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Morphogenesis and cytopathic effect of SARS-
CoV-2 infection in human airway epithelial cells
Na Zhu 1,9, Wenling Wang1,9, Zhidong Liu2,9, Chaoyang Liang3,9, Wen Wang1, Fei Ye1, Baoying Huang1,

Li Zhao1, Huijuan Wang1, Weimin Zhou1, Yao Deng1, Longfei Mao4, Chongyu Su2, Guangliang Qiang3,

Taijiao Jiang4, Jincun Zhao 5,6, Guizhen Wu1, Jingdong Song 1,7✉ & Wenjie Tan 1,8✉

SARS-CoV-2, a β-coronavirus, has rapidly spread across the world, highlighting its high

transmissibility, but the underlying morphogenesis and pathogenesis remain poorly under-

stood. Here, we characterize the replication dynamics, cell tropism and morphogenesis of

SARS-CoV-2 in organotypic human airway epithelial (HAE) cultures. SARS-CoV-2 replicates

efficiently and infects both ciliated and secretory cells in HAE cultures. In comparison, HCoV-

NL63 replicates to lower titers and is only detected in ciliated cells. SARS-CoV-2 shows a

similar morphogenetic process as other coronaviruses but causes plaque-like cytopathic

effects in HAE cultures. Cell fusion, apoptosis, destruction of epithelium integrity, cilium

shrinking and beaded changes are observed in the plaque regions. Taken together, our results

provide important insights into SARS-CoV-2 cell tropism, replication and morphogenesis.

https://doi.org/10.1038/s41467-020-17796-z OPEN

1NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206

Beijing, China. 2Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University (Beijing Tuberculosis and Thoracic Tumor Research

Institute), 101149 Beijing, China. 3Department of Thoracic Surgery, China–Japan Friendship Hospital, Yinghua East Road No. 2, Chaoyang District, 100029

Beijing, China. 4 Suzhou Institute of Systems Medicine, 215123 Suzhou, Jiangsu, China. 5 State Key Laboratory of Respiratory Disease, National Clinical

Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 510120

Guangzhou, China. 6 Institute of Infectious Disease, Guangzhou Eighth People’s Hospital of Guangzhou Medical University, 510120 Guangzhou, China. 7 State

Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control

and Prevention, 102206 Beijing, China. 8Center for Biosafety Mega-Science, Chinese Academy of Sciences, 430071 Wuhan, China. 9These authors

contributed equally: Na Zhu, Wenling Wang, Zhidong Liu, Chaoyang Liang. ✉email: songjd@ivdc.chinacdc.cn; tanwj@ivdc.chinacdc.cn

NATURE COMMUNICATIONS |         (2020) 11:3910 | https://doi.org/10.1038/s41467-020-17796-z | www.nature.com/naturecommunications 1

12
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-17796-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-17796-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-17796-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-17796-z&domain=pdf
http://orcid.org/0000-0001-7839-8571
http://orcid.org/0000-0001-7839-8571
http://orcid.org/0000-0001-7839-8571
http://orcid.org/0000-0001-7839-8571
http://orcid.org/0000-0001-7839-8571
http://orcid.org/0000-0003-2515-5589
http://orcid.org/0000-0003-2515-5589
http://orcid.org/0000-0003-2515-5589
http://orcid.org/0000-0003-2515-5589
http://orcid.org/0000-0003-2515-5589
http://orcid.org/0000-0001-8808-1981
http://orcid.org/0000-0001-8808-1981
http://orcid.org/0000-0001-8808-1981
http://orcid.org/0000-0001-8808-1981
http://orcid.org/0000-0001-8808-1981
http://orcid.org/0000-0002-5963-1136
http://orcid.org/0000-0002-5963-1136
http://orcid.org/0000-0002-5963-1136
http://orcid.org/0000-0002-5963-1136
http://orcid.org/0000-0002-5963-1136
mailto:songjd@ivdc.chinacdc.cn
mailto:tanwj@ivdc.chinacdc.cn
www.nature.com/naturecommunications
www.nature.com/naturecommunications


