
 Slavkov, I., Carrillo-Zapata, D., Carranza, N., Diego, X., Jansson, F.,
Kaandorp, J. A., Hauert, S., & Sharpe, J. (2018). Morphogenesis in
robot swarms. Science Robotics, 3(25), [eaau9178].
https://doi.org/10.1126/scirobotics.aau9178

Peer reviewed version

Link to published version (if available):
10.1126/scirobotics.aau9178

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via AAAS at http://robotics.sciencemag.org/content/3/25/eaau9178 . Please refer to any applicable terms of use
of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the
published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/

https://doi.org/10.1126/scirobotics.aau9178
https://doi.org/10.1126/scirobotics.aau9178
https://research-information.bris.ac.uk/en/publications/e9c47d18-9b02-4c5a-a807-d42db9822b33
https://research-information.bris.ac.uk/en/publications/e9c47d18-9b02-4c5a-a807-d42db9822b33

Manuscript

Template

Science Robotics Manuscript Template Page 1 of

38

Morphogenesis in Robot Swarms

Authors

I. Slavkov,1,2* D. Carrillo-Zapata,3,4,5* N. Carranza,1,2 X. Diego,1,2,6 F. Jansson,7,8

J. Kaandorp,8 S. Hauert,3,5 J. Sharpe1,2,6,9†

*These authors contributed equally to the work.

Affiliations

1. Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and

Technology, Barcelona, Spain

2. Universitat Pompeu Fabra (UPF), Barcelona, Spain

3. University of Bristol, Bristol, UK

4. University of the West of England, Bristol, UK

5. Bristol Robotics Laboratory, Bristol, UK

6. EMBL Barcelona, Barcelona, Spain

7. Centrum Wiskunde & Informatica (CWI), Amsterdam, The Netherlands

8. University of Amsterdam, Amsterdam, The Netherlands

9. Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain

† Corresponding author email: james.sharpe@embl.es

Abstract

Morphogenesis allows millions of cells to self-organize into intricate structures with a

wide variety of functional shapes during embryonic development. This process emerges

from local interactions of cells under the control of gene circuits which are identical in

every cell, and is robust to intrinsic noise and adaptable to changing environments.

Science Robotics Manuscript Template Page 2 of 38

Constructing human technology with these properties presents a significant opportunity in

swarm robotic applications ranging from construction to exploration. Morphogenesis in

nature may use two different approaches: hierarchical, top-down control or spontaneously

self-organizing dynamics such as reaction-diffusion Turing patterns. In this paper, we

provide a demonstration of purely self-organizing behaviors to create emergent

morphologies in large swarms of real robots. The robots achieve this collective

organization without any self-localization, and instead rely entirely on local interactions

with neighbors. Results show swarms of 300 robots that self-construct organic and

adaptable shapes that are robust to damage. This is a step towards the emergence of

functional shape formation in robot swarms following principles of self-organized

morphogenetic engineering.

Summary

Endowing robot swarm systems with biological morphogenetic behavior, making swarm

shape formation – emergent, adaptive and robust.

Introduction

While human technology is typically constructed by an external builder (humans or

robots), most spatially-organized biological systems dynamically create their own physical

shapes. This process of shape-formation is called morphogenesis and it occurs in a

distributed, self-organized and emergent manner. For example, collectives of insects, such

as ants, construct bridges to traverse terrains (fig. 1(A)i.). Organisms such as slime mold

and bacteria create colonies with regular spatial geometries to optimize nutrient transport

and consumption (Figs. 1(A)ii. and iii.). Multicellular organisms provide the most

impressive example of morphogenesis, where massive collections of cells combine and

actively collaborate during embryo development to build complex tissues and organs (fig.

1(A)iv.). Having a functional shape and organization is important for survival, because it

allows organisms to inhabit certain ecological niches and thrive in given environments.

Two broad principles of spatial patterning exist in biological morphogenetic systems (1).

A. Top-down control. In some tissues, cells first access information about their

location, and then make cell fate choices according to this positional information

(2). The control system is distributed—all cells have the same regulatory circuits,

or genetic program—, but the positional information is achieved by means of an

effective coordinate system, which may be created by molecular gradients or other

mechanisms (3, 4).

B. Local self-organisation. As an alternative to positional information, spatial

patterning may be controlled by purely local self-organization – spontaneous

Science Robotics Manuscript Template Page 3 of 38

symmetry breaking processes, such as chemical reaction-diffusion (RD) systems

(5). The mathematics of such processes (such as Turing patterns (6)), has been

extensively studied over the past half century (7). These processes can only

produce relatively simple periodic patterns, but they do so without the cells

requiring access to any positional information, and due to their reliance on

feedback mechanisms are very robust to noise.

Segmentation of the Drosophila embryo is a paradigmatic example of the first principle,

in which each segment is genetically controlled individually (8), while the patterning of

mouse digits is an example of the second principle, where each digit is a repetition of the

same local process (9).

The recent new field of morphogenetic engineering introduces the principles of natural

morphogenesis into human engineered systems (10). More specifically, it uses the

distributed control paradigm of developing tissues to program the generation of structures

that are both robust and show predictable behavior. Ideally, such systems should display a

high degree of autonomy, self-regulation, and some degree of active self-repair or

regeneration in the case of damage. In the area of swarm robotics, where the swarm

consists of simple identical robots, a key challenge is to design control algorithms for

achieving complex behaviors and shapes, based on robots interacting only with their local

environment and their neighbors. Swarm morphogenesis might be achieved by the

principles (A) or (B) above, or a combination of the two. Top-down approaches (A) could

have the advantage of creating any arbitrary shape, while the self-organized approaches

(B), although more limited in the patterns they can create, would have the advantage of

being emergent, naturally scalable, robust to failure of individual agents, and flexible, i.e.,

exhibiting the type of swarm intelligence seen in natural swarms (11).

Potential applications of such morphogenetic approaches in swarm engineering are

numerous: Self-constructing buildings which naturally adjust their structure to the

geometry of their location, reconfigurable robots which adapt their shape for different

tasks, self-organized swarms of satellites (12) for mapping, or search and environmental

monitoring. Nanomedicine could also benefit from having self-organizing swarms of

nanoparticles for more efficient drug targeting and delivery (13). Ultimately, machines

functioning in this way could achieve dynamically-changing physical structures—
programmable matter (14, 15)—, and as such, would open-up a whole new world of

machinery.

In the field of robotics, the problem of controlling the configuration of a group of robots
has been receiving increasing interest, although mostly in theoretical studies based on
simulations rather than real robot swarms. The target behaviors for the swarm have
included collective navigation and flocking, trail formation, seizing and enclosing a target,
and gap crossing, but rarely focused on controlling the shape of the swarm per se. Control
systems have included rule-based schemes (16-18), density-based schemes (19, 20),
attraction/repulsion based on simple signals or gradients (21-29), or have employed more
complicated interactions between signals such as reaction-diffusion systems (30, 31),
gene regulatory networks (GNRs) (32-35) and swarm chemistry (36) (for a more extensive

Science Robotics Manuscript Template Page 4 of 38

review, see (37)).

