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Abstract

In mathematics, morphism is a term that indicates structure-
preserving mappings between mathematical structures of the
same type. Linear transformations for linear spaces, homo-
morphisms for algebraic structures and continuous functions
for topological spaces are examples. Many data researched in
machine learning, on the other hand, can include mathemat-
ical structures in them. Strings are totally ordered sets, and
trees can be understood not only as graphs but also as par-
tially ordered sets with respect to an ancestor-to-descendent
order and semigroups with respect to the binary operation to
determine nearest common ancestor. In this paper, we pro-
pose a generic and theoretic framework to investigate similar-
ity of structured data through structure-preserving one-to-one
partial mappings, which we call morphisms. Through mor-
phisms, useful and important methods studied in the litera-
ture can be abstracted into common concepts, although they
have been studied separately. When we study new structures
of data, we will be able to extend the legacy methods for the
purpose of studying the new structure, if we can define mor-
phisms properly. Also, this view reveals hidden relations be-
tween methods known in the literature and can let us under-
stand them more clearly. For example, we see that the center
star algorithm, which was originally developed to compute
sequential multiple alignments, can be abstracted so that it not
only applies to data structures other than strings but also can
be used to solve problems of pattern extraction. The meth-
ods that we study in this paper include edit distance, multiple
alignment, pattern extraction and kernel, but it is sure that
there exist much more methods that can be abstracted within
our framework.

1 Introduction
Similarity of data is the most fundamental concept of ma-
chine learning. For example, clustering is to make groups
of data so that members of each group are similar to one
another, and classification is to predict unknown classes of
data based on their similarity to known data. Thus, quanti-
tative evaluation of similarity of data by some means is an
imperative step of machine learning algorithms. In fact, var-
ious methods have been proposed in the literature to quan-
tify similarity. For example, a kernel is a similarity measure,
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that is, the greater, the more similar (e.g., (Lodhi et al. 2001;
Collins and Duffy 2001)), while an edit distance is a dissim-
ilarity measure, that is, the smaller, the more similar (e.g.,
(Levenshtein 1966; Taı̈ 1979)).

In this paper, we will propose a novel abstract approach to
quantify the similarity of discrete and structured data. The
key finding that drove us was the fact that plural methods
of machine learning developed for data with different struc-
tures can be sometimes redefined in a common manner us-
ing the concept of morphisms, which abstracts differences
in structures. In mathematics, morphism is a term that indi-
cates structure-preserving mappings between mathematical
structures of the same type. Linear transformation for linear
spaces is a good example. In our approach, we view a datum
as a set of elements that is equipped with some structure (re-
lation) among the elements, and define morphisms as one-to-
one partial set mappings that preserve the structure. On top
of the concept of morphisms, we define methods to investi-
gate similarity of data in an abstract manner. The methods
in the literature that we study in this paper encompass edit
distances (Levenshtein 1966; Taı̈ 1979), sequential multiple
alignments (Gusfield 1993), pattern extraction (Kao et al.
2007)) and kernels (Haussler 1999; Collins and Duffy 2001;
Lodhi et al. 2001; Kashima and Koyanagi 2002; Leslie et al.
2004), but the range where our framework is effective should
not be limited to them in principle.

The advantages of our theory include: (1) it bridges gaps
among important methodologies of machine learning, which
exist due to differences in data structures to study, and as a
consequence, a method that has proven effective for a type
of structures can be converted into a new method for other
types of structures; For example, we unify many different
definitions of edit distances for strings, trees and graphs into
a single common definition; (2) Abstraction by morphisms
can make a methodology developed to solve a particular
problem applicable to problems of different types; For ex-
ample, we show that the center star algorithm, which was
developed to study sequential multiple alignments, can be
used to extract structural patterns of data with various struc-
tures; (3) It provides a generic framework to engineer novel
methods in a uniform manner; If we can mathematically de-
fine structures of data in the form of morphisms, abstract
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methods constructed on top of morphisms can automatically
apply to them.

2 A morphism-based framework

2.1 Mathematical notations

In this paper, we use the following notations.

• S and T denote arbitrary sets.

• A partial mapping µ from S to T is a subset of S×T such
that, if (s, t) and (s, t′) are both in µ, then t = t′.

• A one-to-one partial mapping µ satisfies that, if (s, t) and
(s′, t) are both in µ, then s = s′.

• The domain of µ is Dom(µ) = {s | ∃t ∈ T [(s, t) ∈ µ]}.

• The range of µ is Ran(µ) = {t | ∃s ∈ S[(s, t) ∈ µ]}.

• For two partial mappings µ ⊆ S × U and ν ⊆ U × T ,
their composition is the partial mapping determined by
ν◦µ = {(s, t) | ∃u ∈ U [(s, u) ∈ µ, (u, t) ∈ ν]} ⊆ S×T .

• The cardinal number of µ is denoted by |µ|.

• Kronecker’s delta function δx,y yields 1 if x = y and 0
otherwise.

• For a propagation (a1, . . . , an), [a1, aî, an] denotes the
sub-propagation (a1, . . . , ai−1, ai+1, . . . , an).

2.2 Introductory illustration

Our framework is based on three premises stated below:

• A datum is a collection of one or more labeled component
elements;

• A similarity function to compare labels is given as prior
knowledge;

• Structures among elements within data are represented by
sets of one-to-one structure-preserving partial mappings
between data.