A
large outbreak of unusual viral pneumonia (coronavirus
disease 2019, COVID-19) was first reported in Wuhan,
China, in late December 2019. The rapid spread of this

virus across the world in 6 months with over 10 million con-
firmed cases has resulted in 517,877 deaths as of July 4, 2020. A
novel human β-coronavirus, named SARS-CoV-2, has been
identified as the etiologic agent1. Although genomics
characterization2,3 and epidemiological retrospective investiga-
tions of SARS-CoV-24 have been conducted, few detailed
pathology studies5,6 have been published due to the limited access
to autopsy and biopsy specimens. The underlying pathogenesis
and transmission of viral infection remain obscure.

Organotypic cell culture of well-differentiated human airway
epithelial cells (HAE) has been successfully used to isolate SARS-
CoV-2 and offers some advantages in sustaining SARS-CoV-2
replication compared with standard immortalized cells (such as
Vero E6 or Huh7 cells)1. HAE cells also serve as an in vitro
physiological model of human lung origin to investigate the
morphogenesis and pathogenesis of SARS-CoV-27. Although
SARS-CoV-2, SARS-CoV, and HCoV-NL63 use the same
receptor ACE28–11, SARS-CoV-2 seems to spread much more
efficiently simply based on the numbers of cases and transmis-
sibility across the world in such a short time. In this study, we
compared the characteristics of the replication dynamics, cell
tropism, and morphogenesis of SARS-CoV-2 and HCoV-NL63 in
HAE cells, which express the shared receptor, to better under-
stand the pathogenesis and transmission of SARS-CoV-2.

Results
Replication dynamics of SARS-CoV-2 in human airway epi-
thelium. To confirm the replication dynamics of SARS-CoV-2 in
HAE, fully differentiated HAE cultures derived from three dif-
ferent donors (1210, XK35, ZR05) were inoculated with SARS-
CoV-2 or human coronavirus NL63 (HCoV-NL63) (Amsterdam,
ATCC) at a multiplicity of infection (MOI) of 0.1, which was
consistent with the infection of HAE by other coronaviruses,
including HCoV-NL6312,13, SARS-CoV14, MERS-CoV15, HCoV-
229E13,16, HCoV-OC4313,17, and HCoV-HKU113,18, to assess the
viral growth kinetics. Additionally, the replication efficiency of
the two kinds of viruses could be compared by using the same
MOI to inoculate HAE cells. As shown in Fig. 1a, HAE cells were
highly susceptible to SARS-CoV-2 infection with peak virus
production from apical wash at 48–72 h post infection (h pi) and
remained at a high level from 3 to 6 days. In contrast, HCoV-
NL63 reached peak virus load at 72–96 h pi, similar to previously
reported SARS-CoV replication kinetics in HAE14. SARS-CoV-2
progeny viruses were released into the basolateral medium as the
infection progressed, yet nearly no progeny viruses were released
into the basolateral medium post infection with HCoV-NL63
(Fig. 1a). We further monitored transepithelial electrical resis-
tance (TEER), considered a surrogate of epithelium integrity,
during infection with SARS-CoV-2 or HCoV-NL63, and we
found that at 96 h pi, the TEER of HAE inoculated with SARS-
CoV-2 was reduced nearly 40% but not in HCoV-NL63-infected
cells (Fig. 1b). Notably, the decrease in TEER in SARS-CoV-2-
infected HAE was accompanied by an increase in SARS-CoV-2
progeny virus detected in the basolateral medium (Fig. 1a).