However, most prior work required precise motion or sensing abilities such as measuring
angles to neighbors. Furthermore, when adaptability to different scenarios was tested with
real robots (16, 17, 18, 22, 28, 30, 32, 33), no more than thirty agents were used. In
particular, properties such as self-healing of swarm morphologies have mostly been tested
in simulations (20, 24, 31, 32, 33, 36), with some exceptions (16). As validation has been
mainly simulation-based, or using few real robots, it is unclear whether self-organized
morphogenesis algorithms proposed so far would cross the reality gap and scale up in a
large swarm of simple, noisy robots.

A significant breakthrough in the field of swarm robotics was made by Rubenstein et al.

when they created the kilobot, a minimal, low-cost robot designed to enable swarm

experiments in large numbers (38). Two years later, they specifically demonstrated the

shape formation capabilities of this robotic platform (39), in which a swarm of 1024

robots successfully arranged itself into pre-defined morphologies, such as a starfish shape,

in a decentralized manner. This impressive result was achieved with only local

communication between neighboring robots. However, it depended on the hierarchical

control principle mentioned above (A)—each robot had an explicit image of the final

shape that should be created, and every robot had access to a coordinate system

constructed by the kilobots themselves, such that each robot knew its relative position

within the swarm. The shapes were thus not fully “emergent” (principle B above) thus

placing limitations on their ability to be adaptable, scalable and robust. A more recent

study from the same group extended the approach to create swarm shapes by

“disassembly” of the swarm using a light attraction/repulsion system (40), but it still relied

on the same top-down approach.

Here, we chose a specific biological inspiration to address the problem of shape

formation—namely, spontaneous self-organized patterning (principle B) that occurs in

some examples of multicellular tissue development. Although the many cells in a tissue do

different things (e.g., becoming different cell types, or migrating in different directions),

they all contain the same gene regulatory network (GRN)—the same genomic “program”
(Figs. 1(B)i. and ii.). Biological cells continually sense their neighborhood and

communicate with other cells with the help of signaling molecules, thus creating an

interconnected network. The design of the GRN leads to spatially non-uniform patterns of

gene activity in which different genes are activated in different cells in a coordinated

manner. These molecular patterns are then responsible for directing secondary processes:

Coordinated cell movement (migration), tissue proliferation (cell replication) or apoptosis

(cell death), which physically shape the tissue. Since our individual robots cannot

replicate, our goal here was to implement swarm morphogenesis based only on cell

movements (migration), which is indeed known to drive a number of well-studied

developmental cases, for example gastrulation.

The key goal was to achieve simple biologically-inspired morphologies by purely

emergent self-organized morphogenesis (approach B). This would allow morphogenesis

Science Robotics Manuscript Template Page 5 of 38

without the robots needing to determine their locations, and thus showing a higher degree

of adaptability and robustness. Drawing directly on inspiration from developmental

systems, we chose to use reaction-diffusion (RD) circuits, and in particular Turing

systems, as they have recently been shown to underlie a number of developmental models

(41-43) (fig. 1(C)i.). RD circuits describe a system of interacting molecular species (such

as diffusible proteins encoded by the gene circuit) which can encode a genuinely

symmetry-breaking reaction which produces spatial patterns of spots or stripes (fig.

1(C)ii.). Although such patterns are limited to periodic arrangements, in nature they have

led to morphologies with a variety of useful functions. Their lack of dependence on

positional information removes the potential errors that such self-localization mechanisms

would experience. Furthermore, we explored whether feedback could be observed

between patterning and tissue movement. In other words, could examples be found in

which robot movements would be driven by the “molecular” pattern, but where the

consequent alterations in swarm shape would also feedback to alter the pattern. This is a

studied phenomenon in development, known as morphodynamic patterning (44, 45), and

believed to provide intrinsic adaptability and self-repairing behavior. These results were

achieved in a real but very simple swarm technology, in which the shape-forming

behavior of the collective swarm is reliable, even when the behavior of the individual

robots are relatively unreliable, thus requiring the collective whole to be greater than the

sum of its parts.

Results

The swarm robotic platform that we used for our work is the kilobot (38). Kilobots are

minimal robots designed to enable swarm experiments in large numbers. Three main

functionalities were used: movement, robot-to-robot communication and a multi-color

LED for experimental monitoring (fig. 2(A)). In kilobots, locomotion is achieved by two

motors that generate vibrations for the legs resulting in non-holonomic movement with a

large amount of noise. Communication is performed by passing infrared messages and is

limited in range (see Methods for more details). Noisy distance measurements to

neighbors can directly be extracted through communication, but not angle, i.e., when

receiving a message, a robot cannot detect from which direction the message arrived. The

lack of directional sensing and the degree of noise in motion and communication were

ideal to demonstrate robust self-organized collective behavior (morphogenesis) even with

robots that are simple and unreliable—a key goal for robust but economical technologies.

The morphogenetic mechanism explored was the interaction of the two activities

described above (fig. 2(B)): Pattern formation driven by GRNs, and migration or “tissue

movement”—the collective motion of the individual kilobots responsible for re-shaping

the swarm morphology. These two processes should happen simultaneously (not

sequentially) thus directly interacting with each other to achieve dynamic morphogenesis.

Science Robotics Manuscript Template Page 6 of 38

For the first part, pattern formation, the Turing system was used as the underlying

mechanism, comprising a GRN of two virtual molecules, U and V, conceptually

represented in fig. 2(C)i. Each robot kept track of its own concentrations of U and V, and

the interactions between the two molecules were configured as an activator-inhibitor

network, where molecule U acted as an activator and molecule V acts as an inhibitor. The

change in concentration of each molecule was given by the reaction-diffusion equations: 𝝏𝒖𝝏𝒕 = 𝑹𝒇(𝒖, 𝒗) + 𝑫𝒖𝜵𝟐𝒖 𝝏𝒗𝝏𝒕 = 𝑹𝒈(𝒖, 𝒗) + 𝑫𝒗𝜵𝟐𝒗

𝒇(𝒖, 𝒗) = (𝑨𝒖 + 𝑩𝒗 + 𝑪) − 𝜸𝒖𝒖 𝒈(𝒖, 𝒗) = (𝑬𝒖 − 𝑭) − 𝜸𝒗𝒗

The reaction part of the equation could be solved directly on each kilobot, just by using

the current values of U and V. For the diffusion part, the values of both the activator and

inhibitor of each neighbor in range was necessary, which can be obtained via message

passing (fig. 2(C)ii. —details given in Methods). In fig. 2(C)iii., we also show examples

of different Turing patterns produced by varying a parameter of the reaction-diffusion

equations. Green activation of the LEDs was programmed to appear where the

concentration of the activator U was high (i.e., above a threshold value). By varying

parameter C, the type of pattern (spots, stripes or inverted spots) could be controlled. For

the purpose of this paper we term the green spots, Turing spots.