We exemplify the concept with strings of alphabetic let-
ters:

• We view a string as a collection of elements labeled
with letters in an alphabet Σ through a function ℓ. If
S = a1 . . . a|S| and T = b1, . . . , b|T | are two strings with
ai ∈ Σ and bi ∈ Σ, we view S and T as collections
of labeled elements {s1, . . . , s|S|} and {t1, . . . , t|T |} with

ℓ(si) = ai and ℓ(ti) = bi.

• As a similarity function to compare labels, we deploy Ko-
ronecker’s delta function. That is, the similarity of ele-
ments s and t is either 0 or 1 determined by δℓ(s),ℓ(t).

• We deal with the sequential orders of elements in strings
through the entire set of one-to-one order-preserving par-
tial mappings between S and T , denoted by MS,T :

MS,T =
{
{(si1 , tj1), . . . , (sin , tjn)} ∈ S × T | n ≥ 1,

1 ≤ i1 < · · · < in ≤ |S|, 1 ≤ j1 < · · · < jn ≤ |T |
}
.

Although MS,T does not completely determine the se-
quential structures of S and T , it reflects an important part
of the structures. In particular, if MS,T and the order of S is
given, the order of T is uniquely determined.

2.3 Component elements, data, and morphisms

We give a formal description of our framework and intro-
duce the Maximum Similarity Measurement (MSM) prob-
lem.

A space of data A datum in our framework is always a
set, and D denotes the space of data of our interest.

Labels and a label similarity measure. In our frame-
work, labels associated with elements are used for the pur-
pose of evaluating the similarity among the elements. The
association of elements with labels is determined through a
labeling function ℓX : X → L , where L denotes a com-
mon finite alphabet of labels. Furthermore, a label similarity
function ϕ : L × L → [0,∞) is given as prior knowl-
edge, and therefore, ϕ(ℓX(x), ℓY (y)) can be used as a simi-
larity measurement between elements x ∈ X and y ∈ Y for
X,Y ∈ D . The following are the axioms for ϕ to satisfy:

ϕ(ℓ1, ℓ2) ≥ 0 (Non-negativity)

ϕ(ℓ1, ℓ1) > 0 (Self-positivity)

ϕ(ℓ1, ℓ2) = ϕ(ℓ2, ℓ1) (Symmetry)

Furthermore, we have several desirable properties for ϕ
to have:

ϕ(ℓ1, ℓ1) ≥ ϕ(ℓ1, ℓ2) (Maximality); (1)

ϕ(ℓ1, ℓ2)ϕ(ℓ3, ℓ3) ≥ ϕ(ℓ1, ℓ3)ϕ(ℓ2, ℓ3) (Convexity); (2)

and for any n > 0, ℓ1, . . . , ℓn ∈ L and c1, . . . , cn ∈ R,

n∑

i=1

n∑

j=1

cicjϕ(ℓi, ℓj) ≥ 0 (Positive definiteness). (3)

As explained later in this paper, maximality and convexity
are sufficient conditions to make morphism-based distances
pseudo-metrics, while positive definiteness (Berg, Chris-
tensen, and Ressel 1984) is a necessary condition to make
morphism-based moment kernels positive definite. Positive
definiteness of kernels is known to be necessary to take ad-
vantage of the kernel method.

When we restate problems known in the literature within
our framework, the most common setting of ϕ is ϕ(ℓ, ℓ′) =
β + (α − β)δℓ,ℓ′ with α > β ≥ 0. This ϕ, indeed, satisfies
all of the axioms and the properties stated above. In this pa-
per, however, we assume that ϕ always has non-negativity,
self-positivity and symmetry and will require the others only
when they are necessary.

Morphisms. As morphisms between data X and Y , we
use one-to-one partial mappings from X to Y as sets that
also preserve the predetermined structures of the data. Our
framework provides various methods to evaluate the simi-
larity between data, but they are commonly realized through
predetermined sets of morphisms. To be specific, each pair
of data (X,Y ) ∈ D × D is uniquely associated with a set
of morphisms, denoted by MX,Y . By allowing morphisms
to be partial, we will be able to incorporate local similarities
of data into evaluation of the entire similarity.
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As axioms of morphisms, we require:

idX ∈ MX,X (Identity);

µ ∈ MX,Y ⇒ µ−1 ∈ MY,X (Inverse);

µ ∈ MX,Y , ν ∈ MY,Z ⇒ ν ◦ µ ∈ MX,Z (Transitivity).

When we restate problems in the literature within our
framework, we have examples where morphisms are not
necessarily transitive. For example, the morphisms associ-
ated with the less-constrained tree edit distance are not tran-
sitive, and as a result, the triangle inequality does not hold.
However, such examples are exceptional, and therefore, we
include transitivity in the axioms for morphisms.

In the category theory, the transitivity is one of the axioms
for a category, and D and morphisms described in the above
becomes a category, but is not concrete, because morphisms
include partial mappings.

2.4 Maximum Similarity Measurement Problem

We define a simple similarity function ΦM
ϕ : D × D →

[0,∞) on top of the concepts introduced in the above. We
start with defining Φϕ :

⋃
X,Y ∈D

MX,Y → R by

Φϕ(µ) =
∏

(x,y)∈µ

ϕ(x, y). (4)

To define the simple similarity, we can deploy a definition
based on a sum of primitive similarity measurements instead
of their product. In fact, for ϕ+ : L × L → [−∞,∞), we
can define

Φ+
ϕ+(µ) =

∑

(x,y)∈µ

ϕ+(x, y).

