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[1] A new physical mechanism that is potentially relevant for the equilibrium
morphodynamics of tide-dominated estuaries and in understanding the occurrence of
lateral shoals in these systems is identified. The mechanism acts in relatively straight
and wide channels (width of the order of the horizontal tidal excursion length) in
which both external overtides and the Coriolis force affect sediment transport. This is
investigated by analyzing an idealized model, which consists of the 3D shallow water
equations, mass conservation for suspended load, and a bed evolution equation. The
model is forced by a prescribed depth-averaged tidal current. It is demonstrated that,
when viewed in the direction of the flood flow, a flood (ebb)-dominant current
generates a net cross-sectional sediment transport to the left (right) in the Northern
Hemisphere. A morphodynamic equilibrium is established by a counteracting dispersive
sediment flux, generated by shear stresses that increase toward shallower water. This
dispersive flux is much larger than the flux due gravitational downslope effects. The
equilibrium bed profile has a constant slope in the lateral direction that varies as
cos(j), where j is the phase difference between the M2 and M4 external horizontal tide.
Hence, the smallest depths are found on the left (right) in case of a flood (ebb)-dominant
current. Typical cross-channel depth differences may be as large as several meters.
Velocity data collected in the Dutch Western Scheldt estuary are used to tune the
hydrodynamic parameters in the model. Analysis of the bathymetric data seems to
confirm the qualitative results of the model. INDEX TERMS: 4235 Oceanography: General:

Estuarine processes; 4508 Oceanography: Physical: Coriolis effects; 4558 Oceanography: Physical:

Sediment transport; 4560 Oceanography: Physical: Surface waves and tides (1255); KEYWORDS:

equilibrium, morphodynamics, tidal channels, coriolis
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1. Introduction

[2] Many tidal inlets and estuaries exhibit complex mor-
phological patterns consisting of channels and shoals with
strong spatial and temporal variability. As a prototype
example one may consider the Western Scheldt (WS)
estuary [Van den Berg et al., 1990; Jeuken, 2000], which
is situated at the outermost south-west part of Netherlands.
On length scales of the order of the tidal excursion length
(typically 10–20 km) the WS banks show meandering
behavior. At relatively straight parts of the tidal channels
and at their mutual intersections, so-called thresholds are
found. These thresholds are regions of enhanced deposition
which show fast shoaling when left to their own device.
Both from a management and scientific point of view it is
important to understand (and eventually predict) the behav-
ior of these features.
[3] Traditionally, empirical and semiempirical models [cf.

De Vriend, 1996, and references therein; Van de Kreeke,

1998] have been used to predict the response of tidal
embayments to changes in external conditions. Such models
are based on empirical relationships between various macro-
scale quantities characterizing the embayment. They are
useful for long-term predictions, but they are not suitable to
gain insight.
[4] The latter can be achieved by using quasi-realistic or

complex process-oriented models, which describe the water
motion, sediment transport and the evolution of the seabed
according to basic physical principles. It has been shown
[Wang et al., 1995; Verbeek et al., 1999] that complex
numerical models, based on a quasi-3D description of the
water motion and sediment transport, are able to simulate
many characteristics of observed morphological phenomena
in tidal embayments. These models are successful for simu-
lation periods up to several decades; the authors of these
papers attribute the inaccuracies on the longer term to the lack
of process knowledge, in particular about 3D processes.
Indeed there are indications, both from field data and model
studies, that channels and thresholds arise fromgenuine three-
dimensional processes. For instance, numerical simulations
[Verbeek et al., 1999] suggest that secondary circulations due
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to curvature are important for the existence of thresholds.
This is in agreement with the outcome of field observations
[Jeuken, 2000] which also indicate that 3D sediment lag
affects appear to be important for threshold dynamics.
[5] Although complex 3D models will be the ultimate

tool to be used for simulating the morphodynamics of tidal
embayments, their success will highly depend on under-
standing and incorporating the essential physical mecha-
nisms. For example, the formulation of the turbulent
exchange of momentum and sediment in the water column
and the bottom boundary conditions (for the shear stress and
for the erosion and deposition fluxes) are crucial elements
of such a model.
[6] These arguments motivate the study of idealized proc-

ess-oriented models, in which highly schematized geometries
and simplified versions of the full equations of motion are
considered. Idealized models of tidal embayments have been
mainly used in the context of depth-averaged formulations.
With regard to the tidal motion Speer and Aubrey [1985],
Friedrichs and Madsen [1992], Friedrichs and Aubrey
[1994] and Lanzoni and Seminara [1998] have shown the
importance of internally generated overtides, bottom friction,
width convergence and the formulation for the frictional drag
at the bottom. Idealized depth-averaged morphologic models
for semienclosed tidal embayments were considered by
Schuttelaars and De Swart [1996], Schuttelaars and de
Swart [1999], Schuttelaars and de Swart [2000], De Jong
and Heemink [1996] and Van Leeuwen et al. [2000]. They
demonstrate that these models allow for primary morphody-
namic equilibria which are characterized by a steady bottom
profile with no structure in the cross-channel direction. For
such systems it has been shown explicitly that channels and
shoals develop as a result of the inherent instability of the
primary equilibrium. For a short tidal embayment (length
much smaller than the tidal wavelength) these morphody-
namic equilibria describe a spatially uniform tidal motion
over a bottom which slopes upward when moving from the
entrance to the landward boundary, where a zero mass flux
condition is applied. For longer embayments more concave
bottom profiles are obtained. The properties of such equi-
libria, both with respect to tidal motion and bottom structure,
appear to compare rather well with field observations [Schut-
telaars and de Swart, 2000].
[7] A 3D idealized morphodynamic model of a tidal

channel was studied by Seminara and Tubino [1998]. They
considered the initial formation of bars in a channel with
vertical nonerodible walls. They limited their investigation
to a local analysis, i.e., they considered a stretch of the
channel which scales with the channel width. This length
scale was considered to be much smaller than any other
longitudinal length scale, including the channel length, the
tidal wavelength and the tidal excursion length (i.e., the
horizontal distance traveled by a fluid particle during one
tidal cycle with maximum velocity). As a result the effect of
Coriolis forces could be neglected. Moreover, they assumed
a frictionally dominant tidal channel (frictional decay time-
scale much smaller than the tidal period) and included only
a single external M2 tidal constituent. They observed that
their primary morphodynamic equilibrium constitutes a
horizontal bottom.
[8] However, the model of Seminara and Tubino [1998] is

not directly applicable to embayments such as the WS. One

reason is that this embayment is not frictionally dominant (in
fact local inertial terms in the momentum equations have a
similar magnitude as frictional terms). Furthermore, its width
is not small compared to the tidal excursion length; this
implies that effects of Earth rotation cannot be a priori
neglected, because the Coriolis force (driving the circulation
superimposed on the primary depth-averaged current) has the
same order of magnitude as the inertial contributions. Finally,
in the WS significant overtides are present which enter the
domain through the seaward boundary.
[9] In the present paper we will extend the model of

Seminara and Tubino [1998] by including the effects of
Coriolis forces, external overtides and local inertial terms.
The main objective is to describe a new physical mechanism
which is potentially important to understand the formation
of lateral shoals in strongly tidal estuaries. Such lateral
shoals not only occur in the WS, but also in, e.g., James
River [Valle-Levinson et al., 2000]. The mechanism
involves the joint action of Coriolis force and external
overtides in driving transverse circulations of water and of
sediment. It will be shown that, under these circumstances,
lateral shoals must be present to maintain morphodynamic
equilibrium. This will be demonstrated explicitly with a
model in which it is assumed that the current and bottom are
uniform in the along-channel direction. Knowing the prop-
erties of this morphodynamic equilibrium is also crucial to
model and understand the formation of more complex
bottom patterns which have both a lateral and longitudinal
structure. Hence the present study serves as a first step
toward this understanding.
[10] The paper is organized as follows. In section 2 the

model is described and in section 3 the modeled tidal current
profiles are compared with field data of the WS. In section 4,
it is shown that a morphodynamic equilibrium under the
combined effect of Coriolis force and external overtides
cannot constitute a horizontal bottom. Also, a method to
obtain such nonhorizontal equilibrium profiles is outlined
and its results are presented in section 5. To gain support for
these results, they are compared with bathymetric data from
the WS estuary. Here the emphasis is, of course, on global
phenomena, as the present model is not designed to yield a
detailed description of the morphology of the WS. Section 6
discusses the model results and outlines possible future work
while section 7 briefly mentions the main conclusions.