The second process—migration, or tissue movement—allowed robots to reposition

themselves from areas with low activator U to areas with high activator (Turing spots),

given in fig. 2(D). This mimicked the flow of cells seen in natural morphogenesis, or

could alternatively be seen as equivalent to localized tissue growth in the region of the

green spots, and localized cell death in between (as seen during digit formation in

tetrapods (46)).There were two conditions for a kilobot to start moving: (a) It must detect

that it is on the outer side of the swarm (“edge detection”) which is based on the estimate
of the relative change of the local swarm density, and (b) it must detect a local

concentration of U lower than a certain threshold value. To relocate robots we used an

edge-following algorithm where each individual robot moved along the outer edge of a

group of static robots, while attempting to maintain constant distance to its current nearest

neighbor. Finally, the robots were programmed to stop when in proximity to a Turing spot,

i.e., when they detected a neighbor with a high concentration of U, thus creating an

accumulation of kilobots around the Turing spots. The details of the movement algorithm

are given in Methods. An example of kilobot movement, following the previously

described movement algorithm is given in fig. 2(D)ii.

A conceptual example of the execution of the morphogenesis algorithm is given in fig.

2(E). Swarms started from an initial shape, with arbitrary low morphogen concentrations.

Science Robotics Manuscript Template Page 7 of 38

As soon as the pattern was formed and the Turing spots were established, individual bots

(in blue) started moving and settling on locations adjacent to the Turing spots. In parallel

with the movement, the Turing pattern adjusted to the new shape by changing the

morphogen concentrations in both the newly positioned bots and the bots that had already

become a part of the Turing spots (denoted in light green). This process of tissue

movement and pattern adaptation continued, resulting in the emergence of a shape.

Computer simulations were used to explore how the combination of Turing patterns with

movement can spontaneously and reliably give rise to morphogenesis (fig. 3(A)). To

conveniently monitor the states of the kilobots and the local concentrations of the virtual

molecules, we used the color of the LEDs. As shown in fig. 3(A), the LED color depends

on the level of the activator U, ranging from green (as highest level) through teal, blue and

purple at decreasingly lower levels, until the LED is turned off for very low values. We

explored the parameter space of the Turing pattern around the values provided in

Miyazawa et al. (47). As shown in fig. S1, replication of the type of patterns obtained by

varying parameters A and C was successful, hence confirming results shown in that work.

We also explored what types of patterns would result in better morphogenesis based on

our approach, i.e., spots, stripes or inverted spots. Neither stripes nor inverted spots were

useful, as these patterns resulted in many of the edge robots experiencing high

concentrations of U, and thus being restricted from moving. By contrast, normal spots

worked well, as they tended to appear on the edge of the swarm but they left significant

numbers of edge robots with low concentrations of U. They provided a good compromise

between number of robots that could move (in areas of low concentration) and areas of

“growth” where moving robots would accumulate (the spots themselves). Parameter

values that maximized the number of the spots on the edge without becoming stripes were

considered as a good starting point for a complex morphology to develop (values given in

Methods).

The morphogenesis approach was then validated on a real swarm of 300 kilobots. The

objective was to transform an initially disc-shaped swarm into a more interesting

morphology displaying an array of “tentacles” or protrusions. An interesting question was

whether regular morphologies could be generated (e.g., with a 4-fold symmetry of

protrusions), and/or more dynamic organic shapes reminiscent of simple organisms.

Ideally, the shape-formation process should be emergent, adaptive and robust. The

program that had been tested previously in simulation (emulating the Turing GRN) was

run in the robots, and starting from the initial disc shape (fig. 3(B)), the swarms were able

to re-organize themselves into new coherent shapes. In the case shown in fig. 3(B), five

Turing spots emerged—four on the surface of the swarm, roughly equidistant to each

other and one in the center. Subsequently, when the edge robots started to move, they

reliably relocated from regions with low concentrations of the Turing molecules (no LED

illumination) to the vicinity of the Turing spots (green LED). Over a short time, robots

built-up around the four spots to create four protrusions—showing a 4-fold symmetry.

Occasionally individual kilobots were “lost” from the swarm, but this was a relatively rare

event, and the vast majority remained in the evolving morphology. Fig. 3(C) shows the

results from three more experiments, in which the same basic shape, with 4-fold symmetry

was created. A close-up of the stages in the growth of a single protrusion can be seen in

Science Robotics Manuscript Template Page 8 of 38

more detail in fig. 3(D). Reliability of this emergent morphogenesis was high. The

successful parameter values were able to create robust organic shapes every time (nine

runs performed in total with an initial circular morphology), and five of these produced the

4-fold symmetry highlighted by the white dashed boxes in Figs. 3(B) and (C). From the

nine runs, six of them were replicates with the same Turing parameters, motion rules and

experimental conditions. The approximate running time of each experiment was around

three hours. The regular shape shown in Figs. 3(B) and (C) was highly reproducible, but it

must be noted that it was transient—further evolution of the swarm led to a more dynamic

morphologies, which were studied next. The complete summary of all these experiments

is given in the supplementary materials, fig. S2.

An important question was whether morphogenesis really emerged from patterning or

simply from robots moving around the swarm. To test that, three experiments were

performed in which robots had initial random concentrations and patterning was switched

off (meaning that they would keep the same concentration throughout the experiment and

no reaction-diffusion was taking place). Motion rules, number of robots and initial circular

shape were kept the same as in the previous experiments. We then compared both set of

experiments and demonstrated that Turing patterning is essential for the emergent

morphogenesis process, and that shapes cannot grow from random patterning (fig.

S3(A)i.). Shape index was used as the metric to compare experiments (details in

Methods).

The process of swarm morphogenesis, besides producing shapes in an emergent manner,

also proved to be a dynamic and adaptive process. If we changed the initial configuration

of the swarm to a rectangle, the patterning process adapted to this and the shape again

evolved Turing-driven protrusions (at each corner) as shown in fig. 4(A). To

quantitatively test that, we compared the set of replication experiments with initial circular

shape with a set of five experiments starting from a rectangle and having the same code as

the circular experiments. Results showed that shapes grow indistinguishably even though

they started from different initial configurations and therefore had a different initial shape

index (fig. S3(A)ii.). In addition, we ran the same program on a smaller swarm (110

kilobots) to explore the impact of swarm size. These tests produced a similar pattern, but

with three protrusions instead of four—resembling the letter T (fig. 4(B)). This is

consistent with Turing patterning systems, where for a given parameter settings the

frequency of the spots remains the same irrespectively of the surface size, i.e., smaller

surfaces do not have smaller Turing spots, but fewer.