These definitions are, however, mutually equivalent, because

we can convert Φ+
ϕ+ to Φϕ by ϕ(x, y) = eϕ

+(x,y) and

Φϕ(µ) = eΦ
+ϕ+µ. In this paper, we define a similarity mea-

sure of data as follows based on Eq. (4).

Maximum Similarity Measure ment (MSM)✓ ✏
We define the similarity between X,Y ∈ D by

ΦM
ϕ (X,Y ) = max{Φϕ(µ) | µ ∈ MX,Y }. (5)

✒ ✑
On top of this fundamental similarity measure, we can

construct variable measures to evaluate the similarity of data
from different points of view. For example, the type of prob-
lems to find morphisms µ that maximize MSM may be a
target of interest of researchers, and it abstracts various con-
crete problems of pattern extraction. In fact, a formulation
of the morphism-based pattern extraction (MPE) problem is
introduced in Section 5. Also, to incorporate the influence
of X \Dom(µ) and Y \ Ran(µ) into evaluation of similar-
ity in addition to MSM, we introduce the morphism-based
distance (MD) in Section 3, which is an abstraction of the
well-known concept of edit distances. On the other hand,
the morphism-based moment kernel (MMK), which is in-
troduced in Section 6, evaluates the distributions of Φϕ(µ)
across morphisms µ ∈ MX,Y .

2.5 A 2-MAST problem is an MSM problem

To illustrate, we see that the well known 2-MAST (Maxi-
mum Agreement Subtree) problem (Kao et al. 2007) can be
formulated as a problem to find a morphism µ that maxi-
mizes ΦM

ϕ (X,Y ) of an MSM problem.

X

A

A B

x1x2

D Cx2

C Dx1

Y

B

A

B

y1y2

A C y2

D y1 B

Figure 1: 2-MAST.

For this purpose, it is convenient to define rooted trees as
algebraic structures: If a semigroup (X, ·) satisfies the ad-
ditional conditions of (i) xy = yx, (ii) x2 = x and (iii)
|{xy, yz, zx}| ≤ 2, it is a rooted tree by viewing X as a
vertex set and xy as the nearest common ancestor of x and
y in X . The root is computed by

∏
x∈X x. Furthermore, an

agreement subtree S of X is an arbitrary sub-semigroup of
X . Under these notations, 2-MAST problem is formulated
as a problem to find two agreement subtrees S ⊆ X and
T ⊆ Y maximum in size such that there is a semigroup iso-
morphism µ : S → T that preserves vertex labels (Fig. 1).
We say that S and T are mutually congruent.

With this definition, we can view 2-MAST problem as an
MSM problem. We let D be a set of labeled rooted trees, and
determine MX,Y for X,Y ∈ D by

MX,Y = {µ | Dom(µ) and Ran(µ) are sub-semigroups,

µ : Dom(µ) → Ran(µ) is a semigroup isomorphism}.

For simplicity, we call such a morphism a partial semigroup
isomorphism. For a label similarity function ϕ, on the other
hand, we use ϕ(ℓ, ℓ′) = αδℓ,ℓ′ with α > 1. The correspond-
ing MSM problem requires to maximize

Φϕ(µ) =
∏

(x,y)∈µ

αδℓX(x),ℓY (y).

If ℓX |Dom(µ) = ℓY ◦µ holds, we have Φϕ(µ) = α|Dom(µ)| =

α|Ran(µ)|, and otherwise, Φϕ(µ) = 0. Therefore, if µ maxi-
mizes Φϕ(µ), the pair (Dom(µ),Ran(µ)) determines max-
imum agreement subtrees.

3 Abstraction of Edit Distances

The concept of edit distances has proven to be effective to
measure similarity of strings (Levenshtein 1966), trees (Taı̈
1979), and graphs (Neuhaus and Bunke 2007). In this sec-
tion, we introduce the morphism-based distance within our
framework as an abstraction of edit distances.
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3.1 The classical notion of edit distances

Levenshtein distance for strings (Levenshtein 1966) and Taı̈
distance for trees (Taı̈ 1979) are well known examples of
edit distances and are defined within the same framework.

An edit distance d(X,Y ) between two data X and Y ,
which can be strings and rooted trees, is determined as the
minimum cost of edit paths. An edit path consists of one
or more edit operations, each of which is one of (1) sub-
stituting a component y of Y for a component x of X , (2)
deleting a component x of X and (3) inserting a component
y of Y , and transforms X into Y . To each edit operation, a
cost is assigned: we let ψ(x, y), ψ(x,⊥) and ψ(⊥, y) denote
the costs of substitution, deletion and insertion, respectively.
The symbol ⊥ denotes a gap. Then, the cost of an edit path
π, denoted by Ψ(π), is determined by the sum of the costs
of the edit operations that constitute π.

On the other hand, the substitution operations specified
in π determine a one-to-one partial mapping from X to Y ,
which is called the trace of π. We denote it by τ(π). When
we let Xπ = X \ Dom(τ(π)) and Yπ = Y \ Ran(τ(π)),
Ψ(π) can be restated by

Ψ(π) =
∑

x∈Xπ

ψ(x,⊥)+
∑

y∈Yπ

ψ(⊥, y)+
∑

(x,y)∈τ(π)

ψ(x, y). (6)

When ΠX,Y denotes the entire set of edit paths from X to
Y , d(X,Y ) = minπ∈ΠX,Y

Ψ(π) determines the distance.
We have a few important observations to note here.

• A trace τ(π) preserves the order of letters for the string
case and the generation order of vertices for the rooted
tree case. With mathematical terminology, these traces are
structure-preserving when we view a string is a totally or-
dered set and a rooted tree as a partially ordered set.