Cell tropism of SARS-CoV-2 in human airway epithelium.
Previous studies showed that SARS-CoV-2 utilized ACE2 as its
cell surface receptor8,9, suggesting that SARS-CoV-2 may share a
similar cell tropism (ciliated cells in HAE) with SARS-CoV and
HCoV-NL63 by using the same receptor10,11. To further confirm
the tropism of SARS-CoV-2 in HAE, transmission electron
microscopy (TEM) and laser scanning confocal microscopy

analyses were performed. Surprisingly, we found that SARS-CoV-
2 infects both ciliated cells and secretory cells. As shown in
Fig. 1c, virus particles were found on the apical surface of both
ciliated cells and secretory cells; inclusion bodies formed by viral
components were observed in the cytoplasm, which confirmed
the infection of both cell types. Immunofluorescent staining of
SARS-CoV-2 N protein colocalized with ciliated cells (marker: β-
tubulin IV) and secretory cells, including goblet cells (marker:
Muc5AC) and club cells (marker: CCSP) (Fig. 1d). This was
dramatically different from six other human coronaviruses. It had
been demonstrated that HCoV-HKU1, HCoV-OC43, HCoV-
NL63, and SARS-CoV infect ciliated cells12,13,18,19, while HCoV-
229E and MERS-CoV infect secretory cells13,15,16. Additionally,
the presence of SARS-CoV-2-infected ACE2-positive cells further
confirmed ACE2 as a surface receptor of SARS-CoV-2 (Fig. 1d).

Cytopathic effects (CPE) and ultrastructural pathology
induced by SARS-CoV-2 in human airway epithelium. In our
previous study, unique CPE were observed in HAE induced by
SARS-CoV-2 infection1. To investigate the CPE in more detail,
SARS-CoV-2-infected HAE were analyzed by laser scanning
confocal microscopy, scanning electron microscopy (SEM) and
immunofluorescence staining. Plaque-like CPE was consistently
observed in different propagations of SARS-CoV-2-infected HAE
(Fig. 2a). The size and number of plaques increased with the
extension of the incubation time. As shown in Fig. 2b, multi-
nucleated syncytial cells arranged in a net-like structure were
observed in the plaque regions. Immunofluorescence staining
using a specific SARS-CoV-2 N protein antibody and cell tight
junction antibody showed giant syncytial cell formation and
destruction of cell tight junctions (Fig. 2k). Cilium shrinking
(Fig. 2d) in the plaque region (Fig. 2c) and beaded changes
(Fig. 2e) in the periphery of plaques were detected compared with
mock-infected cells (Fig. 2f). Cilia were disordered (Fig. 2g) in
virus-infected cells compared with mock-infected cells (Fig. 2h) in
the far periphery of the plaques.

HAE ultrathin sections were analyzed by TEM after SARS-
CoV-2 infection. One of the most striking features of ultra-
structural pathology was the formation of numerous pleomorphic
double-membrane vesicles (DMVs) in the cytoplasm in both
ciliated cells (Fig. 2i) and secretory cells (Fig. 2j). The DMVs were
generally spherical and had an electron density matrix similar to
that observed in the cytoplasm (Fig. 2i, j). The DMVs were
similar to those caused by other coronavirus infections20–23.
Another interesting ultrastructural alteration was the aggregation
of organelles close to the apical surface, including mitochondria,
vesicles and virus particles (Fig. 2i, j), viral inclusion bodies, etc.
Virus particles were often present on the outer cell surface,
specifically on microvilli and on cilia (i), which might be
associated with their malfunction.

To further investigate the extensive cell death caused by
apoptosis or necrosis in the CPE region, specific staining with a
cell apoptosis/necrosis detection kit (blue, green, red) (Abcam
176749) that can detect both apoptosis and necrosis at the same
time was performed. As shown in Fig. 2l, many apoptotic cells
were observed in the SARS-CoV-2-infected culture, but almost no
necrotic cells were detected, indicating that SARS-CoV-2 mostly
induced HAE cell apoptosis but not necrosis. A One Step TUNEL
Apoptosis Assay (Beyotime Biotechnology C1086) was performed
to detect 180–200 bp DNA fragments, further confirming the
apoptosis induced by SARS-CoV-2 infection.