Another important question, related to swarm adaptability, was whether morphodynamic

processes occur. This describes the scenario in which a large-scale feedback loop is

observed—pattern drives morphology, but the change in swarm shape also feeds back to

alter the molecular pattern (44, 45). Fig. 4(C) shows two examples of the molecular

pattern shifting through the swarm, while the shape changes. In this first case (fig. 4(C)i.)

this is a necessary part of the growth of a protrusion. The spot always maintained its

position at the distal tip of the protrusion, even though the tip did not consist of the same

robots over time (growth occurred by new robots arriving and adding to the existing

protrusion). This is an important mechanism for tip-extension. If the spot were static

Science Robotics Manuscript Template Page 9 of 38

(remaining in the same group of robots throughout) then it would gradually become

enclosed and “hidden” by non-green robots. Any subsequently arriving robots would

continue to edge-follow their way right past the spot, to a different part of the swarm, and

growth of the protrusion would be frozen. In the second case (fig. 4(C)ii.), a Turing spot

could be seen to shift through the tissue. This type of pattern adjustment endows the

swarm with a powerful form of adaptability. If the evolving shape is not compatible with

an optimal periodic arrangement (either due to random noise, or constraints in the

environment) the pattern can adjust and thus self-correct its own morphogenesis. The

adjustment of this molecular pattern could occur either as a gradual shift or as a more

abrupt reorganization—in both cases settling to a new, more stable configuration. Driven

by this morphodynamic processes, our swarm produced a variety of other morphologies,

whose main feature was that they are very organic, or organism-like shapes. Fig. 4(D)

shows a variety of swarm shapes, with tentacle-like protrusions growing out of them.

Individual quantification of morphologies is shown in fig. S3(B)i. as supplementary

material.

The swarm also showed robustness to direct swarm damage. We explored a couple of

damage scenarios – cutting off the protrusions, and cutting the whole swarm in half. In the

first case, either the original protrusion re-grew (fig. 5(A)), or the loss of one protrusion

promoted the growth of others (on the other side of the swarm in the case of fig. 5(B)).

Again, this demonstrated the value of the self-organizing behavior. From any given state

of the pattern and morphology, the Turing mechanism always pushed the pattern towards

an even-spaced periodic one—whether from the initial un-patterned configuration, or from

a perturbed pattern due to damage. For supplementary quantitative analysis on this first

case, see fig. S3(B)ii. In the second case, when the swarm was cut into two roughly-equal

parts, the two halves re-fused to create a single swarm relatively fast (fig. 5(C)). The self-

organizing dynamic of the Turing spots actually facilitated the merging of the two

swarms, contributing to the robustness of the system.

Finally, we quantified the varying and dynamic morphologies created by our robot swarms

(fig. 6). We considered the outer contour of the swarm shapes as the main feature to

analyze (as this represents the pure morphology of the system) and chose two shape

analysis metrics to quantify it: the shape index and the minimum number of characterizing

points (48, 49) (details in Methods). The first measure gave an indication of how much the

shape was different from a circle, and the second measured the roughness of the contour.

We tracked the dynamical change of the shapes over time from nine experiments, starting

from the initial, roughly-circular shape, finishing with the final evolved shape. By plotting

the values of the two measurements for each experiment over time we produced a

trajectory of the swarm through morphospace (50) (fig. 6(A)). Three clear features of

these trajectories can be seen – the starting position, a transient region of a regular

morphologies, and a dynamic region of variable shapes – which will be discussed in the

next section (fig. 6(B)).

Science Robotics Manuscript Template Page 10 of 38

Discussion

In summary, we have successfully endowed a large swarm of 300 robots with a self-

organized morphogenetic behavior (described as approach B in the introduction). It is

directly based on the principles of developmental biology, and results in emergent,

adaptive, and robust shapes. Rather than using pre-defined patterns and explicit

information about where each robot is, we used a GRN which implemented a self-

organizing Turing process as the basis for the pattern formation. This was translated into

physical shape change using the concept of robot migration (in analogy with natural

developmental biology). Analysis of swarm shape over time revealed the over-arching

control process involved. Starting from the initial circular conditions, all swarms moved in

a consistent direction through morphospace (fig. 6(B)). This movement represented the

emergent but reliable process of protrusions forming on the outer edge of each swarm

(blue region). The second feature was the region of transient regular 4-fold morphologies

(green region), which are highlighted in dashed white boxes in fig. 3. The third feature

was a region of morphospace in which the swarms accumulated. They drifted around this

region in a dynamic, adaptable way, but reliably staying within this particular shape space

(red region). Thus, both the dynamic adaptability and the shape predictability could be

understood within this plot of the morphospace.

A key question was whether the phenomenon of morphodynamic patterning could be

found within our robot swarms—a dynamical process documented in the biological

literature (44, 45). We indeed demonstrated the existence of this large-scale feedback loop

between the patterning process and the changes of the shape morphology (fig. 4(C)). On

the one hand, the “molecular” patterning process drives the physical shape change (of the

swarm), but on the other hand, changes to the shape (which act as boundary conditions for

the Turing system) feedback to cause the molecular pattern to change. As in biology, this

feature makes the swarm more dynamic and adaptable. In particular, the same types of

morphology were created when starting from different initial shapes, and also upon

damage to the swarm from external perturbations (when the researcher “cuts” protrusions
off the swarm, or cuts the swarm in half).

Another important feature of this system is scalability. In human technology, the

reliability of the whole machine often depends on the reliability of the components (“the
strength of the chain is in the weakest link”). The decentralized and collective nature of
our system avoids this problem. Even though a few robots are lost during morphogenesis,

this does not impede the remaining swarm to fulfill its function (and indeed it is

reminiscent of real embryo development, in which not all cells survive). Loss of robots

can occur for a variety of reasons—loss of digital IR messages, inaccuracy in distance

estimation and unreliable movements of robots—, all of which relate to the general lack of

reliability of these relatively simple, cheap kilobots. Despite this, the swarm as a whole

continues to control its global shape, even when reduced to less than one third of its

original size, or when physically “damaged”.

This work is an important step in the direction of human-designed hardware showing the

dynamic and organic adaptability of living organisms. Although the shapes were not

Science Robotics Manuscript Template Page 11 of 38

formed with a particular task in mind, this proof-of-concept should be extended to create

functional shapes. The conditions that lead to adaptability and regeneration are understood

at a general level (the self-organizing of Turing systems, and the feedback of

morphodynamics). However, a more detailed theoretical understanding will help to

engineer these systems for specific tasks, improving our control of the shapes that emerge.

An important idea is to explore greater interactions with the outside world, such as getting

the whole swarm to collectively navigate towards an external light source, surrounding

and herding foreign objects, searching an environment for areas of interest, or building

environment-driven structures (e.g., dynamic bridges to “flow” over a river). In these
cases, external cues would influence the GRN state (e.g., gene production), thus directing

the growth of the swarm and possibly resulting in whole swarm movement. Overall, we

believe these results provide a glimpse into the future of “programmable matter” in which
the limits to the design and flexibility of useful machines may be restricted only by our

imagination.