• Many other edit distances including the Hamming dis-
tance for strings, the constrained distance (Zhang 1996),
the less-constrained distance (Lu, Su, and Tang 2001), the
degree-two distances (Zhang, Wang, and Shasha 1996)
for trees, which are all variations of the Taı̈ distance,
and the graph edit distance for graphs (Neuhaus and
Bunke 2007) are defined by posing certain constraints on
edit paths that constitute ΠX,Y . Nevertheless, these edit
distances can be commonly determined by d(X,Y ) =
minπ∈ΠX,Y

Ψ(π) using Eq. (6) with the restricted ΠX,Y .

• These constraints on edit paths can be translated into ad-
ditional conditions for traces to satisfy. For example, to
define the graph edit distance (Neuhaus and Bunke 2007),
the constraint on edit paths is that, when deleting a vertex,
all the edges connected to the vertex must be deleted be-
forehand, and when inserting an edge, the two ends of the
edge must exist. Interestingly, this elaborated constraint
turns out to be equivalent to the simple condition that
traces are partial graph isomorphisms.

• Constraints on edit paths for many tree edit distances are
translated to constraints on traces in (Kuboyama 2007).

3.2 Morphism-based distances (MD)

In the observations above, we have learnt that the edit dis-
tances are defined in a common way regardless of the dif-

ferences in ΠX,Y ; the differences in ΠX,Y reduce to differ-
ences in the associated traces; and the traces are structure
preserving partial mappings.

This understanding leads us to the notion of morphism-
based distances within our framework. As a preliminary, we
first define cost functions ψ(·, ·) over L × L , and ψ(·,⊥)
and ψ(⊥, ·) over L by

ψ(ℓ, ℓ′) =
logϕ(ℓ, ℓ) + logϕ(ℓ′, ℓ′)

2
− logϕ(ℓ, ℓ′);

ψ(x,⊥) = ψ(⊥, ℓ) =
logϕ(ℓ, ℓ)

2
+

log c

2
. (7)

c is a positive constant to adjust the cost of deletion and in-
sertion. Finally, the morphism-based distance is determined
as follows:

Morphism-based Distances (MD)✓ ✏
For X,Y ∈ D , we determine Xµ = X \ Dom(µ) and
Yµ = Y \ Ran(µ). Then, a morphism-based distance
between X and Y is determined by:

Ψϕ,c(µ) =
∑

x∈Xµ

ψ(ℓX(x),⊥) +
∑

y∈Yµ

ψ(⊥, ℓY (y))

+
∑

(x,y)∈µ

ψ(ℓX(x), ℓY (y));

dMϕ,c(X,Y ) = min{Ψϕ,c(µ) | µ ∈ MX,Y }.

✒ ✑
We should note that determining ψ is equivalent to de-

termining ϕ up to positive factor of c. In fact, cϕ(x, y) =
eψ(x,⊥)+ψ(⊥,y)−ψ(x,y) holds.

3.3 Conditions to be a pseudo-metric

For morphism-based distance dMϕ,c to be a pseudo-metric,
the following four axioms must be satisfied.

dM

ϕ,c
(X,Y ) ≥ 0: To satisfy this axiom, we require that

the values of ψ is non-negative, and therefore, we require

ϕ(ℓ1, ℓ2)
2 ≤ ϕ(ℓ1, ℓ1)ϕ(ℓ2, ℓ2) and ϕ(ℓ, ℓ) ≥

1

c
.

The first requirement will be supported, if ϕ has maximal-
ity (Eq. (1)) or positive definiteness (Eq. (3)): If ϕ satis-
fies maximality, ϕ(ℓ1, ℓ2) ≤ ϕ(ℓ1, ℓ1) and ϕ(ℓ1, ℓ2) ≤
ϕ(ℓ2, ℓ2) imply the requirement; If ϕ is positive definite,

the Gramian matrix G =

[
ϕ(ℓ1, ℓ1) ϕ(ℓ1, ℓ2)
ϕ(ℓ2, ℓ1) ϕ(ℓ2, ℓ2)

]
is sym-

metrix, and therefore, Schur decomposition yields UTGU =[
λ1 0
0 λ2

]
for some orthogonal matrix U =

[
u11 u12

u21 u2

]
;

The eigenvalues λ1 and λ2 are non-negative, since λk =∑
i

∑
j uikujkϕ(ℓi, ℓj) ≥ 0, and in particular, we have

detG = ϕ(ℓ1, ℓ1)ϕ(ℓ2, ℓ2)− ϕ(ℓ1, ℓ2)
2 ≥ 0.

The second is not an excessive demand as well, be-
cause we can determine c so that c ≥ 1

minℓ∈L ϕ(ℓ,ℓ) : Since

ϕ(ℓ, ℓ) > 0, 1
minℓ∈L ϕ(ℓ,ℓ) < ∞ holds.
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dM

ϕ,c
(X,X) = 0: By definition, ψ(ℓ, ℓ) = 0 always

holds, and hence, we have Ψϕ,c(idX) = 0.

dM

ϕ,c
(X,Y ) = dM

ϕ,c
(Y,X): Because ϕ is symmetric,

we have Ψϕ,c(µ) = Ψϕ,c(µ
−1). Since µ−1 ∈ MY,X by

definition, dMϕ,c(X,Y ) ≥ dMϕ,c(Y,X) holds. For the same

reason, dMϕ,c(X,Y ) ≤ dMϕ,c(Y,X) holds as well.

dM

ϕ,c
(X,Y ) + dM

ϕ,c
(Y, Z) ≥ dM

ϕ,c
(X,Z): If ϕ has

maximality (Eq. (1)) and convexity (Eq. (2)), the triangle
inequality holds for ψ, that is, ψ(ℓ1, ℓ2) + ψ(ℓ2, ℓ3) ≥
ψ(ℓ1, ℓ3) and ψ(⊥, ℓ1) + ψ(ℓ1, ℓ2) ≥ ψ(⊥, ℓ2) hold for ar-
bitrary ℓ1, ℓ2, ℓ3 ∈ L .