2. Model Formulation

2.1. Model Setup

[11] We consider an infinitely long channel of constant
width B with straight, nonerodible side banks at y = 0, B.
The water motion is driven by external M2 and M4 tides,
with s = 1.4 � 10�4s�1 denoting the angular frequency of
the M2 tide. The characteristic tidal velocity amplitude in
the channel is U � 1 ms�1. It is assumed that B is of the
same order of magnitude as the horizontal tidal excursion
length lm = U/s. The bottom is situated at z = zb, measured
with respect to a horizontal reference plane at z = 0, while
the free water surface is given by z = z (x, y, t) (see Figure 1).
The longitudinal (i.e., along-channel) direction is denoted
by x. The model is local in that it does not describe an entire
tidal embayment: rather, we consider a longitudinal portion
of a few tidal excursion lengths.
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[12] As we are interested in genuine 3D morphodynam-
ics, the fluid flow is described by the so-called 3D shallow
water equations which allow for vertical velocities but still
assume hydrostatic equilibrium. Since we consider WS-type
estuaries where the sediment consists of fine sand and tidal
velocities reach values up to 1 m s�1, the sediment is mainly
transported as suspended load. Finally, net (i.e., tidally
mean) divergences and convergences of sediment fluxes
determine the bottom evolution. Here we are interested in
large-scale bottom structures (length scales of the order of
the tidal excursion length). The so-called morphodynamic
timescale, on which these bottom patterns evolve, is much
longer (order of decades) than the tidal period. The channel
geometry explicitly enters the model through impermeabil-
ity of the sidewalls while bottom and surface boundary
conditions are included by a partial slip assumption and a
stress-free surface condition, respectively.
[13] Finally, the model adopts a rigid lid approximation,

which implies that water level z and its spatial gradients
may be neglected everywhere except for the terms that
describe the forcing by the external tide. This implies that
the characteristic scale of sea surface elevations is consid-
ered to be small with respect to the typical water depth.

2.2. Model Equations

[14] We will now briefly discuss the model equations. We
consider equilibrium morphodynamics in a system with
along-channel symmetry, i.e., local longitudinal variations
will be omitted except for water level gradients which
describe forcing by the externally imposed tide as well as
effects induced by the Coriolis force.
2.2.1. Tidal Hydrodynamics
[15] The hydrodynamics of the model is governed by the

so-called three-dimensional shallow water equations
[Vreugdenhil, 1994]:
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where u, v and w denote the along-channel, lateral and
vertical velocity components, respectively, while z is the
water level with respect to the reference plane (see Figure
1). The quantities f and g are the Coriolis parameter and the
gravitational acceleration. It will be assumed henceforth that
the vertical turbulent viscosity coefficient Av is time-
independent. Measurements have shown that time-indepen-
dent turbulent viscosity coefficients in general can repro-
duce velocity profiles and bottom shear stresses quite
satisfactorily [e.g., Wiberg, 1995], at least for circumstances
when the flow is not strongly turbulent [Davies and Villaret,
1999]. For the time being, it is also assumed that Av does not
vary throughout the water column. The discussion about the
dependence of Av on the water depth will be postponed until
section 5. At the water surface z = 0 we assume the water
motion to be stress free and to obey the kinematic boundary
condition:

Av

@u

@z
¼ Av

@v

@z
¼ 0; w ¼ 0 at z ¼ 0; ð4Þ

the latter statement being a result of the rigid lid
approximation.
[16] The boundary conditions at the bottom (z = zb) are

given by the so-called partial slip condition while the
vertical velocity is found from impermeability:
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The parameter s is the so-called stress parameter. It can be
used to tune the bottom boundary condition to mimic any
situation ranging from a stress free bottom (s = 0) to a no-
slip bottom (s ! 1). Both Av and s will hereafter be
referred to as friction parameters. The partial slip model was
already applied to tidal flows by Prandle [1982] and Maas
and van Haren [1987], but its use goes back a long way [see
Rozovskii, 1961, and references therein]. Physically, it is a
relation between shear stress and velocity at the top of the
bottom boundary layer rather than at the true boundary z = zb.
However, as the stress throughout the lower layer is
approximately constant, equation (5) yields the stress that
acts on the bed and governs erosion of sediment.
[17] In the lateral direction, sidewall impermeability has

to be incorporated. Strictly speaking, this implies v(0) =
v(B) = 0 at y = 0, B which in turn requires detailed
knowledge of (thin) viscous boundary layers near the bank
and the incorporation of horizontal dispersion terms in the
momentum equations (1)–(2). As an alternative, we exclude
these horizontal dispersion terms and thereby do not inter-
pret y = 0, B as the position of the sidewalls, but as the
positions where the interface between bulk flow and side-
wall boundary layers is situated. In that case, impermeabil-
ity indicates that the lateral water flux should be zero at any
moment, i.e.,

�v ¼ 0 at y ¼ 0; B; ð6Þ

where the vertical average is defined for any quantity Q(x, y,
z, t) as

�Q 
 1

�zb

Z 0

zb

Qdz: ð7Þ

Figure 1. Sketch of the channel geometry in order to
illustrate the definitions of water level and bottom depth.
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Now, from equations (3)–(5) it follows that @�v/@y = 0,
hence impermeability (6) implies

�v ¼ 0 everywhere: ð8Þ

[18] Finally, we remark that the external tidal forcing in
equations (1) and (2) needs to be specified in order to have a
closed formulation for the hydrodynamics. This is done by
prescribing the vertical average of the externally generated
tidal flow:

�u ¼ U cosðstÞ þ b cos 2st � jð Þ½ �; �v ¼ 0; ð9Þ

Here, as stated before, U and s = 1.4 � 10�4 s�1 denote the
velocity amplitude and angular frequency of the external M2

tide, respectively. The properties of the external M4 tide are
completely specified by its relative strength b and the phase
difference j with respect to the external M2 tide. For typical
WS situations, U  1 m s�1} and b  0.1 while varies j
gradually along the estuary [Van den Berg et al., 1990;
Jeuken, 2000].
2.2.2. Sediment Dynamics
[19] Next, let us elaborate on the transport of sediment in

suspension. This is described by the concentration equation
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where the settling velocity ws and the lateral dispersion
coefficient Kh will be assumed constant hereafter; typical
values for these model parameters are ws = 0.02 m s�1 (fine
sand, grain size 200 mm) and Kh = 20 m2 s�1, respectively.
Furthermore we will assume that vertical dispersion
coefficient Kv has the same vertical structure as Av, i.e.,
Kv = Av; this agrees qualitatively with results from literature
[e.g., Van Rijn, 1984] which state that Kv = nAv where n is
of order unity. The brackets (hi) denote tidal average which
is defined for any quantity Q(x, y, z, t) as

hQi 
 1

P

Z P

0

Qdt; ð11Þ

where P = 2p/s denotes the period of the M2 tide.
[20] Note that in equation (10) horizontal dispersion of

only the residual concentration is taken into account. This is
a necessary mechanism, as will be now explained. It has
been mentioned before that large-scale bottom evolution
occurs on timescales that are much longer than the tidal
period. Hence this evolution is governed by tidally averaged
sediment fluxes and divergences thereof rather than by their
instantaneous values. Along the lines of reasoning that have
been outlined above for fluid flow, it is then found that
sidewall impermeability to sediment implies that the tidal
mean of the lateral sediment mass transport per unit width
F should vanish at y = 0, B, i.e.,