Science Robotics Manuscript Template Page 12 of 38

Materials and Methods

 Study design

The objective of our study is to demonstrate that the morphogenesis algorithm produces

emergent morphologies in large swarms of real robots. One hundred and twenty-two

computer simulations of 1000 agents were performed to find the most suitable parameters

for the reaction-diffusion equations. Experiments with swarms of real robots were

conducted to validate our algorithm. Concretely, one experiment with a swarm of 110

robots, one experiment with a swarm of 250 robots and thirteen experiments with a swarm

of cca. 300 robots were conducted. From the thirteen experiments, eleven corresponded to

experimental replicates with the same code and experimental conditions, divided in two sets

with different initial configuration. Six of them were initialized with a circular shape,

whereas the other five were initialized with a rectangular shape. Three additional

experiments were conducted on a swarm of 300 robots to test the rehabilitation properties

of the morphogenesis algorithm. Finally, another three extra experiments with a random

morphogenesis algorithm on a swarm of 300 robots with the same code and experimental

conditions were conducted as control. Therefore, twenty-one experiments with large

swarms of real robots were conducted.

 Morphogenesis algorithm

The morphogenesis algorithm gets executed in a loop on each individual robot. It consists

of the same sequence of updates, which run in parallel and asynchronously on all kilobots

of the swarm. The algorithm can be summarized in four basic steps as:

1. Communication

2. Patterning

3. Motion

In the first step, all the inputs, i.e., messages received from neighboring robots are

processed. Next, the values of the two morphogens (U and V) of the gene regulatory

network (GRN) are calculated, which underlies the swarm patterning process. Depending

on these values and some additional conditions (like edge detection), a robot updates its

movement state and halts or activates its motors accordingly in the last step. The robot

also sets the values of the message variables that it broadcasts and the color of the LED

light, which depends on the value of the activator U. We summarize the algorithm in fig.

7(A) and give the details of the implementation of each of these steps in the following

text.

1. Communication

The primary kilobot inputs are the received messages from other surrounding kilobots (fig.

7(B)). For passing a message, an infrared broadcast is used and the message itself has a

payload of 9 bytes. It can be received by any kilobot within communication range (~ 10

Science Robotics Manuscript Template Page 13 of 38

cm) and the frequency of the message broadcast is “hardwired” in the kilobots and

happens at regular intervals. At any point in the program, the content of the message

values can be updated, and they will be transmitted at the next broadcast interval. On the

receiving side, when a kilobot detects an incoming message, a program interrupt is

generated, and a user-defined handler function processes the received message. In our

program, we used a function that stores each incoming message in a circular buffer. The

messages from this buffer are emptied and processed at the beginning of each of the main

loop executions.

We used 8 out of 9 bytes for our message payload and we transmitted the values of 5

variables. First is the (locally) unique ID value of a kilobot that took up 2 bytes of the

message. The second is the number of neighbors that a robot has, and used 1 byte. The

robots can be in one of several states which is also transmitted in a 1 byte. The remaining

4 bytes are used for the Turing patterning process, namely to transmit the value of the U

and V morphogens of a robot, each one taking 2 bytes.

As the morphogen concentrations of U and V are stored as single-precision floating point

numbers (4 bytes each) inside the kilobots, they have to be converted to half-precision on

the transmitter side and then decoded to single-precision on the receiving robot side (with

a small percentage of error incurred during conversion). The reason is that the 9 bytes

message that kilobots can send needs to include the other information described above

(ID, state and number of neighbors). Out of the 16 bits available in the 2-bytes, half-

precision floating point numbers, 10 bits are used for the fraction of the number, the next 5

bits for the exponent of the number and 1 bit for the sign, as described in the IEEE 754

standard.

After a message from the receiving buffer is processed, it is stored in a so-called

neighbors’ table. The neighbor’s ID, its number of neighbors and its state are stored as

they are. The received bytes of the morphogens U and V are converted to single-precision

floating point numbers and stored. Additionally, a time stamp is added to each message,

which is the current kilo tick number of the bot. The neighbors’ table keeps the most

recent messages received from the neighbors in range for a certain amount of time and

older messages are discarded (set at 2 seconds old).

2. Patterning

The state of the gene regulatory network of each robot is responsible for the patterning

process of the whole swarm. The equations for the Turing patterning system are given in

fig. 7(C)i. These are reaction-diffusion equations that give the rate of change of the

morphogens U and V, where R is the reaction parameter and UD and VD are the diffusion

parameters. The production of U and V is given by functions f and g and it depends on the

synthesis and on the degradation of U and V. The two functions (f and g) are linear

functions given in fig. 7(C)i. The parameter values of the linear equations used in our

experiments are the following: A = 0.08, B = -0.08, C = 0.03, γu = 0.03, E = 0.1, F = 0.12

and γv = 0.06. The synthesis terms are limited between zero and user defined maximum

values, which for our experiments are given as: maxsynU = 0.23 for U and maxsynV = 0.5 for

Science Robotics Manuscript Template Page 14 of 38

V. The reaction parameter is R = 160 and the diffusion parameters are UD = 0.5 and VD =

10 for U and V correspondingly. In our implementation of these equations we use a

discreet version with a time step dt = 0.00005.

The morphogen diffusion (fig. 7(C)ii.) is emulated with the help of the message passing of

the morphogen concentrations of the robots. At a given moment, each robot has

information about its neighbors’ morphogen (U and V) concentrations. By subtracting

these neighboring morphogen values from its own and then summing up these differences,

each robot determines the net morphogen diffusion that takes place. This allows the robot

to edit its own morphogen values, either by increasing or decreasing them due to

“diffusion”. With the help of the kilobot's LEDs, the Turing pattern can be visible in the

swarm. We used different LED colors for different ranges of values of the morphogen U,

defined as follows: green LED for U > 4.0, teal for U > 3.0 and U <= 4.0, blue for U > 2.0

and U <= 3.0, purple for U > 1.0 and U <= 2.0 and the LED was off for U <= 1.0.

3. Motion

The process of edge detection is relevant for updating the robot state and is the main

process responsible for determining if a robot moves or not. It is based on estimation of

the relative difference of local swarm density, as illustrated in fig. 7(D)ii. Each robot

transmits the number of its own neighbors N to the robots in range and in return, it

receives the same information iN from them. If an individual robot’s own number of

neighbors N is smaller than the average number of its neighbor’s neighbors NN, then the

robot is on the outer edge of the swarm. The intuition is that if robots are on the inner part

of the swarm, they would have an approximately similar number of neighbors. The

threshold for detecting an edge robot that was used, thedge , had a value of 0.8.

Due to the inherent noise in the kilobot swarm, some messages from robots are not

received or dropped. This can potentially impact the edge detection and make it unstable.

In order to compensate for this, instead of taking the current number of neighbors, or the

current average of neighbor’s neighbors, an approximate running average is used, given
with:

avgNNsoldavgNNscurravgNNs .)1(. −+= 

for the average number neighbor’s neighbors and:

NsoldNscurrN s .)1(. −+= 

for the average number of neighbors, where  = 0.0001.

After a kilobot detects itself on the edge, motion might start (described below). The

default movement in our approach is the edge following movement. It is based on orbiting

movements, where the aim of a moving robot is to maintain a constant distance to a static

one (fig. 7(D)i.). The orbiting robot is moving in one of the preferred directions

(clockwise or counterclockwise) while estimating the distance to the static robot based on

Science Robotics Manuscript Template Page 15 of 38

the messages it receives. If the distance is larger than the predefined one (thd), the robot

starts rotating in a direction that brings it closer to the static robot. As soon as this

movement brings the robot to a distance less than thd , it switches to the opposite direction

of rotation. This constant switching of rotation direction produces a forward motion, thus

moving the robot in a circle around the static one. The edge following algorithm is a

simple extension of this orbiting algorithm. Namely, there is a swarm of static robots,

instead of just one, and a moving robot goes around the edge of this static swarm by

always orbiting its nearest neighbor.