Morphogenesis of SARS-CoV-2 in ciliated cells and secretory
cells. To investigate SARS-CoV-2 morphogenesis in HAE cells,
ultrathin sections were prepared and observed by TEM.
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Different stages of the SARS-CoV-2 life cycle in secretory cells
were detected (Fig. 3a–h). Virus infection was initiated by
attaching to the cytoplasmic membrane (Fig. 3a), and virus–cell
membrane fusion occurred (Fig. 3b). Nascent particles were
formed by budding of viral nucleocapsids along cytoplasmic
membranes into vesicles (Fig. 3c). Inclusion bodies associated
with virus infection presented in the cytoplasm and contained
membrane-bound, condensed matrix-associated virus-like par-
ticles (Fig. 3d). In the cytoplasm, strands of the endoplasmic
reticulum containing rows of viral particles were found (Fig. 3e).
Virus particles were observed in membrane-bound vesicles,
either as single particles or as groups in enlarged vesicles
(Fig. 3f). Free virus particles dispersed in the cytoplasm (Fig. 3g)
or between secretory vesicles (Fig. 3h) were released by the
secretory cells through exocytosis. The process of viral mor-
phogenesis in ciliated cells was similar but not identical to that
in secretory cells. Provirus-like particles were observed in areas
that were enriched in the cytoplasmic membrane structure
(Fig. 3i). Virions also appeared in Golgi cisternae (Fig. 3j). Virus

particles mixed with granular aggregates were found. These
virus particles were not enclosed within a binding membrane
but by mitochondria (Fig. 3k). Similar to the observations in
secretory cells, strands of endoplasmic reticulum containing
rows of viral particles were found next to mitochondria and
enlarged endoplasmic reticulum (Fig. 3l). Various types of
inclusion bodies containing virus or virus-like particles with
bound membranes were observed in the cytoplasm, including
(1) inclusion bodies filled with virus-like particles and dense,
granular material (Fig. 3m); (2) inclusion bodies filled with
pleomorphic virus-like particles (Fig. 3n); and (3) inclusion
bodies filled with spherical particles of different sizes (Fig. 3o).
The inclusion bodies tended to migrate toward the apical sur-
face and fused with the plasma membrane, releasing viral par-
ticles out of host cells. Virus particles were scattered in areas
enriched with vesicles in the cytoplasm (Fig. 3p). The release of
virus particles from ciliated cells appeared to occur through
exocytosis (Fig. 3q). In conclusion, based on our morphologic
results, SARS-CoV-2 has a morphogenetic process similar to
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Fig. 1 Characterization and cell tropism of SARS-CoV-2 in human airway epithelia (HAE). a SARS-CoV-2 replication kinetics in HAE from different

donors, HCoV-NL63 was used as a control (n= 3). b Transepithelial electrical resistance (TEER in Ω cm2) between the apical and basal poles was

measured at each time point (n= 3). c SARS-CoV-2 infected both ciliated cells (72 h pi) and secretory cells (72 h pi). arrows: virus particles, arrowhead:

cilium, asterisk: secretory vesicle, insets dashed-line squares indicate magnification of arrowed areas. d Costaining of SARS-CoV-2 N protein (green) with

ciliated cell marker β-tubulin-IV (red), goblet cell marker Muc5AC (red), club cell marker CCSP (red), and ACE2 (red) positive cells. HCoV-NL63 N protein

(green) staining was used as a control (72 h pi). Nuclei were stained with 4’,6-diamidino-2-phenylindole (DAPI) (blue). Data a, b are the means ± s.d. of

three independent biological replicates. Source data a–d are provided as a Source Data file.
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that of other coronaviruses24–26, except for its multicellular
tropism, which includes ciliated cells and secretory cells.

To provide more morphological details on SARS-CoV-2,
negative staining TEM was performed. SARS-CoV-2 viral
particles released in culture supernatants exhibited spherical
shaped morphology and pleomorphism with distinct surface
projections of spike proteins on the envelope, which were similar
to those of other members in the family Coronaviridae. The
virions possessed an average diameter of 100 nm (range from 60
to 140 nm). Spikes varied from 12.5 to 20.4 nm in length with an
average length of 17.7 nm. Virus particles with partial or no
spikes were also observed in culture supernatants (Fig. 3r).