F 
 zb hvci � Kh

@h�ci
@y

� �
¼ 0 at y ¼ 0; B: ð12Þ

In general, the advective part hvci of F is nonzero, despite
the fact that �v = 0 (see equation (8)). Thus equation (12)

indicates that impermeability can only be established by
including lateral dispersion of residual concentration while
no such effect is required regarding the time varying part of
c. This is our main motivation to include the first term on
the r.h.s. of equation (10).
[21] Let us now turn to the vertical boundary conditions

for equation (10). At the water surface z = 0 no sediment
particles are leaving or entering through the boundary,
which is expressed by the statement

wscþ Kv

@c

@z
¼ 0 at z ¼ 0: ð13Þ

At the bottom, the normal component of the sediment flux
entering the fluid is given by the difference between erosion
and deposition, S?:

�nyKh

@hci
@y

� nz wscþ Kv

@c

@z

� �
¼ S?; ð14Þ

at z = zb. Here n̂ = (0, ny, nz) is the upward directed unit
normal vector at the bottom.The erosion-deposition flux

S? ¼ wsðca � cbÞ; ð15Þ

is related to the sediment concentration cb at the bottom and
the so-called reference concentration ca. The latter is a
function of the magnitude of the bed shear stress t = r
Avk@(u, v)/@zkz=zb, where r is the density of the water, and is
parameterized as [Dyer, 1986, p. 168]

ca ¼ grs 1� pð Þ t
tc

: ð16Þ

Here g  7.8 � 10�5, while rs, p and tc denote the density
and porosity of the sediment and the critical shear stress for
erosion, respectively. For the sediment under consideration
(fine sand), typical values for the latter three parameters are
rs = 2650 kg m�3, p = 0.4 and tc = 0.1 N m�2, respectively.
In obtaining (16) from Dyer’s [1986] expression, it has been
assumed that t � tc throughout the tidal cycle.
2.2.3. Bottom Evolution
[22] Finally, the time evolution of the bed zb(x, y, t) is

found from

@zb
@t

¼ � hS?i
rs 1� pð Þ ; ð17Þ

where the r.h.s. of equation (17) describes the bottom
change due to net deposition of suspended sediment. This
term can also be written in flux form by deriving an
expression for hS?i from integrating the concentration
equation (10) over the depth and applying boundary
conditions (13) and (14). In using equation (17) it is
assumed that the tidal period is small compared to the
timescale of bottom evolution, as is the case for the
features studied in this paper, see also section 2.1. As a
result, bottom evolution is not sensitive to the instanta-
neous rate of erosion and deposition but rather to their tidal
means: this is expressed by the tidally averaged erosion-
deposition function on the r.h.s. of equation (17). As we
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consider equilibrium morphodynamics in this paper, we
take hS?i = 0.

3. Friction Parameters From Field Data

3.1. Data Processing and Fitting Procedure

[23] We have used data of velocity measurements carried
out in the WS estuary in order to obtain realistic estimates
for the parameters Av and s. To this end, a number of 9 data
sets from different field campaigns during the period 1970–
1981 were processed. The specific emphasis was on the
vertical structure of the M2 tidal velocity field, being the
dominant component of the water motion. The sets all
comprised a full M2 tidal period so that it was possible in
principle to perform harmonic analysis. Typically, the sets
contained data that were taken at least at an hourly fre-
quency while information about the vertical structure was
inferred from five points inside the water column. The error
in the velocity date was not specified and was estimated at 5
cm s�1. The lowest registration point was located at
approximately 1 m above the bottom: this is usually
believed to be the level where the top of the bottom
boundary layer resides, i.e., where the partial slip condition
may be applied.
[24] Figure 2 shows the location of the field sites within

the WS estuary. Half of the data sets (M152-M165, see also
Table 1) were taken around the so-called region of Bath, the
rest was more spread over the estuary.

[25] The data described above were processed as follows.
First, the direction of the main tide was determined as the
direction in which the tidally averaged kinetic energy was
maximum. Second, all instantaneous velocity measure-
ments were projected along this direction. Next, these
measurements were interpolated on an equidistant, time-
independent vertical grid of points. Finally, the M2-compo-
nent Û(z, t) of the resulting signal was obtained by
harmonic analysis with the result

Û z; tð Þ ¼ Ûc zð Þ cos stð Þ þ Ûs zð Þ sin stð Þ:

The model parameters Av and s were obtained by a least
squares fitting of the theoretical profile u(z, t), that is a
solution to equations (1)–(5) for flow over a horizontal
bottom, to Û(z, t). This theoretical profile (including the
effects of the Coriolis force) is discussed by Prandle
[1982] and Maas and van Haren [1987].
[26] The motivation for choosing this procedure is that,

as stated before, the M2 tidal constituent dominates the
water motion in the WS. Furthermore, it is assumed that
this M2 tide is mainly due to the interaction of the tidal
wave with the large-scale geometry of the WS. In other
words, generation of M2 tidal currents due to local top-
ography and nonlinear interactions between different tidal
constituents are assumed to be an order of magnitude
smaller. As long as local topographic variations are small

Figure 2. Location of the field sites inside the WS from which the data discussed in this paper are
taken. For relation between markers and data sets, see Table 1. The units on the axes are meters.

Table 1. Vertical Viscosity Av and Friction Parameter s as Derived From the Data Set Described in the Main Texta

Data Set Symbol H, m Av0, m
2 s�1 Av/(sH

2) s0, m s�1 s0/(sH )

M32 * 12.90 0.207 ± 0.038 8.89 ± 1.64 0.017 ± 0.0011 9.57 ± 0.62
M104 � 13.32 0.062 ± 0.007 2.48 ± 0.29 0.007 ± 8 � 10�4 5.76 ± 0.45
M105 6 10.19 0.069 ± 0.016 4.73 ± 1.11 0.007 ± 6 � 10�4 4.92 ± 0.41
M115 . 8.61 0.093 ± 0.020 8.99 ± 1.90 0.011 ± 7 � 10�4 8.73 ± 0.60
M152 5 9.23 0.110 ± 0.022 9.19 ± 1.86 0.008 ± 4 � 10�4 6.04 ± 0.28
M160 4 18.86 0.185 ± 0.032 3.71 ± 0.64 0.012 ± 9 � 10�4 4.71 ± 0.33
M161 ~ 11.53 0.096 ± 0.021 5.18 ± 1.10 0.007 ± 4 � 10�4 4.24 ± 0.26
M162 & 7.48 0.077 ± 0.023 9.83 ± 2.93 0.007 ± 5 � 10�4 6.73 ± 0.52
M165 8 19.24 0.375 ± 0.066 7.24 ± 1.28 0.024 ± 0.0016 8.97 ± 0.63
aHere, ‘‘symbol’’ refers to the markers used in Figure 2, while H denotes the tidally averaged water depth.
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compared to the mean water depth (as is the case for all
sites shown here) this is a good approximation.