The recover movement (approaching), moves a robot towards a static one, bringing it to a

predefined distance of thd , the threshold distance. It is used when a robot is too far from a

swarm and needs to “recover”. The movement starts by the robot rotating in an arbitrary

direction and measuring the change of distance from the static robot. If the change is

negative, this means that the robot is approaching the static robot and the current direction

of rotation is maintained. If this change is positive, i.e., the distance to the static robot is

increasing, then the robot switches the direction of movement. It does so by selecting the

nearest neighbor from the swarm as a static robot and approaching it until it is at a

distance lower than thd .

There are three motion-related states in which a robot can be: WAIT, EDGE FOLLOW

and RECOVER, as shown in fig. 7(D)iii. There is one central stationary state, the WAIT

state, from which a robot can transit into one of the two moving states—EDGE FOLLOW

or RECOVER. The EDGE FOLLOW and RECOVER states are both blocking states,

meaning that if a robot is in this state, then all neighbors that are receiving messages from

it cannot initialize movement. This constraint is due to the design of the movement

algorithms, related to the EDGE FOLLOW and RECOVER state, coming from the

kilobots lack of directionality sensing.

The properties of each state are the following:

• The WAIT state is the default kilobot state, in which the robot it is not moving, it is

just updating its GRN and checking if the conditions for transitioning into the EDGE

FOLLOW or RECOVER state are fulfilled.

• In the EDGE FOLLOW state, the kilobot is performing the edge following movement.

• In the RECOVER state, the kilobot’s goal is to approach the swarm, in case it drifted

too far away from it.

The main rules for transition between the states are summarized in Table 1. Unless this

rule allows a state transition to be triggered, the kilobot will by default stay in its current

state. There are a few common functions and constants that are used for the state transition

rules:

• edge_detected(): TRUE if robot on the edge of the swarm.

• check_wait_state(): TRUE if neighboring robot(s) are in the WAIT state.

Science Robotics Manuscript Template Page 16 of 38

• dist(): returns distance to a specified neighbor robot.

• dist_to_Turing(): returns distance to the nearest neighbor with a Turing spot (if

applicable).

• dist_far: upper distance limit beyond which a robot is considered too far from the

swarm.

• dist_th: distance threshold used for the edge following movement.

• ALL: all neighbors.

• NN: nearest neighbors.

A robot that is in the WAIT state can transit to EDGE FOLLOW if it is on the edge, no

other neighbors are moving, and it is not a part of, or in near proximity to a Turing spot.

The transition in the opposite direction (from EDGE FOLLOW to WAIT) occurs only if a

robot is no longer on the edge, is close or became part of a Turing spot, if the kilobot that

it is currently trying to orbit is also moving and additionally if it goes too far away from

the swarm.

If a robot is too far away from the swarm, it instantly switches to the RECOVER state via

the WAIT state. The robot remains in this state until satisfactory distance to the swarm is

achieved, after which it switches back to the WAIT state.

Summary of the morphogenesis algorithm

Below is a serial outline of the program that the kilobots execute (patterning and motion).

It is worth noticing that the kilobots run several processes such as sending and receiving

messages following a timer-interrupt approach. Only the main functions and variables are

presented here. A link to the source code can be found at the end of this article.

program main:

 u, v, id, state ← initialize_variables() // Random initial concentrations for molecules U and V, random

 // initial id, robot in WAIT state, message with random

 // concentrations starts to be sent

 A ← 0.08, B ← -0.08, C ← 0.03, γu ← 0.03, E ← 0.1, F ← 0.12, γv ← 0.06, Du ← 0.5, Dv ← 10,

 R ← 160, ∆t ← 0.00005, synUmax ← 0.23, synVmax ← 0.5

 MAX_DIST_NEIGH ← 85 // Maximum distance in millimeters to neighbors for the diffusion term

Science Robotics Manuscript Template Page 17 of 38

 neigh_table ← create_empty_list() // Initializes neighbors table to store their messages

 while TRUE:

 // Messages from neighbors are processed and neighbors table is updated. It also

 // calculates running averages for number of neighbors and number of neighbors’ neighbors

 n_neighbors, neigh_table ← process_inputs(neigh_table)

 if state = WAIT then

 u, v ← update_GRN(u, v, A, B, C, γu, E, F, γv, Du, Dv, R, ∆t, synUmax, synVmax,

 MAX_DIST_NEIGH, neigh_table)

 end if

 if kilo_ticks ≥ 20000 then // Movement starts after about 10 minutes, when pattern is stable

 state ← update_movement(state, neigh_table)

 end if

 show_concentration(u) // The color of the LED depends on concentration of molecule u

 id ← local_unique_id(id) // If a neighbor has the same ID, another will be chosen at random

 update_message(id, n_neighbors, state, u, v) // It updates the message that will be sent

 end while

end program

algorithm update_GNR:

 input: internal concentrations u and v of molecules U and V,

 parameters A, B, C, γu, E, F, γv, Du, Dv, R of the linear model,

 incremental step ∆t for the discretization,

 maximum production rates synUmax, synVmax for molecules U and V

Science Robotics Manuscript Template Page 18 of 38

 maximum distance MAX_DIST_NEIGH in millimeters to neighbors for the diffusion term

 neighbors table neigh_table with all the information from neighbors

 output: new concentrations u and v of molecules U and V

 laplaceu ← 0, laplacev ← 0

 // The Laplace operator is calculated

 for i ← 1 to length(neigh_table) do

 neighbor ← neigh_table[i]

 if distance(neighbor) ≤ MAX_DIST_NEIGH then

 laplaceu ←laplaceu + concentration_u(neighbor) - u

 laplacev ←laplacev + concentration_v(neighbor) - v

 end if

 end for

 creationu ← A*u + B*v + C

 creationv ← E*u – F

 if creationu < 0 then

 creationu ←0

 else if creationu > synUmax then

 creationu ← synUmax

 end if

 if creationv < 0 then

 creationv ←0

 else if creationv > synVmax then

 creationv ← synVmax

 end if

 creationu ← creationu - γu*u

 creationv ← creationv - γv*v

Science Robotics Manuscript Template Page 19 of 38

 u ← u + ∆t*(R*creationu + Du*laplaceu)

 v ← v + ∆t*(R*creationv + Dv*laplacev)

 return u, v

end algorithm

algorithm update_movement:

 input: state state of the robot,

 neighbors table neigh_table with all the information from neighbors

 output: new state state of the robot

 if state = EDGE_FOLLOW then

 if edge_follow_to_wait() then

 state ← WAIT

 stop_motors()

 else // Stays in EDGE_FOLLOW state

 nearest_neigh ← find_nearest_neighbor(neigh_table)