Finally, we have

Theorem 1 If ψ(·, ·), ψ(·,⊥) and ψ(⊥, ·) are all non-
negative and satisfy the triangle inequality, dMϕ,c is a
pseudo-metric.

Corollary 1 If ϕ satisfies maximality and convexity, dMϕ,c is

a pseudo-metric for any c ≥ 1
minℓ∈L ϕ(ℓ,ℓ) .

We cannot always expect identity of indiscernibles. In the
extreme example where ψ(ℓ,⊥) = ψ(⊥, ℓ) = 0 holds for
any ℓ ∈ L , the resulting distances are always zero. We can,
however, derive a metric space from a pseudo-metric space
arbitrarily given: the quotient space of a pseudo-metric space
with respect to the equivalence of x ∼ y ⇔ d(x, y) = 0
always is a metric space.

3.4 Examples

We redefine several important instances of the edit distance
known in the literature as morphism-based distances within
our framework. In the following descriptions, we determine
data structures and morphisms individually, while we com-
monly assume one of the following for ϕ:

ϕ(ℓ, ℓ′) =

{
e2, ℓ = ℓ′

e, ℓ �= ℓ′
or ϕ(ℓ, ℓ′) =

{
e2, ℓ = ℓ′

0, ℓ �= ℓ′
.

With c = 1, the first yields ψ(ℓ, ℓ′) = 1 − δℓ,ℓ′ and
ψ(x,⊥) = ψ(⊥, y) = 1, which is the most common set-
ting in the literature. The second, on the other hand, yields
ψ(ℓ, ℓ′) = ∞ for ℓ �= ℓ′, and therefore, refrains substitu-
tion of elements. This type of distances is known as in-del
distances and is reported to show high accuracy when used
with distance-based classification algorithms such as k-NN
(Shin and Niiyama 2018).

Levenshtein distance (Levenshtein 1966) A datum is a
totally ordered set of labeled elements, and a morphism is
an arbitrary order-preserving partial mapping: We let (S,<)
and (T,<) be finite totally ordered sets and let MS,T consist
of partial mappings µ such that if s, s′ ∈ Dom(µ) and s <
s′, 0

Taı̈ distance (Taı̈ 1979) First, we assume that trees are
rooted but unordered. A rooted tree is a partially ordered
set, as defined as follows.

• For a finite set X , (X,>) is a partially ordered set (poset).

• For any x ∈ X , the sub-poset (X>x, >) with X>x =
{y ∈ X | y > x} is totally ordered.

• There exists maxX , which is referred to as the root.

The order > determines a generation order, and x > y
means that x is a proper ancestor of y. In particular, if x
is the unique parent of y, we denote x ≫ y.

A rooted ordered tree, on the other hand, is equipped with
a traversal order in addition to the generation order. Intu-
itively speaking, a traversal order determines an order of
vertices from left to right. A rooted ordered tree can be for-
malized by the following axioms.

• For (X,>,≻), (X,>) and (X,≻) are both posets.

• For arbitrary x, y ∈ X , exactly one of x = y, x > y,
x < y, x ≻ y or x ≺ y holds.

• For any x ∈ X , the sub-poset (X>x, >) with X>x =
{y ∈ X | y > x} is totally ordered.

• There exists maxX , which is referred to as the root.

• For any x ∈ X , (X≪x,≻) with X≪x = {y ∈ X | y ≪
x} is totally ordered.

Taı̈ has proved that the set of traces of edit paths for Taı̈
distance is identical to the set of order preserving one-to-
one partial mappings (Taı̈ 1979). Hence, we determine mor-
phisms to be one-to-one partial mappings µ ⊆ X × Y with
x1 > x2 ⇔ µ(x1) > µ(x2) and, if X and Y are ordered,
x1 ≻ x2 ⇔ µ(x1) ≻ µ(x2) as well.

Less-constrained tree distance (Lu, Su, and Tang 2001)
The less-constrained distance constrains edit paths of Taı̈
distance not to include any deletion operations prior to inser-
tion. As a result, a morphism µ is an order preserving partial
mapping such that, for {(x1, y1), (x2, y2), (x3, y3)} ⊆ µ,

x1x2 < x1x3 ⇒ y1y2 ≤ y1y3

holds: xi < xj means that xj is a proper ancestor of xi, and
xixj is the nearest common ancestor of xi and xj : xixj =
min{x ∈ X | x ≥ xi, x ≥ xj}. The resulting morphisms
are not transitive, and in fact, the distance does not support
triangle inequality.

Degree-two tree distance (Zhang, Wang, and Shasha
1996) The constraint of the degree-two distance on Taı̈ edit
paths is that insertion and deletion are allowed only for ver-
tices of degree one or two (vertices with one or two edges).
To redefine the degree-two distance, we view rooted trees
as semigroups, instead of partially ordered sets, so that xixj

is the nearest ancestor of xi and xj . A morphism is an ar-
bitrary semigroup isomorphisms, but its domain or range is
not necessarily a sub-semigroup.