3.2. Values of Partial Slip Parameters

[27] Figure 3 shows a typical result for vertical velocity
profiles that were obtained from fitting the partial slip model
to the data. It appears that the simple partial slip model is
suitable to model the gross characteristics of the observed
tidal velocity field, and thereby of the bed shear stress and
the resulting sediment pick-up function. Of course, for a
more detailed description a much more sophisticated turbu-
lence closure scheme is needed.
[28] Table 1 shows the results for the partial slip param-

eters Av and s. We see that the dimensional values for Av
show significant variation, even when taken in more or less
the same region of the WS (as is the case for M152-M165).
Typically, we find turbulent viscosity coefficients that have
dimensional values between 0.06 and 0.35 m2 s�1. This
strong variation may be attributed to the complex local
bathymetry, the neglect of advective acceleration terms in
the adopted theoretical profile and the short time record of

the data sets. The dimensional value of the stress parameter s
shows milder variation: it varies from 0.007 to 0.024 m s�1.
When expressed nondimensionally as Av/(sH

2) and s/(sH ),
whereH is the local water depth, the friction parameters have
values between 2.5 and 10, with a preference for higher
values (above 5). Dimensionless values for Av and s quoted
elsewhere in the literature [Prandle, 1982; Maas and van
Haren, 1987] refer to North Sea data and indicate that 1 �
Av/(sH

2) � 5 and 0.1 � s/(sH ) � 10. Hence the results
displayed in Table 1 seem to imply that vertical viscosity
plays a larger role in the WS as compared to the North Sea,
while its stress parameter values are at the high end of the
presumed range 0.1 � s � 10.
[29] The bathymetric contribution to the variation in the

friction parameters may be modeled by allowing Av and s to
depend upon the local water depth H. This can be justified
by a mixing length argument, which leads to a power law
scaling [Friedrichs and Hamrick, 1996], i.e.,

Av ¼ Av0

H

H0

� �n

; s ¼ s0
H

H0

� �m

:

Figure 3. Comparison between measurements (open circles) and best fit for partial slip (solid line) for
(a) cosine and (b) sine component of the fit (data set M162). The error bars reflect a presumed error of 5
cm s�1 in the data while H denotes the tidally averaged water depth. The lowest data point is at 1 m
above the true bottom.
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When applying this to the present data set, a power law fit
yields

Av0 ¼ 0:096� 0:019ð Þ m2s�1;

s0 ¼ 0:0087� 0:0015ð Þms�1;

n ¼ 1:28� 0:48 ; m ¼ 0:88� 0:40;

where H0 = 10 m was chosen. We remark that the value for
n is in agreement with the range n = 1–1.5 which
Friedrichs and Hamrick [1996] report for well-mixed
estuaries. Finally, Table 2 shows the properties of the
external M2 and M4 tides (cf. equation (9)) that follow from
the data set. We see that the typical M2 tidal amplitude is of
the order of 1 m s�1 while an average value of the overtide
strength b is approximately 0.2.
[30] Note that the values of the phase difference j show a

rather strong spatial variation, as can be seen from the sets
M152-M165 that are located close together. This is prob-
ably due to the excitation of internal overtides by tide-
topography interaction. As the present model requires input
related to external tides, we have taken j values from a one-
dimensional (depth and width averaged) WS-model by
Schuttelaars and de Swart [2000]. The values of U and b
listed in Table 2 show good agreement with the results from
this model.

3.3. Scaled and Default Parameter Values

[31] Table 3 shows parameter values that are representa-
tive for typical WS circumstances. These values are taken to
be default in the remainder of this paper and will always be
assumed to apply, unless stated otherwise. Note that some
parameters are also expressed in nondimensional units for
future reference. Finally, we restate the power law depend-
ence of Av and s on water depth �zb

Av ¼ Av0

zb

zb0

� �n

; s ¼ s0
zb

zb0

� �m

; ð18Þ

where hereafter the parameters are taken from Table 3 with
zb0 = �H = �10 m.

4. Equilibrium Bottom Profiles

[32] Due to the Coriolis force, the hydrodynamics in
longitudinal and lateral direction are coupled. As explained
in the introduction, it is to be expected that Coriolis effects
will also affect morphodynamics. For instance, when con-
sidering equilibrium bottom profiles one may expect non-
horizontal bottom configurations to occur. Here we will

show that our simple channel model does allow for a
horizontal equilibrium bottom provided that there is only
one tidal component in the flow or no Coriolis effects. For
the more realistic case of external overtides and influence of
Earth rotation, a laterally sloping bottom appears inevitable.
Of course, this has profound implications for, say, the
stability properties of bottom patterns.
[33] As can be seen from equations (14) and (17) a

morphodynamic equilibrium is defined by a balance
between net erosion and deposition fluxes at the bed level.
From averaging of the concentration equation (10) over
depth and tidal period it then follows that the net lateral
sediment mass flux per unit width F , defined in equation
(12), should satisfy

F ¼ zb hvci � Kh

@hci
@y

� �
¼ 0 everywhere: ð19Þ

This condition will be used hereafter as a criterion for
morphodynamic equilibrium.

4.1. Horizontal Bottom Profiles

[34] For the case of a horizontal bottom (zb = �H =
constant, i.e., no cross-channel structure) with a single
external tidal forcing, the 3D shallow water equations allow
for a fluid motion with zero vertical velocity and horizontal
velocities that depend only on time and depth as follows:

u z; tð Þ ¼ uc zð Þ cos qstð Þ þ us zð Þ sin qstð Þ; ð20Þ

vðz; tÞ ¼ vcðzÞ cos qstð Þ þ vs zð Þ sin qstð Þ; ð21Þ

where q is an integer such that qs is the frequency of the
external tide. In that case nonlinear advective terms are
absent from (1) and (2); for explicit forms of (20) and (21),
see, e.g., Maas and van Haren [1987]. When several
external tidal modes are present, the resulting velocity field
is obtained by linear superposition of modes with the
structure as given in (20) and (21). The cross-channel flow
(21) arises from the interaction of the along-channel motion
with the Coriolis force and has the same frequency as the
imposed external tide [Prandle, 1982].
[35] It will be shown that the above 3D flow also

corresponds to a morphodynamic equilibrium provided that
only a single external tide is present. First we note that the
flow, and thereby the corresponding concentration, has no

Table 2. Characteristics of the Vertically Averaged External Tide

as Derived From Field Data

Data Set U, m s�1 b j

M32 0.99 ± 0.05 0.19 ± 0.05 �1.70
M104 1.07 ± 0.05 0.24 ± 0.05 �3.15
M105 0.77 ± 0.05 0.31 ± 0.07 �1.59
M115 0.91 ± 0.05 0.31 ± 0.06 �1.62
M152 1.30 ± 0.05 0.10 ± 0.04 �2.23
M160 0.97 ± 0.05 0.21 ± 0.05 0.63
M161 1.02 ± 0.05 0.08 ± 0.05 �0.69
M162 0.75 ± 0.05 0.09 ± 0.07 �0.60
M165 0.93 ± 0.05 0.17 ± 0.05 0.17

Table 3. Dimensional and Dimensionless Values for Default

Parameter Values Adopted in This Papera

Quantity
Dimensional

Value
Nondimensional

Scaling Scaled Value

H 10 m – 1.0
U 1 m s�1 – 1.0
b – – 0.2
Av0 0.084 m2 s�1 Av0/(sH

2) 6.0
s0 0.0084 m s�1 s0/(sH) 6.0
Kv0 0.084 m2 s�1 Kv0/(sH

2) 6.0
Kh 20.0 m2 s�1 sKh/U

2 0.0028
ws 0.02 m s�1 ws/(sH) 14.3
m – – 1
n – – 1
aFor further explanation, see main text.
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structure in the cross-channel direction. Consequently, the
contribution of dispersive flux in equation (19) vanishes.
Next, we use the fact that the concentration equation
(equation (10)) is forced by the magnitude of the bottom
shear stress rather than its direction. As a result, the sedi-
ment concentration can be written as a Fourier series which
contains only a residual term, a contribution at frequency
2qs and its overtides (with frequencies 4qs, 6qs, etc.).
There is, however, no contribution at frequency qs itself.
From (21) we then find that hvci vanishes identically which
implies F = 0, hence from (19) it follows that this is a
morphodynamic equilibrium.