 // By moving around the nearest robot, an edge-following movement is achieved

 move_around(nearest_neigh)

 end if

 else if state = WAIT then

 if wait_to_edge_follow() then

 state ← EDGE_FOLLOW

 start_motor_right()

Science Robotics Manuscript Template Page 20 of 38

 else if wait_to_recover() then

 state ← RECOVER

 start_motor_right()

 else // Stays in WAIT state

 do_nothing()

 end if

 else if state = RECOVER then

 if recover_to_wait() then

 state ← WAIT

 stop_motors()

 else // Stays in RECOVER state

 nearest_neigh ← find_nearest_neighbor(neigh_table)

 // By moving towards the nearest neighbor, the bot tries to get back to the swarm

 move_towards(nearest_neigh)

 end if

 end if

 return state

end algorithm

 Quantifying swarm morphologies

Shape characterizing points

In the field of landscape ecology, it is of great interest to quantify the heterogeneity of
landscapes by identifying and analyzing spatial homogeneous patches (48) in order to
counteract the effects of human-induced biodiversity, as Moser et al. point out in (49). In
their work, they analyze the relation between shape complexity of the patches and richness

Science Robotics Manuscript Template Page 21 of 38

of plant species. In particular, they propose a metric of geometric complexity based on the
contour of the patches which can be useful here. This metric is called number of shape
characterizing points (NSCP), and it is defined as the minimum number of points required
to define the shape. The idea is that the greater the NSCP, the more complex the shape is.
As a result, this metric can potentially describe the morphology of the protrusions by
means of the spikiness of shapes. In their work, they propose to calculate the polygon
defining the patch and take only the vertices forming an angle of less than 160 degrees.

In our work, all the points in the contour of each shape were obtained using the
findContours function included in OpenCV 3.2.0 using CHAIN_APPROX_NONE. To
calculate the number of characterizing points of the shape, the length of the array resulting
from applying the following algorithm to the array of all contour points with a threshold of
160 degrees was obtained:

algorithm shape_characterizing_points:

 input: array P containing all points of the shape contour,

 angles threshold t between 0 and 180 degrees

output: array Q containing points in the same order from P with angles < t for all three

 consecutive points

 Q ← P

 if Q contains at least 3 points then

 base ← 1

 for k ← 2 to length(Q) do

 angle ← compute internal angle from points Qbase, Qk and Qk+1

 // Q is circular. When k = length(Q), then Qk+1 = Q1

 if angle ≥ t then

 Q ← remove point Qk from Q

 else

 base ← k

 end if

 end for

 end if

 return Q

end algorithm

Science Robotics Manuscript Template Page 22 of 38

Perimeter-area ratios

The simplest metrics to measure shape complexity are those using the perimeter and area
of the shapes in question. In our scenario, the area of the swarm is practically constant, as
the number of robots remains the same throughout the experiment—with the exception of
the few ones which get lost and the gaps between robots. The perimeter then describes
how the contour of the swarm grows/shrinks over time. The longer the protrusions, the
bigger the perimeter. Therefore, a metric involving perimeter can be a good estimate of the
development of the shape.

Among all perimeter-area ratios, we decided to use a dimensionless one to allow for
comparison across experiments, even with different swarm sizes. Moreover, we were
interested in comparing the shapes during the morphogenesis process with the initial
circular configuration of the swarm. The metric with all these features was shape index,
which is a measure of the circularity of a shape. Its formula is:

 𝑠ℎ𝑎𝑝𝑒 𝑖𝑛𝑑𝑒𝑥 = 𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟2√π𝑎𝑟𝑒𝑎

As can be seen, the shape index of a circle is 1. This metric can be useful to quantify how
the swarm develops morphological features and how different it becomes from a circle
(shape index greater than 1).

To calculate the shape index of the shapes in our work, we used the built-in functions
contourArea and arcLength of OpenCV 3.2.0 to calculate the area and perimeter of the
shape, respectively. The contour used for this metric was the result of applying the
algorithm shape_characterizing_points to the contour with all the points with a threshold
of 160 degrees, as described in the subsection above.

Supplementary Materials

Figure S1. Parameters exploration in simulation.

Figure S2. Summary of fifteen different runs of the morphogenesis algorithm.

Figure S3. Quantitative analysis of emergence, adaptability and robustness.

Movie S1. Morphogenesis in Robot Swarms.

Science Robotics Manuscript Template Page 23 of 38

References

1. J. B. A. Green, J. Sharpe, Positional information and reaction-diffusion: two big ideas in

developmental biology combine. Development 142, 1203-1211 (2015).

2. L. Wolpert, Positional information and the spatial pattern of cellular differentiation.

Journal of Theoretical Biology 25, 1-47 (1969).

3. J. B. Gurdon, P.-Y. Bourillot, Morphogen gradient interpretation. Nature 413, 797-803

(2001).

4. D. Summerbell, J. H. Lewis, L. Wolpert, Positional information in chick limb

morphogenesis. Nature 244, 492-496 (1973).

5. A. Gierer, H. Meinhardt, A theory of biological pattern formation. Kybernetik 12, 30-39

(1972).

6. A. M. Turing, The chemical basis of morphogenesis. Phil. Trans. R. Soc. Lond. B 237, 37-

72 (1952).

7. J. D. Murray, Mathematical Biology, II Spatial models and biomedical applications

(Springer-Verlag, New York, 2001).

8. J. Jaeger, Manu, J. Reinitz, Drosophila blastoderm patterning. Current opinion in genetics

& development 22, 533-541 (2012).

9. J. Raspopovic, L. Marcon, L. Russo, J. Sharpe, Digit patterning is controlled by a Bmp-

Sox9-Wnt Turing network modulated by morphogen gradients. Science 345, 566-570

(2014).

10. R. Doursat, H. Sayama, O. Michel, Morphogenetic engineering: reconciling self-

organization and architecture, in Morphogenetic Engineering: Toward Programmable

Complex Systems, R. Doursat, H. Sayama, O. Michel, Eds. (Springer, Berlin, Heidelberg,

2012), chap. 1.

11. M. Brambilla, E. Ferrante, M. Birattari, M. Dorigo, Swarm robotics: a review from the

swarm engineering perspective. Swarm Intelligence 7, 1–41 (2013).

12. C. J. M. Verhoeven, M. J. Bentum, G. L. E. Monna, J. Rotteveel, J. Guo, On the origin of

satellite swarms. Acta Astronautica 68, 1392-1395 (2011).

13. S. Hauert, S. N. Bhatia, Mechanisms of cooperation in cancer nanomedicine: towards

systems nanotechnology. Trends in Biotechnology 32, 448-455 (2014).

14. E. Hawkes, B. An, N. M. Benbernou, H. Tanaka, S. Kim, E. D. Demaine, D. Rus, R. J.

Wood, Programmable matter by folding, in Proceedings of the National Academy of

Sciences 107, 12441-12445 (2010).

15. S. C. Goldstein, J. D. Campbell, T. C. Mowry, Programmable matter. Computer 38, 99-

101 (2005).