Graph edit distance (Neuhaus and Bunke 2007) The
graph edit distance requires that, when deleting a vertex,
all the edges of the vertex must be deleted beforehand, and,
when inserting an edge, its two ends must be included in the
graph. The resulting morphisms are arbitrary partial graph
isomorphisms.
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3.5 Duality between MD and MSM

Theorem 2 shows an important equivalence between the
problems of determining morphism-based distances and the
MSM problem. We start with describing a useful lemma.

Lemma 1 For µ ∈ MX,Y , we have

Ψϕ,c(µ) = log
(Φcϕ(idX) · Φcϕ(idY ))

1/2

Φcϕ(µ)
.

Proof. For Xµ = X \Dom(µ) and Yµ = Y \ Ran(µ),

Ψϕ,c(µ)

=
∑

x∈Xµ

logϕ(x, x) + log c

2
+

∑

y∈Yµ

logϕ(y, y) + log c

2

+
∑

(x,y)∈µ

(
1

2
logϕ(x, x) +

1

2
logϕ(y, y)− logϕ(x, y)

)

=
∑

x∈X

1

2
log cϕ(x, x) +

∑

y∈Y

1

2
log cϕ(y, y)− log Φcϕ(µ)

implies the assertion of the theorem. �

Theorem 2 is a direct corollary to Lemma 1.

Theorem 2 (Duality) The following equality holds.

dMϕ,c(X,Y ) = log
(Φcϕ(idX) · Φcϕ(idY ))

1/2

ΦM
cϕ(X,Y )

(8)

Since the numerator of the right-hand side of Eq (8)
is constant depending only on X and Y , computing a
morphism-based distance dMϕ,c is equivalent to determining

ΦM
cϕ by solving the associated MSM problem.

4 Morphism-based multiple alignments

A multiple sequence alignment (MSA) problem is defined as
follows: given more than one strings S1, . . . , Sn, the prob-
lem requires an optimal multiple alignment that minimizes
the value of a predetermined cost function. For example,

S1: -TGTAAG---
S1: --GC-AGGTC
S1: ATGC-A--T-

is a multiple alignment of three strings. A popular cost func-
tion used in the literature is the sum-of-pairs cost defined by∑n

i=1

∑n
j=i+1 Ψ(πij): πij is the edit path that the pairwise

alignment between Si and Sj in a multiple alignment deter-
mines; Eq. (6) determines the cost Ψ(πij). In the example,
we have Ψ(π12) = 6 and Ψ(π23) = Ψ(π31) = 5, and there-
fore, the cost of the multiple alignment is 16.

We can also abstract the concept of the multiple alignment
leveraging the framework of morphism-based distances.

Morphism-based Multiple Alignment (MMA)✓ ✏
Given {X1, . . . , Xn} ⊆ D , a morphism-based multiple
alignment problem requires to find morphisms µij ∈
MXi,Xj

for distinct {i, j} ⊆ {1, . . . , n} that

minimize

n∑

i=1

n∑

j=i+1

Ψϕ,c(µij)

subject to (1) µij = µ−1
ji and (2) µij ⊇ µkj ◦ µik for

any distinct {i, j, k} ⊆ {1, . . . , n}.

✒ ✑
When the number of given strings is greater than two, the

MSA problem is known to be NP-hard, and hence, MMA
problems for n ≥ 3 are not necessarily solvable in polyno-
mial time. For MSA problems with n ≥ 3, Gusfield pro-
posed an efficient and error-bounded approximation algo-
rithm, namely the center star algorithm, (Gusfield 1993).
We can abstract the algorithm in a straightforward manner
to solve MMA problems without loss of the original advan-
tages of the algorithm.

Abstract Center Star Algorithm✓ ✏
Input: X1, . . . , Xn ∈ D .
Output: µij ∈ MXi,Xj

for distinct i, j ∈ {1, . . . , n}

with µij = µ−1
ji and µij ⊆ µkj ◦ µik.

Procedures:

1. For each Xi, compute morphisms µ̄ij ∈ MXi,Xj
for

j ∈ [1, î, n] with dMϕ,c(Xi, Xj) = Ψϕ,c(µ̄ij) and let

Si =
∑

j∈[1,̂i,n] d
M
ϕ,c(Xi, Xj).

2. Pick k ∈ argmin{Si | i = 1, . . . , n};

3. Determine µki = µ̄ki, µik = µ̄−1
ki and µij = µ̄kj ◦

µ̄−1
ki for i �= k and j �= k.

✒ ✑
The computational complexity of the abstract center star

algorithm is dominated by the product of n and the compu-
tational complexity of computing the morphism-based dis-
tances dMϕ,c(Xi, Xj), and hence, if we have a polynomial
time algorithm to compute the distances, the abstract center
star algorithm has a polynomial time complexity.

With respect to the approximation guarantee, we can
prove that Gusfield’s theorem (Gusfield 1993) also holds.

Theorem 3 We let {µij}i,j be a set of morphisms obtained
by the abstract center star algorithm and let {µ̂ij}i,j be an

optimal solution to the MMA problem. If dMϕ,c is a pseudo
metric, we have

n∑

i=1

n∑

j=i+1

Ψϕ,c(µij) ≤

(
2−

2

n

) n∑

i=1

n∑

j=i+1

Ψϕ,c(µ̂ij).