4.2. Overtides and Nonhorizontal Bottom Profiles

[36] From the analysis presented in section 4.1 it follows
that hvci will generally not vanish if an external overtide is
simultaneously present along with Coriolis effects. In that
case, both v and c have contributions that oscillate at
frequency 2qs (i.e., that of the external overtide), yielding
a nonvanishing hvci. Consequently, an equilibrium bottom
must show lateral variation in order to generate a dispersive
sediment flux, or a sediment flux induced by gravitational
(downslope) effects, to compensate for the net advection of
sediment (second term on r.h.s. of equation (19)).
[37] For completeness, we point out that a horizontal

equilibrium bed is always recovered (even in the presence
of external overtides) when Coriolis effects are absent since
the lateral circulations that drive the nonzero lateral sedi-
ment flux will then not occur. We want to emphasize that
the tilting bottom is a robust phenomenon. In general, it
only requires the presence of both Coriolis force and an
even external overtide of the main tidal forcing. Parameter-
izations of bottom shear stress are only required to depend
upon the magnitude of velocity, but this is seldom a severe
restriction.

4.3. Computation of the Lateral Bottom Variation

[38] In the remainder of this section, we will outline how
the lateral variation of the equilibrium bottom can be
obtained when the channel system is forced with an M2

tide and an M4 overtide as specified in equation (9).
[39] We consider a tidal channel of width on the order of

the tidal excursion length lm = U/s, which is small com-
pared to the Rossby radius of deformation R =

ffiffiffiffiffiffiffiffiffiffiffi
gHð Þ

p
/f.

We therefore expect that the lateral bottom profile of the
channel can be written as a Taylor expansion around y = B/2
which can be approximated by the linear relation:

zb ¼ �H þ bh yð Þ ;
h yð Þ
H

¼ l
y

B
� 1

2

� �
; ð22Þ

the error of truncation being O((lm/R)
2). Thus the problem

of solving the bottom profile is reduced to finding the lateral
tilt l.
[40] Apart from (22) it is also assumed that the imposed

M4 overtide is weak (i.e., b � 1). As a result, all quantities
can be expanded as

Q ¼ Q0 þ bQ1 þ bQ0 y; z; tð Þ; ð23Þ

where subscripts 0 and 1 denote the known solutions for a
single M2 and M4 tide over a horizontal bottom (cf.

equations (20) and (21)), respectively, while primes refer to
the correction terms due to the sloping bottom. Since the
generation of the primed quantities involves interaction with
the zeroth order flow (see below), we will assume them to
containM0,M2 andM4 modes while higher order harmonics
will be neglected.
[41] Finally, we note that the friction parameters Av and s

will be taken to have a power law dependence on the water
depth �zb as indicated by the results of section 3.2 (see
equation (18)). For bed profile (22) this implies that these
quantities can be expressed as

Av ¼ Av0 þ bA0
v yð Þ ; s ¼ s0 þ bs0 yð Þ; ð24Þ

where subscripts 0 refer to values for water depth H while
A0
v( y) = �nAv0h( y)/H and s0( y) = �ms0h( y)/H.
[42] Below, we will first solve the flow induced by the tilt

in the bottom (hereafter referred to as the induced flow).
Next, the corresponding induced sediment distribution is
obtained. Finally, these two features are combined into an
expression for the equilibrium bottom tilt l.
4.3.1. Solution of the Water Motion
[43] Inserting expansions (23), (22) and (24) into equa-

tions (1)–(3) and linearization yields the following equa-
tions for u0, v0 and w0:

@u0

@t
þ v0

@u0

@y
þ w0 @u0

@z
� fv0 ¼ �g

@z0

@x
þ Av0

@2u0

@z2
þ A0

v yð Þ @
2u0

@z2
;

ð25Þ

@v0

@t
þ v0

@v0

@y
þ w0 @v0

@z
þ fu0 ¼ �g

@z0

@y
þ Av0

@2v0

@z2
þ A0

v yð Þ @
2v0

@z2
;

ð26Þ

@v0

@y
þ @w0

@z
¼ 0; ð27Þ

with surface boundary conditions

Av0

@u0

@z
¼ Av0

@v0

@z
¼ w0 ¼ 0: ð28Þ

At the bottom, a Taylor expansion around zb = �H now
gives

Av0

@u0

@z
þ A0

v yð Þ @u0
@z

¼ s0u
0 þ h yð Þ s0

@u0
@z

� Av0

@2u0

@z2

� 	
þ s0 yð Þu0;

ð29Þ

w0 ¼ v0 �H ; tð Þ dh
dy

; ð30Þ

where u0 = (u0, v0) and similarly for u0. The terms between
square brackets account for the change in both the shear
stress and the velocity when moving from the horizontal
level (z = �H ) to the actual bottom level at z = �H + bh.
[44] The impermeability condition (equation (8)) implies

for the induced lateral velocity:

v0 ¼ v0 �H ; tð Þ h yð Þ
H

; ð31Þ

where linearization implies that henceforth �� should be
interpreted as (7) with zb = �H.
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[45] The induced flow is forced by the interaction
between the external M2 tide and the tilting bottom: this is
expressed by the bottom boundary conditions (29) and (30).
Next, the M0 and M4 components are excited through the
advection terms in the momentum equations (25) and (26)
by interaction between the inducedM2 flow and the external
M2 tide. Hence, the M0 and M4 components are generated
indirectly by the bottom tilt: as a consequence, we expect
them to be weaker than the M2 part of the induced flow.
[46] From equations (25)–(27) and the boundary condi-

tions at the bottom it follows that u0, v0 and the induced
water level gradient should have the following spatial
structure:

u0 ¼ dh

dy
Fu z; tð Þ þ h yð Þ

H
Gu z; tð Þ; ð32Þ

and similarly for v0 andrz0. The function Fu(z, t) consists of
a time-independent (M0) part and a contribution at twice the
basic frequency (M4 component), while Gu(z, t) describes
the M2 component of the solution. The induced vertical
velocity w0 only contains an M2 component while its lateral
structure scales with dh/dy rather than h( y)/H. Due to the
linearity of h( y), M6 and higher order tidal constituents
cannot be excited through advection so that the induced
flow only contains M0, M2 and M4 components.
[47] Solution (32) indicates that the lateral structure can

be separated out, meaning that for a single tidal component
the y-dependence drops out of equations (25)–(30). The
results are ordinary differential equations for the vertical
structure of the Fourier coefficients of the solutions. The
latter are solved by standard numerical (spectral) methods.
4.3.2. Solution of the Sediment Concentration
[48] In a similar way as for the fluid quantities, the time

evolution of the induced sediment field is found to be
governed by

@c0

@t
þv0

@c0

@y
þw0 @c0

@z
�ws

@c0

@z
¼Kh

@2hc0i
@y2

þ Kv0

@2c0

@z2
þ K 0

v yð Þ @
2c0

@z2
;

ð33Þ

where the term containing K 0
v(y) =�nKv0h( y)/H stems from

the assumption Kv = Av. The boundary conditions at the
surface and bottom are given by:

Kv0

@c0

@z
þ wsc

0 ¼ �K 0
v yð Þ @c0

@z
; ð34Þ

Kv0

@c0

@z
þ K 0

v yð Þ @c0
@z

¼ �ws�t0 � h yð Þ ws�
@t0
@z

þ Kv0

@2c0

@z2

� 	
;