Discussion
The organotypic HAE system forms a pseudostratified epithelial
layer that morphologically and functionally resembles the human
airway. The cultures of basal, ciliated, and secretory cells pro-
duced protective mucus and beating cilia that are visible under a
light microscope27. ACE2 is mainly expressed on ciliated epi-
thelial cells of the human lungs8 and is thought to be the cell
surface receptor for SARS-CoV-210. Interestingly, SARS-CoV and
HCoV-NL63 share the same receptor as SARS-CoV-2 and a
tropism for ciliated cells. Here, we reported SARS-CoV-2 infec-
tion of both ciliated cells and secretory cells in HAE, which
consequently suggested the possibility of more receptors for
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Fig. 2 Cytopathic effect of SARS-CoV-2 infection on HAE cells. Characterization of SARS-CoV-2 infection of the HAE surface a–h. a Plaques (arrow)

induced by SARS-CoV-2 infection under a light microscope. b Cell fusion and net-like structure (dashed line square) under a laser scan confocal

microscope in the plaque region. c Plaque area featured with less content under a scanning electron microscope (dashed line circle). d Deformation of cilia

in the plaque area under a scanning electron microscope. e Cilia polarity disorder and granular formation on cilium with rough surface under a scanning

electron microscope. f Normal HAE cell cilium with polarity order. g Cilia polarity disorder under a scanning electron microscope. h Mock HAE cell cilium

with smooth surface and polarized order. Ultra-pathology of SARS-CoV-2-infected HAE cells i, j. i Overview of a virus-infected ciliated cell. The black line

box indicates double membrane vesicles (DMVs) induced by virus infection in ciliated cells. The dashed line box indicates aggregation of denatured

mitochondria (Mt) and enlarged endoplasmic reticulum (ER) on the top area of ciliated cells. Virus particles on cilia (Cl) (arrow) and microvilli (Mv)

(empty arrow). j Overview of a virus-infected secretory cell with cell organelles and secretory vesicles (SV) aggregated on the top area of the cell. The

black line box indicates double membrane vesicles (DMVs) induced by virus infection in secretory cells. The dashed line box indicates virus particles both

in the cytoplasm and on microvilli (Mv) (arrows). k Syncytial cell formation (star) and cell tight junction destruction (white arrow) caused by SARS-CoV-2

infection. l Apoptosis induced by SARS-CoV-2 infection in HAE. Apoptotic cells (green) stained with Apopxin Green (ApGreen) and TdT-mediated dUTP

Nick-End Labeling (TUNEL) indicator. Source data a–i are provided as a Source Data file.
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SARS-CoV-2 attachment in addition to the ACE2 receptor10. We
also described parts of the morphogenesis process and cytopathic
effect of SARS-CoV-2 infection in both cell types in detail.

Epidemiological investigations have suggested that SARS-CoV-
2 is highly infectious and transmissible among humans. In
comparison to SARS-CoV or MERS-CoV, SARS-CoV-2 repli-
cated more efficiently in primary HAE than in standard
immortalized cells. This might be because there were more sus-
ceptible cells to SARS-CoV-2 infection than to other coronavirus
infections. SARS-CoV-2 replicates more efficiently than HCoV-
NL63 in HAE. This observation itself indicated that SARS-CoV-2
is more transmissible. The efficient transmissibility may be due to
there being one more permissible cell type for SARS-CoV-2
transmission. Furthermore, the secretory cells released vesicles
with large amounts of virus particles dispersed in the cytoplasm
by exocytosis, which underlies the high detection rate of SARS-
CoV-2 in sputum28 and its transmission by droplets. Addition-
ally, few pathologies have been reported due to the limited access
to autopsy or biopsy specimens, but all the reports5,6 have
referred to the observation of a large amount of foam or gelati-
nous mucus in the trachea at autopsy. This may be induced by
infection of secretory cells and dysregulation of mucus secretion
balance, indicating that clinical treatment should be considered to
restore the balance in mucus secretion.