5 Abstraction of Pattern Extraction

5.1 Morphism-based pattern extraction (MPE)

The 2-MAST problem is a typical example of pattern ex-
traction problems and is studied in the literature in a gen-
eral form as the n-MAST problem, which requires to find
n agreement subtrees of n rooted trees that are congruent

5772



to one another. To abstract it within our framework, we for-
malize the morphism-based pattern extraction problem as
follows.

Morphism-based Pattern Extraction (MPE)✓ ✏
Given {X1, . . . , Xn} ⊆ D , a morphism-based pattern
extraction problem requires to find morphisms µij ∈
MXi,Xj

for distinct {i, j} ⊆ {1, . . . , n} that

maximize

n∏

i=1

n∏

j=i+1

Φϕ(µij)

subject to (1) µij = µ−1
ji and (2) µij = µkj ◦ µik for

any distinct {i, j, k} ⊆ {1, . . . , n}.

✒ ✑
The MMA and MPE problems are almost the same ex-

cept that µij ⊆ µkj ◦ µik is replaced by µij = µkj ◦ µik.
Proposition 1 clarifies the meaning of this replacement.

Proposition 1 If morphisms µij for distinct {i, j} ⊆

{1, . . . , n} satisfy µij = µ−1
ji and µij = µkj ◦ µik,

Dom(µij) = Dom(µik) = Ran(µji) = Ran(µki) holds
for any distinct {i, j, k} ⊆ {1, . . . , n}.

Thus, when a solution {µij}i,j of a MPE problem is
given, we can view Dom(µij) as the extracted pattern in Xi,
which is only dependent on i by Proposition 1.

We look at this idea more closely through an example with
the n-MAST problem. An n-MAST problem can be viewed
as an MPE problem by defining data, morphisms and a label
similarity function in the same way as when we showed a
2-MAST problem is an MSM problem: D is a set of rooted
trees defined as semigroups with respect to the nearest com-
mon ancestor operator; morphisms are partial semigroup
isomorphisms; ϕ(ℓ, ℓ′) are αδℓ,ℓ′ with α > 1. For a solution
µij , Proposition 1 implies that we can uniquely determine
Ti = Dom(µij) = Ran(µji) for each i, which is a sub-
semigroup, that is, a sub-tree. µij is a congruent mapping be-
tween Ti and Tj , if it preserves labels. Furthermore, we see

that
∏n

i=1

∏n
j=i+1 Φϕ(µij) is identical to α(n−1)(n−2)|Ti|/2,

if all µij preserve labels, and to zero, otherwise.

5.2 Center star algorithm for MPE problems

Like the multiple sequence alignment problem, n-MAST
problems for n ≥ 3 are known to be NP-hard (Kao et al.
2007). Therefore, MPE problems are not necessarily solv-
able in polynomial time, and we need a polynomial-time ap-
proximation algorithm with a good error bound. The duality
theorem 2 may inspire us to develop the algorithm based on
the center star algorithm, and this idea is actually right.

Definition 1 For {X,X1, . . . , Xn} ⊆ D , a pivot around
X is (µ1, . . . , µn) ∈ MX,X1 × · · · × MX,Xn

that max-
imizes S =

∏n
i=1 Φϕ(µi) under the constraint that all of

Dom(µi), i = 1, . . . , n, are identical. The maximum value
of S is called a signature of X .

The following algorithm approximately solve MPE prob-
lems.

Abstract Center Star Algorithm for MPE✓ ✏
Input: X1, . . . , Xn ∈ D .
Output: µij ∈ MXi,Xj

for distinct i, j ∈ {1, . . . , n}

with µij = µ−1
ji and µij = µkj ◦ µik.

Procedures:

1. Compute a pivot (µ̄i1 . . . , µ̄i,̂i, . . . , µ̄in) around each

Xi and let Si be its signature.

2. Pick k ∈ argmax{Si | i = 1, . . . , n};

3. Determine µki = µ̄ki, µik = µ̄−1
ki and µij = µ̄kj ◦

µ̄−1
ki for i �= k and j �= k.

✒ ✑
Theorem 4 give an error bound of the algorithm.

Theorem 4 For X1, . . . , Xn ∈ D , we let {µij}i,j be a set
of morphisms obtained by the abstract center star algorithm,
{µ̂ij}i,j be an optimal solution to the MPE problem. With-
out any loss of generality, we assume the optimal k of the
abstract center star algorithm is 1 and let D be Dom(µ1i).
If ϕ is convex, we have

log
n∏

i=1

n∏

j=i+1

Φϕ(µij) ≥
(
2−

n

2

)
log

n∏

i=1

n∏

j=i+1

Φϕ(µ̂ij)

−
(n− 1)(n− 2)

2
log

∏

x∈D

ϕ(ℓX1
(x), ℓX1

(x))

Proof. By the hypothesis, the pivot (µ̄12, . . . , µ̄1,n) around
X1 has been used to compute µij .

n∏

i=2

Φϕ(µ1i)
n−1 =

n∏

i=2

n∏

j=i+1

Φϕ(µ1i)Φϕ(µ1j) ·

n∏

i=2

Φϕ(µ1i)

≤

(
∏

x∈D

ϕ(ℓX1 (x), ℓX1 (x))

) (n−1)(n−2)
2

·

n∏

i=1

n∏

j=i+1

Φϕ(µij).

On the other hand, we let {µ̄ij | j ∈ [1, î, n]} be the pivot
around Xi to compute the signature Si. Then,

n∏

j=2

Φϕ(µ1j) ≥
∏

j∈[1,̂i,n]

Φϕ(µ̄ij) ≥
∏

j∈[1,̂i,n]

Φϕ(µ̂ij)

holds, and Hence, we have

n∏

i=2

Φϕ(µ1i)
n ≥

n∏

i=1

∏

j∈[1,̂i,n]

Φϕ(µ̄ij) ≥

⎛

⎝
n∏

i=2

n∏

j=i+1

Φϕ(µ̂ij)

⎞

⎠
2

.