ð35Þ

respectively, where � = grs (1 � p)/tc. Furthermore the
quantities t0 and t

0 are contributions to the magnitude of the
full stress t. Defining u = (u, v) as the total horizontal
velocity vector, the latter to O(b) can be written as:

t
rAv

@u

@z





















 ¼ rAv0

@u0
@z

þ b
@u1
@z

þ b
@u0

@z
þ b

A0
v yð Þ
Av0

@u0
@z

� �2
" #1=2

¼ t0 þ bt1 þ bt0;

where t0, t1 and t0 are defined according to (23). Their
explicit expressions read:

t0 ¼ rAv0

@u0
@z





















 ; t1 ¼ rAv0t̂0 �

@u1
@z

;

t0Av0t̂0 �
@u0

@z
þ rA0

v yð Þ @u0
@z





















; ;

ð37Þ

respectively, where T̂0 denotes the instantaneous unit vector
of the bottom stress vector T0. To determine the tidal
constituents of t0, one can use the fact that u0 contains M0,
M2 and M4 while T̂0 contains only M2 and its odd overtides.
[49] The induced sediment field is forced, due to the

bottom shear stress, at M0 and even overtides of M2 while
contributions at M2 and odd overtides thereof are excited
through the advection terms in (33). Thus, the M2 compo-
nent of the induced sediment field is generated indirectly so
that we expect this constituent to be weak compared to the
induced M0 and M4 components.
[50] From equations (33)–(35) and (37) it is found that c0

and t0 can be written in a similar way as the induced fluid
variables, namely:

Q ¼ h yð Þ
H

FQ z; tð Þ þ dh

dy
GQ z; tð Þ: ð38Þ

Here, Q is either c0 or t0 The function FQ contains frequency
contributions at M0 and even multiples of the basic
frequency (M4, M8, etc.) while GQ only has contributions
at M2 and its odd overtides. Once again, for each tidal
component the lateral dependence separates out, so that the
induced sediment concentration can be solved in a similar
fashion as the induced water motion.
4.3.3. Equilibrium Bottom Tilt
[51] The net lateral sediment mass flux per unit width F

reads:

F ¼ H hvci � Kh

@hci
@y

� 	

¼ bH hv0c1 þ v1c0i þ hv0c0 þ v0c0i � Kh

@hc0i
@y

� 	

¼ b F 0 þ lF0½ �; ð39Þ

where F 0 = Hhv1c1 þ v1c0i is the nonzero flux induced by
the external tide moving over the horizontal bottom: it
contains the phase difference j between the depth-averaged
M2 tidal velocity �u0 = U cos(st) and the M4 component �u1 =
bU cos(2st � j). The term lF0 gives the correction to this
depth-integrated flux due to the tilting bottom. Here F0 is a
flux which is independent of the bottom tilt and can be
computed from the equations just discussed. From (39), the
equilibrium bottom tilt (F = 0) is found as:

l ¼ �F 0

F0 : ð40Þ

Finally we wish to remark that the a priori assumption of the
bottom profile (22) with a constant slope in the lateralð36Þ
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direction results in a self-consistent solution of the model,
hence its choice is justified a posteriori.

5. Results

5.1. Net Mass Flux Per Unit Width F 0F 0

[52] It appears from the analysis of section 4 that the
equilibrium bottom will have a lateral tilt in case that the
net sediment mass flux per unit width F 0 in equation (39)
is nonzero. As can be seen from its definition this
quantity is due to an asymmetrical external tidal current
(M2 + M4) moving over a horizontal bottom. Therefore
we first show in Figure 4 the dependence of F 0 on the
phase difference between the external M2 and M4 current.
Here the default parameter values for the WS estuary have
been taken, see Table 3. The values on the vertical axis
are scaled with �rsH2U2 so that the maximum value of
F 0 approximately equals 7 � 10 �3 kg m�1 s�1. Thus the
total sediment flux per unit width bF 0 is of the order of
10 �3 kg m�1 s�1.
[53] Note that F 0 varies proportional to cos j. It means

that for strong flood (ebb)-dominated currents, i.e., j = 0 (j
= p) there will be a net advective flux of sediment to the left
(right) when viewing in the flood direction. There are also
two cases (j � p/2 and j � 3p/2) for which F 0 = 0, such
that the equilibrium bottom will be horizontal. This behav-
ior can be understood from the fact that the time dependence
of the currents and concentration are close to those of the
external tides and of the bottom stress, respectively. This
can be seen in Figures 5 and 6. The first shows all four
components of the externally imposed M2 tide; clearly the
along-channel directed cos(st)-component dominates over
the other three contributions. Figure 6 shows the spatial and
temporal variation of the sediment concentration. It appears
that the settling lag timescale is approximately 450 s, which
is much smaller than the tidal period. Thus the sediment
concentration is almost in phase with the bottom stress.
Note also that the typical e-folding depth of the sediment

concentration profile agrees well with the theoretical esti-
mate Kv / ws = 0.4H.
[54] The time behavior of velocity, stress and sediment

concentration are thus approximately given by (see equation
(37); note that Figure 5 implies T̂0  sg(cos (s))):

u0; v0ð Þ / cos stð Þ; ð41Þ

u1; v1ð Þ / cos 2st � jð Þ; ð42Þ

t0; c0ð Þ / j cos stð Þj; ð43Þ

t1; c1ð Þ / sg cos stð Þð Þ cos 2st � jð Þ: ð44Þ

From these expressions it follows that:

hv0c1i /
Z P

0

j cos tð Þj cos 2t � jð Þdt / cos jð Þ; ð45Þ

and similarly for hv1c0i, so that F 0 (j) = hv0c1 þ v0c1i /
cos (j). Note that this qualitative result is firm in that it is
independent of the precise prescription of model para-
meters: only the approximate validity of assumptions (41)–
(44) is required.

5.2. Net Mass Flux Per Unit Width F0F 0 and
Lateral Bottom Tilt

[55] Equation (39) shows that, in order to maintain
morphodynamic equilibrium, the net mass flux F 0 has to
be compensated by a net mass flux lF0. Besides the fact
that F0 is independent of bottom tilt l, as was explained in
section 4.3.3, this term is also independent of the phase
difference j between the external M2 and M4 current. This
is because the induced flow and sediment problem only
involve the external M2 tide.
[56] Note that F0, according to its definition in equation

(39), consists of two advective contributions and a disper-
sive part. The model results for the default case indicate that

Figure 4. The depth-integrated lateral sediment flux F 0 (in units r�sH2U2 � 15 kg m�1 s�1) as a
function of phase difference j between the external M2 and M4 tide.
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the latter term always dominates over the first two terms (by
six orders of magnitudes). Large ratios of dispersive and
advective contributions were also found if the friction
parameters Av0 and s0 were varied by two orders of
magnitude. Hence F0 is governed mainly by lateral dis-
persion which in turn depends solely on the depth-integrated
induced residual sediment concentration Hhc0i. The value of
F0 for the WS default case is �0.044 kg m�1 s�1.
[57] Since F0 turns out to be negative it implies that a

positive (negative) bottom tilt l is related with a depth-
integrated concentration gradient in the positive (negative) y-
direction. This is also clear from Figure 7 which shows that in
case of a flood (ebb)-dominated flows, i.e., j = 0 (j = p), the
lateral bottom tilt l is positive (negative) and hence the
shallowest depths and the largest concentrations appear on
the left (right) when viewing in the flood direction. Thus the
model indicates that the depth-integrated sediment concen-
tration increases toward shallower water. The physical
explanation for this will be given in the next subsection.
[58] Figure 7 shows that the maximum tilt lmax found for

the default case is lmax  0.16. For the WS estuary (width
of 5 km) this corresponds to a depth difference of approx-
imately 30 cm between the two channel sidewalls. How-

ever, since the flux F0 is proportional to the lateral
dispersion coefficient Kh, it is clear that the values of the
tilt scale with Kh

�1. As lateral dispersion coefficients may
be much lower than the default value, larger depth differ-
ences (up to meters) may occur in real estuaries.
[59] Finally, we briefly mention typical maximum values

for the tilt that occur when Av0 and s0 are varied (keeping all
other parameters in Table 3 fixed). For realistic stress
parameter values (s0 > 10�3 ms�1), its typical magnitude
is in the range 0.2–0.4 for Av0 < 0.07 m2 s�1 while lmax 
0.1 if 0.07 m2 s�1 < Av0 < 0.14 m2 s�1. For low values of
the friction parameters (s0 < 10�3 ms�1, Av0 < 0.01 m2 s�1),
lmax decreases linearly with Av0 and s0.