Respiratory ciliary function abnormalities have been associated
with various diseases, such as cystic fibrosis, chronic obstructive
pulmonary disease, and sinusitis29. In this study, large areas of
disordered cilia were visually confirmed by SEM analysis, indi-
cating that SARS-CoV-2 infection disrupted cilia synchronicity.
Cilium shrinking in the center of CPE plaque was first observed
as no ciliary beating under the light microscope could be found.
The beaded changes in cilia in the peripheral region of plaques
were considered characteristic of severe pathological changes. The
abnormal ciliary beating and disruption of cilia synchronicity lead
to poor mucociliary clearance (MCC), which can result in sec-
ondary infections30. Aggregation of organelles close to the apical
surface featuring a large number of mitochondria with abnormal
morphology was also identified as another striking ultrastructural
change. The extensive cell death observed in the CPE region was
shown to be apoptosis.

In addition, unique plaque-like CPE on the apical surface of
HAE were observed consistently across different propagations.
The size and numbers of these plaques expanded and increased
over the incubation period as well as the formation of syncytial
cells and destruction of cell tight junctions. Collectively, our
findings also suggested that SARS-CoV-2 might either be released
via the apical surface of infected cells or transmit through direct
cell-to-cell contact.

Taken together, our data support the notion that SARS-CoV-2
is fully adapted to the human airway, which is distinct from other
coronaviruses that were reported to have interspecies transmis-
sion. Our study shows SARS-CoV-2 multicellular tropism and
severe ultrapathological changes and malfunction of cilia, which
could provide clues for clinical treatment and drug screening
strategies. Recent publications7,31 indicated a high expression
level of the SARS-CoV-2 receptor ACE2 gene in both goblet cells
and ciliated cells by scRNA sequencing, which is consistent with
our study. One of the limitations in our work is the lack of host
response analyses after HAE are infected with SARS-CoV-2 as
has been performed in a recent study32. Nevertheless, the results
reported here should improve the understanding of SARS-CoV-2
transmission and pathogenesis.

Methods
Cell cultures. Human tracheobronchial epithelial cells from three different donors
(1210, XK35, ZR05) were obtained from patients who underwent bronchoscopy

and/or surgical lung resection during their diagnostic process for any pulmonary
disease and who gave informed consent. This study was approved by the ethics
committee of National Institute for Viral Disease Control and Prevention, China
CDC. Resected cells from airway specimens were isolated following the method
reported previously33 by Fulcher and were stored in liquid nitrogen until differ-
entiation in air–liquid interface culture. Briefly, primary cells were expanded on
plastic to confluency (PneumaCultTM-ExPlus Medium, Stemcell) and plated at a
density of 250,000 cells per well on permeable Transwell-Col (12-mm-diameter)
supports. HAE cultures were generated by providing an air–liquid interface
(PneumaCultTM-ALI Medium, Stemcell) for 4–6 weeks to form well-differentiated,
polarized cultures that resemble in vivo pseudostratified mucociliary epithelium.
Vero E6 (CL158) and LLC-MK2 (CCL7) cells were obtained from American Type
Culture Collection (ATCC, Manassas, VA) and maintained in Dulbecco’s modified
Eagle’s medium (DMEM) with 10% fetal calf serum (FCS).

Infection protocol. Prior to apical inoculation, the apical surfaces of well-
differentiated human airway cell cultures (HAE) were rinsed three times with
phosphate-buffered saline (PBS) at 37 °C. Apical surfaces were inoculated with
SARS-CoV-2 (isolated, BetaCoV/Wuhan/IVDC-HB-01/2020|EPI_ISL_402119) or
human coronavirus NL63 (Amsterdam, ATCC) at a MOI of 0.1, which was
determined by both using quantitative real-time reverse transcription-PCR (qRT-
PCR) specific for SARS-CoV-2 or HCoV-NL63 and titration of infectious particles
on Vero E6 or LLC-MK2 cells. (Primer and probe sequences are included in
Supplementary Information.) To generate growth curves at specific times (0, 24, 48,
72, 96, 120, 144 h) after viral inoculation, 200 µl of PBS was applied to the apical
surface of HAE and collected after a 10-min incubation at 37 °C. All samples were
stored at −80 °C until assayed for RNA quantitatively or by TCID50. All virus
culture work was performed in a biological safety cabinet in a biosafety level 3
laboratory.