The assertion follows. �

6 Morphism-based Moment Kernels

For given (X,Y ) ∈ D , we can consider the distribution of
Φϕ(µ) across µ ∈ MX,Y , and the MSM problem deter-
mines the maximum. Morphism-based moment kernels, on
the other hand, aim to evaluate the entire distribution.
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6.1 Moments in statistics

When a real-valued random variable X associated with a
probability distribution P is given, the n-th moment of X
is defined by mn =

∫∞

−∞
xnP (x)dx. It is known that

these moments describe the distribution. In fact, we have
that m1 is the mean and m2 − m2

1 is the variance, but
the power of moments is much more. Under some reason-

able mathematical assumption, a Fourier transform P̂ (t) =∫∞

−∞
eitxP (x)dx of P (x) is Taylor-expanded as

P̂ (t) =
∞∑

n=0

tn

n!

∫ ∞

−∞

xnP (x),

and the coefficients of degree n is identical to mn. In other
words, the series of moments uniquely determines the dis-
tribution P (x). Based on this understanding, we introduce
morphism-based moment kernels as follows

Morphism-based Moment Kernel (MMK)✓ ✏
For X,Y ∈ D , we define an n-th moment kernel as

Kn(X,Y ) =
∑

µ∈MX,Y

Φϕ(µ)
n.

✒ ✑
K0(X,Y ) is |MX,Y |, while

K1(X,Y )
K0(X,Y ) and

K2(X,Y )
K0(X,Y ) −

(
K1(X,Y )
K0(X,Y )

)2

yield the mean and the variance of the distri-

bution of Φϕ(µ). For the unique determination, we have

Theorem 5 For X,Y ∈ D , if |Φϕ(µ) | µ ∈ MX,Y }| = n
holds, K0(X,Y ), . . . ,Kn−1(X,Y ) uniquely determines the
distribution of Φϕ(µ).

Proof. We denote the distinct values of Φϕ(µ) by
{x1, . . . , xn} and let Ni be the cardinal number of Ni =
|{µ ∈ MX,Y | Φϕ(µ) = xi}|. Then, we have

⎛
⎜⎜⎝

K0(X,Y )
K1(X,Y )

...
Kn−1(X,Y )

⎞
⎟⎟⎠ =

⎡
⎢⎢⎣

1 . . . 1
x1 . . . xn

...
. . .

...

xn−1
1 . . . xn−1

n

⎤
⎥⎥⎦

⎛
⎜⎜⎝

N1

N2

...
Nn

⎞
⎟⎟⎠

= M

⎛
⎜⎜⎝

N1

N3

...
Nn

⎞
⎟⎟⎠ .

detM =
∏

i>j(xi − xj) �= 0 implies the assertion. �

Use of kernels to analyze structured data has been inten-
sively studied. The first important contribution in the liter-
ature was the convolution kernel by (Haussler 1999): For
two finite sets S and T , the convolution kernel is defined by
KC(S, T ) =

∑
(x,y)∈S×T k(x, y) and is positive definite, if

k(x, y) is positive definite. The convolution kernel is gen-
eralized into mapping kernel (Shin and Kuboyama 2008),
which is in the form of KM (S, T ) =

∑
(x,y)∈M k(x, y) for

M ⊆ S × T , and have shown the necessary and sufficient
condition for KM to be positive definite. From Theorem 3
of (Shin and Kuboyama 2010), Theorem 6 is derived.

Theorem 6 If morphisms are transitive and ϕ is positive
definite, Kn(X,Y ) is positive definite.

Many kernels known in the literature can be restated as
0-th morphism-based moment kernels. The all sequences
kernel (Shawe-Taylor and Cristianini 2004) for strings and
the elastic kernel (Kashima and Koyanagi 2002) for trees
are typical examples, but we have many more. To compute
morphism-based moment kernels of higher degrees, the the-
ory of partitionable kernels (Shin 2011) can be used.

6.2 Relation to MSM problems

Theorem 7 not only indicates the relation with MSM prob-
lems but also implies that moment kernels of too high de-
grees can have only the same information as maxΦϕ(µ).

Theorem 7 If Φϕ(µ) > 0 for all µ ∈ MX,Y , we have

max{Φϕ(µ) | µ ∈ MX,Y } = lim
n→∞

Kn(X,Y )1/n.

Proof. Because max
i=1,...,k

ai = lim
n→∞

1

n
log

k∑

i=1

enai ,

ΦM
ϕ (X,Y ) = lim

n→∞

1

n
log

∑

µ∈MX,Y

en log Φϕ(X)Y µ

= lim
n→∞

logKn(X,Y )1/n.

holds. �

7 Future work
Although the effectiveness of our framework has been al-
ready proven through some experiments, we will run exper-
iments in a larger scale with a wider variation of machine
learning methods including but not limited to distance, mul-
tiple alignment, pattern extraction and kernel. For this pur-
pose, we have a plan to develop utility programs that analyze
an input dataset exhaustively and consistently by means of
the morphism distance, the morphism-based pattern extrac-
tion and the moment kernels and others derived from appro-
priately parameterized pairs of (M, ϕ). For real application
of this utility, the user will be able to select the most appro-
priate method based on the output of the utility and can use
it for further analysis.
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