5.3. Physical Interpretation of the
Induced Sediment Flux

5.3.1. Induced Residual Bed Shear Stress
[60] Here we will explain one of the important results of

section 5.2, viz. that the mean sediment concentration hc0i
increases toward shallower water. From section 4.3.2 we see
that hc0i is generated by the residual component of boundary
conditions (34) and (35) since advective terms are absent
from the M0 component of (33). In this generation, the

Figure 5. Left: vertical profile of the along-channel directed external M2 flow that varies / cos(st).
Right, the other external M2 components: along-channel, / sin(st) (solid) and cross-channel / cos(st)
(dashed) and / sin(st) (dash–dot–dash).
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induced water motion influences the erosion of induced
sediment through ht0i (r.h.s. of equation (35)) for which the
M2 component of the induced water motion is important.
The latter can be understood from expression (37) where it
is recalled that the induced tidal flow has no spectral
contributions above M4. For depth-independent friction
parameters (m = n = 0, i.e., Av

0 = s0 = 0) this is immediately
clear from (37) which then gives:

h� 0i ¼ hT̂0 � Av0

@u0

@z
i  hsg cos �tð Þð ÞAv0x̂ �

@u0

@z
i ¼ 2Av0

�

@u0c
@z

:

Consequently, we find that the induced residual stress ht0i is
governed by uc

0 (which is the cosine component of the M2

part of u0).
[61] Figure 8 shows the vertical variation of uc

0 near the
sidewall above a shoal (h( y) > 0). For depth-independent
friction parameters Av and s (left panel) we find uc

0 < 0, i.e.,
the flow is decelerated above the shoal. This is in agreement
with the increase of bottom friction as water depth decreases.
The vertical derivative of uc

0, however, is positive so that the
residual bed shear stress ht0i is found to increase above
shallow regions.

Figure 6. Top: bed shear stress magnitude throughout a tidal period P. Bottom: dimensionless sediment
concentration profile as a function of time. Here, concentration and stress have been scaled in units
rsUH� � 1.5 kg m�3 and rsHU � 1.4 N m�2, respectively.
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[62] Now consider the effect of depth-dependent friction
parameters on the induced M2 flow. This is displayed in the
right panel of Figure 8 for flow near the sidewall above a
shoal. It turns out that the induced residual bottom stress, as
given by equation (37), is nearly unaltered so that depth
dependence of the friction parameters does not seem to
affect the residual bottom shear stress ht0i.
5.3.2. Induced Residual Concentration
[63] Next we will discuss the induced residual sediment

concentration. We first focus on its bottom value, hereafter
referred to as hc0bi. Its value is obtained by using the
alternative expression hS?i = 0 for morphodynamic equili-
brium (see remarks below equation (17). Using definitions
(15), (22) and the assumption of a weak overtide (b � 1)
this condition can be rewritten into the following expression
for hc0bi:

hc0bi ¼ �ht0i þ h yð Þ �
@ht0i
@z

� @hc0i
@z

� 	
; ð46Þ

where all quantities are understood to be evaluated at
z = �H. Let us again consider the situation above a shoal
(h( y) > 0). In that case, we already saw in section 5.3.1 that
ht0i will have a positive value that is unaffected by depth-
dependence of Av and s. As a consequence, hc0bi will not be
sensitive to such depth-dependence either. The term
between square brackets in (46) gives the change in the
erosion-deposition function as the bed level is increased. It
contains contributions from vertical variation of sediment
erosion (t0) and settling (c0) which yield negative and
positive contributions to hc0bi, respectively. For thin
sediment layers (thickness less than the water depth H ),
the settling effect dominates over the effect of erosion so
that the second contribution to (46) is positive. This is the
case for the default WS case where the sediment layer
thickness is approximately 0.4 H (see Figure 6).

[64] Figure 9 shows the vertical variation of hc0i. The
dashed line corresponds to depth independent friction
parameters and gives a simple exponential decay with
height. The solid line refers to n = m = 1: it is clearly seen
that hc0i is decreased throughout the water column. This is
due to the decrease of vertical turbulent diffusion Kv above
a shoal (recall that Kv = Av) so that downward-directed
sediment settling will become relatively more important.
The latter effect leads to a decrease in induced residual
concentration. For the WS parameter settings, though, the
depth-integrated induced concentration Hh�c0i is still positive
above shoals. Using the above arguments one finds sim-
ilarly that Hh�c0i is negative in deep parts (h( y) < 0) of the
channel. As a result, the induced flux F0 will flow from
shallow to deep regions.

5.4. Application to Field Data

[65] Our model results show that that the lateral bottom
tilt varies as cos j, with j the phase difference between
horizontal M2 andM4 tide. In order to gain some support for
this from field data, one should analyze bathymetric data
from a long, straight estuary with a width of at least a tidal
excursion length. In that case, the variation of j along the
estuary can be plotted against the lateral bottom variation.
[66] For the reference system that is considered in this

paper (the WS, see Figure 10), this analysis is not straightfor-
ward because of several reasons. First, near the inlet the
estuary is relatively straight, but j is close to �p/2 there.
Hence l is effectively zero in this part of the estuary. Further
inward, j increases but at approximately 50 km from the
inlet, the channel becomes very narrow: in this region, the
Rossby number is large so that Coriolis effects will be
difficult to detect. Hence, only at the middle part of the
estuary, both phase difference and channel width appear to be
acceptable to check the model: this region has been displayed
explicitly in Figure 10. This part of the WS consists of two
distinct meanders; these will be referred to hereafter as

Figure 7. Lateral bottom tilt l versus phase difference j between external M2 and M4 tide. The
different curves refer to different values of ithe lateral diffusion coefficient: Kh = 20 m2 s�1 (solid line),
Kh = 50 m2 s�1 (dashed) and Kh = 100 m2 s�1 (dash–dot–dash).
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‘‘Curve 1’’ and ‘‘Curve 2’’, respectively (see Figure 10). As is
well known [Kalkwijk and de Vriend, 1980], such meanders
exhibit lateral variation of bottom depth due to secondary
circulations that arise from flows around a bend. In terms of
the model presented in the paper, such variations are O(1)
while the Coriolis effect isO(b). Hence it would be difficult to
filter out the latter effect from field data.
[67] Given these restrictions, we have investigated the

presence of an asymmetry in the cross-sectional bottom
variation of the meanders. Such an asymmetry may be related
to the Coriolis effect as follows. In the region of interest, j
varies from�1.4 to�1.1 which implies that l is expected to
be positive (southern part deeper than the northern part).
Curvature effects, on the other hand, cause the bathymetry to
be deep near outer bends and shallow near inner bends.
Hence for Curve 1, the curvature effect would yield larger
depths near southern banks than near northern banks. The
reverse holds for Curve 2. As a result, it is thus expected that
the Coriolis effect would enhance the lateral depth difference
in Curve 1, while it would weaken the depth difference across
Curve 2. We are interested in a lateral bottom profile on a
channel-wide scale while the bathymetry is dominated by a
complex small-scale channel-shoal system (see Figure 10). In
order to abstract a linear bottom profile from this complex

morphology, we proceeded along the following lines. First,
we observe that there are two pronounced tidal channels in
Curves 1 and 2. Next, we made several (150–200) cross-
channel slices in which these channels show up as pro-
nounced troughs. Cross-channel location and depth of these
two troughs were used to define the lateral bottom profile as
given by (22); this yields representative values for H and l.
The values for l thus obtained read:

l ¼ 7:22� 6:67 for Curve 1;

l ¼ �3:98� 2:04 for Curve 2:

Quantitatively, this result cannot be compared to the model
presented in this paper as the value for lateral dispersion is
not well known (Kh may vary from 0.1 m2 s�1 to several
tens m2 s�1). Qualitatively, though, our findings support the
expectation that the lateral tilt in Curve 1 is more
pronounced than in Curve 2.