Measurement of TEER. The TEER of primary HAE cells was monitored by an
epithelial Volt-Ohm Meter (EVOM; WPI, Sarasota, FL). Medium was added to the
apical and basolateral surfaces, and TEER was measured between electrodes. All
TEER values were corrected for background from the Transwell.

Transmission electron microscopy. For negative staining, SARS-CoV-2-infected
HAE cell supernatant was collected, inactivated with 2% paraformaldehyde for at
least 2 h at room temperature and ultracentrifuged to sediment virus particles.
Samples were absorbed on formvar and carbon film-coated grids for 1 min and
then stained with 1% (W/V) phosphotungstic acid (pH 6.8) for 1 min. Grids were
air dried and ready for detection.

For ultrathin sections, SARS-CoV-2-infected and mock-infected HAE cells were
scraped off the membrane of the Transwell cups. Cells were then centrifuged at
1000×g for 10 min to form a pellet. Cell pellets were fixed with 2%
paraformaldehyde–2.5% glutaraldehyde solution for at least 4 h. Then, the cells
were fixed with 1% osmium tetroxide for 1.5 h, dehydrated in gradient ethanol,
embedded in epoxy resin PON812 and polymerized at 60 °C for 24 h. Ultrathin
sections (80 nm thickness) were obtained from the resin blocks and were placed on
copper grids and stained with uranyl acetate and lead citrate. Finally, the negatively
stained grids and ultrathin sections were observed under a Tecnai12 transmission
electron microscope (FEI, Eindhoven, Netherlands) at 120 kV and recorded with a
CCD camera.

Scanning electron microscopy. SARS-CoV-2-infected HAE cells and mock-
infected HAE cells were fixed with 2% paraformaldehyde–2.5% glutaraldehyde
solution in situ for at least 4 h, washed and dehydrated in gradient ethanol, critical
point dried, and vacuum evaporated with platinum. Then, the membrane with
HAE cells was cut off from the Transwell rack and glued to a sample holder, and
the samples were detected under a scanning electron microscope (Hitachi SU8020,
Japan).

Laser scanning confocal microscopy. SARS-CoV-2-infected HAE cells and
control cells were fixed with 4% paraformaldehyde in situ for at least 8 h, per-
meabilized with Triton X100, blocked with 10% BSA, reacted with mouse poly-
clonal anti-SARS-CoV-2 N protein antibody, rabbit monoclonal β-tubulin IV
antibody, rabbit monoclonal Muc5AC antibody, rabbit polyclonal CCSP antibody,
and the secondary antibody goat anti-mouse IgG (H+ L) Alexa Fluor®488 or goat
anti-rabbit IgG (H+ L) Alexa Fluor®647 following 4′,6-diamidino-2-phenylindole
(DAPI) staining. Then, the cell layer was cut from the Transwell rack and placed on
a glass slide sealed with a 0.17 mm thick coverslip with the cells facing the cov-
erslip. Samples were detected and recorded under a laser scanning confocal
microscope system (Zeiss LSM 880 Ariyscan with STEDYCON, Germany).

Antibodies list. The mouse and rabbit polyclonal Ab against SARS-CoV-2 N
protein was homemade and used at a dilution of 1:500 when labeling. Purchased
antibody data are shown in Table 1.
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Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The authors declare that all data supporting the findings of this study are available within
the paper and supplementary information files. The source data underlying Figs. 1–3 and
Supplementary Materials are provided as a Source Data file.
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