices in the original
tree (assuming there is only one). We extend this to use leaf indices in the cyclic order
of all three top-level trees. When the endpoints of an index interval are out of order,
it means that the interval wraps around, and operation (2) of Lemma 8.1 (subtree size
counting) must take this into account.

With this modification, all the data structures are easy to maintain during the tree
surgery of Lemma 9.1. There is at most one merge center in each tree fragment, and so
all the data structures that deal with merge centers ((DS2a), (DS2b), (DS3b), (DS3c),
and (DS4)) can be maintained by brute force manipulation ofO(1) nodes near the tree
root. (DS1) has constant size, and is easy to maintain. (DS3a) is also straightforward; it
changes only at theO(1) nodes whose descendants change.

In fact, only some of the data structures of Section 8 need to be maintained. By the time
Lemma 9.1 needs to be applied, each tree contains no merge centers. After applying the
lemma, one tree contains a single merge center. Thus the Merging Criterion is trivially
satisfied. We do need to keep track of subtree sizes and the positions of inclination
reversals, but those could be maintained with simpler structures.

We have shown that onlyO(1) parallel moves are needed to ensure that some sibling
operation can be performed on one of the three source trees. Furthermore, these parallel
moves can be computed in constant time. Thus the number of parallel moves needed to
morph polygons is asymptotically the same as the number needed for bi-infinite chains.
Combining this fact with Lemmas 2.4 and 2.5 and Theorems 3.4 and 8.3, we have
established our main theorem.

Theorem 9.3. Given two parallel simple polygons P and Q of n sides, we can contin-
uously deform P to Q by parallel moves while maintaining simplicity. The deformation
uses O(n logn) parallel moves, and it can be computed in O(n logn) time.

10. Conclusion

In the few years since its introduction, morphing has become a hugely popular technique
in computer graphics. Although its most prominent applications are still in the enter-
tainment industry, there are many serious applications in industrial design [8], medical
imaging [5], and data visualization. While morphing is useful in many applications, many
of the techniques employed to morph images are not fully understood. In fact, most of
the commercially available morphing software packages require a nontrivial amount of
human interaction, especially in choosing correspondence points between the source and
target images. Furthermore, the intermediate stages of a morphing transformation are
often illegal images, with no corresponding valid three-dimensional picture.

Our investigation is a first step toward providing theoretical underpinnings for mor-
phing. We have formulated a rigorous model for morphing polygons using “parallel”
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moves, and proposed an efficient algorithm to compute the moves required to morph one
polygon to another.

It would be interesting to introduce some measure of polygon distortion and look
at edge translation algorithms that minimize this measure. Our algorithm is very bad
this way, for even ifP and Q are very similar-looking polygons, their intermediate
morphs can visually look quite different. The tree corresponding to a reduced form of a
polygon may have linear height, which implies that the shortest and longest edges in the
reduced form have a length ratio that is the product of2(n) infinitesimals. Even if each
infinitesimal could be replaced by some constant, say 0.1, the length ratio would still be
exponential inn.

Although the weight constraint in our tree morphing problem originated with polygon
morphing, it appears to be a rather weak condition, and we suspect our theorem on tree
morphing may have other applications outside the polygon morphing context. An open
problem suggested by our paper is to determine the true complexity of tree morphing.
The number of valid rotations needed to morph between two valid trees isÄ(n) and
O(n logn); either a tighter lower bound or a better algorithm is needed.
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