6. Discussion

6.1. Lateral Sediment Balance

[68] A few aspects of the model results deserve some
discussion. First it has been assumed that in equilibrium the

Figure 8. Induced M2 component of the along-channel flow, time dependence / cos(st). The left panel
shows the vertical profile for depth independent friction parameters Av0 and s0 while the right panel refers
to the depth dependent case (n = m = 1).
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net lateral sediment mass flux per unit width F 0 is com-
pensated by a lateral dispersive flux lF0. Alternatively, one
could consider the possibility of gravitational bedslope
effects balancing the flux F 0. A typical magnitude for the
resulting bedslope flux F bed is given by

F ¼� r� s 1� pð Þa k u �H ; tð Þ k3
 �

m
@zb
@y

 brs 1p
� �

a k u0 H ; tð Þ k3
 �

ml
H

B
;

where (22) was used in the final step. Typical values for a
and m are a = 10 �5 s2 m�1 and m = 1, see Dyer [1986]. For
the default WS parameter values, F bed/F0  O(10 �3) so

that bedslope effects are found to be too small to establish
the lateral tilt.
[69] Another remarkable aspect of the present model is

that, for typical WS parameter values, it yields a dispersive
flux which is directed from shallow to deep regions. This is
opposite to dispersive fluxes in 2DH models, at least when
the latter models assume depth-independent erosion and
deposition of sediment [Schuttelaars and de Swart, 1999].
In that case, lower sediment concentrations are found above
shallow parts because the sediment-pickup function is related
to the depth-averaged velocity, which decreases above shoals
due to increased friction. The dispersive flux in the present
model acts differently for two reasons. First, the bed shear
stress is related to the vertical derivative of horizontal

Figure 9. Vertical variation of the induced residual concentration at the shallow side near the bank.
Solid: depth dependent friction parameters (n = m = 1), dashed: profile for n = m = 0 (no depth
dependence in Av or s).

Figure 10. Central marine part of the WS estuary. The northward direction is at the top of the figure
while the seaward side is to the left. For the region considered in this paper, the bathymetry is shown as
an image plot (unit: meters). The cross-sectional line in this part marks the division between the two
meanders that constitute the region of interest: the western and eastern bend are referred to as ‘‘Curve 1’’
and ‘‘Curve 2’’, respectively. See the text for further explanation.
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velocity at the bottom rather than the depth-averaged veloc-
ity. Second, the residual concentration is largely determined
by near-bed changes in erosion-deposition fluxes as the bed is
raised or lowered. These effects explicitly require informa-
tion on the vertical variation of velocity and sediment
concentration near the bottom and are thus not incorporated
in a 2DH formulation. As a result the present model gives
higher residual concentrations above shoals, at least when the
sediment layer is thinner than the water depth.

6.2. Validation of the Model

[70] In contrast to its robust qualitative features, accurate
quantitative estimates for the lateral bottom tilt l appear to
be problematic. This is mainly due to the dependence of l
on the lateral coefficient of diffusion Kh, the size of which
is not well known. Estimates from field data and laboratory
experiments indicate that realistic values of Kh vary from
0.1 m2 s�1 to several tens m2 s�1 [e.g., Fischer et al., 1979,
section 7.3.2]. For the default value Kh = 20 m2 s�1 adopted
in this paper, the lateral bottom tilt was found to yield a
cross-sectional depth difference of a few percent (typically
a few decimeters). However, as lateral diffusion may be an
order of magnitude smaller, a more noticeable depth differ-
ence (up to several meters) may occur in reality since l /
1/Kh. Thus it appears that the lateral bottom tilt itself should
be detectable from field data, at least in principle.
[71] As to qualitative features, it is evident that more

effort has to be put in confirming the firm predictions that
have been presented in this paper. In particular, a validation
of the abovementioned cos j dependence for the lateral tilt
should be confronted against data from a relatively straight,
effectively nonmeandering tidal channel. Moreover, this
channel must have sufficient length in order to guarantee
a relevant variation of j along the embayment. As was
pointed out in section 5.4, the WS estuary does not qualify
for such a thorough analysis since it shows meandering
behavior.
[72] A different way to test the tilting bottom model may

be obtained from estuaries with a significant residual
throughflow (river discharge) rather than an M4 overtide.
In that case, there is no phase difference j so that only
information about the sign and magnitude of l may be
obtained. Fortunately, though, several such estuaries appear
to be relatively straight over a large portion of their length
(e.g., James River estuary [Valle-Levinson et al., 2000]) so
that disturbing effects of meandering are circumvented.
Contrary to the WS, however, estuaries with significant
river discharges are usually not well-mixed so that vertical
mixing of momentum and sediment is affected by effects of
partial stratification. The present model can be straightfor-
wardly extended to include such effects [see Van Kreeke
and Zimmerman, 1988; Friedrichs and Hamrick, 1996].

6.3. Relevance for Modeling of Bathymetric Features

[73] From the viewpoint of idealized modeling, a non-
horizontal equilibrium bottom may serve as a nontrivial
starting point for the study of bottom pattern formation as an
inherent instability mechanism. It represents a relevant
extension of the model by Seminara and Tubino [1998]
who considered a horizontal basic state. Several new results
are expected due to the combined presence of Coriolis force
and overtides. For instance, Coriolis effects will modify the

behavior of ebb and flood dominated tidal channels. Thresh-
olds occur on smaller scales (up to a kilometer) and will not
be influenced directly by Coriolis effects. Overtides, how-
ever, are still expected to play an important role in these
regions. Finally, an interesting question is to what extent
Coriolis effects may still play an indirect role in threshold
dynamics since thresholds are strongly linked with the
meandering behavior of tidal channels.

7. Conclusions

[74] In this paper, new results have been presented
regarding the combined effect of Coriolis force and external
overtides on bottom patterns that constitute a morphody-
namic equilibrium. Such equilibrium configurations should
be interpreted as a global bathymetry that varies on the scale
of the embayment width. Hence they are the mean bed
profiles that underlie the complex channel/shoal bathymetry
that occur on smaller length scales.
[75] The equilibrium bed profile is horizontal if only a

single external tidal mode is imposed or Coriolis effects are
absent. If external overtides and Coriolis force are simulta-
neously present, a net lateral sediment flux exists which
requires a cross-channel variation of the bottom in order to
maintain morphodynamic equilibrium. For the case of an
external M4 overtide it appears that such an equilibrium is
characterized by a linear lateral bottom profile which has its
shallow part to the left (right) for flood (ebb) dominated
external tidal forcing. Moreover, the tilt of the lateral profile
varies / cos(j). These results are mostly robust, i.e.,
independent of the precise parameterization of viscosity
and diffusion: they only require a bed shear stress that
depends upon the magnitude of velocity and a settling time
that is short compared to a tidal period. It should be
emphasized that the lateral bottom variation is a genuine
3D-effect as it is a consequence of lateral circulations that
are absent in a vertically averaged model (see section 4.1).
The lateral tilt is predominantly maintained by dispersive
sediment fluxes rather than by advective processes or
gravitational bedslope effects. As a result, the value of the
slope is inversely proportional to the lateral coefficient of
dispersion Kh. Depending on the value of the latter param-
eter, the cross-channel variation of the water depth may be
of the order of meters.
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