16. N. Mathews, A. L. Christensen, R. O’Grady, F. Mondada, M. Dorigo, Mergeable nervous

Science Robotics Manuscript Template Page 24 of 38

systems for robots. Nature Communications 8, 439 (2017).

17. R. O’Grady, A. L. Christensen, M. Dorigo, Swarmorph: Morphogenesis with self-
assembling robots, in Morphogenetic Engineering: Toward Programmable Complex
Systems, R. Doursat, H. Sayama, O. Michel, Eds. (Springer, Berlin, Heidelberg, 2012),
chap. 2.

18. K. Gilpin, D. Rus, Modular Robot Systems. IEEE Robotics & Automation Magazine 17,
38-55 (2010).

19. J. Nembrini, A. F. T. Winfield, Emergent swarm morphology control of wireless

networked mobile robots, in Morphogenetic Engineering: Toward Programmable

Complex Systems, R. Doursat, H. Sayama, O. Michel, Eds. (Springer, Berlin, Heidelberg,

2012), chap. 10.

20. J. Cheng, W. Cheng, R. Nagpal, Robust and self-repairing formation control for swarms of
mobile agents, in Proceedings of the 20th national conference on Artificial intelligence
(AAAI’05), pp. 59-64.

21. Y. Liu, C. Gao, Z. Zhang, Y. Wu, M. Liang, L. Tao, Y. Lu, A new multi-agent system to
simulate the foraging behaviors of Physarum. Natural Computing 16, 15-29 (2017).

22. H. Oh, A. R. Shiraz, Y. Jin, Morphogen diffusion algorithms for tracking and herding
using a swarm of kilobots. Soft Computing 22, 1833-1844 (2016).

23. J. Jones, Influences on the formation and evolution of Physarum polycephalum inspired
emergent transport networks. Natural Computing 10, 1345-1369 (2011).

24. R. Thenius, M. Dauschan, T. Schmickl, K. Crailsheim, Regenerative abilities in modular
robots using virtual embryogenesis, in Adaptive and Intelligent Systems, A. Bouchachia,
Ed. (Springer, Berlin, Heidelberg, 2011), pp. 227-237.

25. L. Bai, M. Eyiyurekli, D. E. Breen, An emergent system for self-aligning and self-
organizing shape primitives. Second IEEE International Conference on Self-Adaptive and
Self-Organizing Systems, 445-454 (2008).

26. T. Schmickl, K. Crailsheim, A navigation algorithm for swarm robotics inspired by slime
mold aggregation, in Swarm Robotics, E. Şahin, W. M. Spears, A. F. T. Winfield, Eds.
(Springer, Berlin, Heidelberg, 2007), pp. 1-13.

27. T. Schmickl, K. Crailsheim, Trophallaxis among swarm-robots: A biologically inspired
strategy for swarm robotics. The First IEEE/RAS-EMBS International Conference on
Biomedical Robotics and Biomechatronics, 377-382 (2006).

28. R. Groß, M. Bonani, F. Mondada, M. Dorigo, Autonomous self-assembly in a swarm-bot,
in Proceedings of the 3rd International Symposium on Autonomous Minirobots for
Research and Edutainment, K. Murase, K. Sekiyama, T. Naniwa, N. Kubota, J. Sitte, Eds.
(Springer, Berlin, Heidelberg, 2006), pp. 314-322.

Science Robotics Manuscript Template Page 25 of 38

29. K. Støy, Controlling self-reconfiguration using cellular automata and gradients, in
Proceedings of the 8th international conference on intelligent autonomous systems, 693-
702 (2004).

30. Y. Ikemoto, Y. Hasegawa, T. Fukuda, K. Matsuda, Gradual spatial pattern formation of
homogeneous robot group. Information Sciences 171, 431-445 (2005).

31. W-M. Shen, P. Will, A. Galstyan, C-M. Chuong, Hormone-inspired self-organization and
distributed control of robotic swarms. Autonomous Robots 17, 93-105 (2004).

32. Y. Meng, H. Guo, Y. Jin, A morphogenetic approach to flexible and robust shape formation
for swarm robotic systems. Robotics and Autonomous Systems 61, 25-38 (2013).

33. Y. Jin, H. Guo, Y. Meng, A hierarchical gene regulatory network for adaptive multirobot
pattern formation. IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics) 42, 805-816 (2012).

34. R. Doursat, Organically grown architectures: Creating decentralized, autonomous systems
by embryomorphic engineering, in Organic Computing, R. P. Würtz, Ed. (Springer, Berlin,
Heidelberg, 2008), pp. 167-199.

35. T. Taylor, P. Ottery, J. Hallam, Pattern formation for multi-robot applications: Robust, self-
repairing systems inspired by genetic regulatory networks and cellular self-organisation.
Technical Report EDI-INFRR-0971, School of Informatics, University of Edinburgh
(2007).

36. H. Sayama, Robust morphogenesis of robotic swarms [Application Notes]. IEEE
Computational Intelligence Magazine 5, 43-49 (2010).

37. H. Oh, A. R. Shirazi, C. Sun, Y. Jin, Bio-inspired self-organising multi-robot pattern
formation: A review. Robotics and Autonomous Systems 91, 83-100 (2017).

38. M. Rubenstein, C. Ahler, R. Nagpal, Kilobot: A low cost scalable robot system for

collective behaviors, in Proceedings of 2012 IEEE International Conference on Robotics

and Automation, 3293-3298 (2012).

39. M. Rubenstein, A. Cornejo, R. Nagpal, Programmable self-assembly in a thousand-robot

swarm. Science 15, 795-799 (2014).

40. M. Gauci, R. Nagpal, M. Rubenstein, Programmable self-disassembly for shape formation

in large-scale robot collectives, in Distributed Autonomous Robotic Systems, R. Groß et

al., Eds. (Springer, Cham, 2018), pp. 573-586.

41. L. Marcon, J. Sharpe, Turing patterns in development: what about the horse part? Current

Opinion in Genetics & Development 22, 578-584 (2012).

42. A. D. Economou et al., Periodic stripe formation by a Turing mechanism operating at

growth zones in the mammalian palate. Nature Genetics 44, 348-351 (2012).

43. J. D. Murray, Mathematical Biology (Springer-Verlag, New York, 1989).

Science Robotics Manuscript Template Page 26 of 38

44. I. Salazar-Ciudad, J. Jernvall, S. A. Newman, Mechanisms of pattern formation in

development and evolution. Development 130, 2027-2037 (2003).

45. I. Salazar-Ciudad, J. Jernvall, How different types of pattern formation mechanisms affect

the evolution of form and development. Evolution and Development 6, 6-16 (2004).

46. L. Wolpert, C. Tickle, A. M. Arias, Principles of Development (Oxford University Press,

USA, ed. 5, 2015).

47. S. Miyazawa, M. Okamoto, S. Kondo, Blending of animal colour patterns by

hybridization. Nature Communications 1, 1-6 (2010).

48. E. J. Gustafson, Quantifying landscape spatial pattern: what is the state of the art?

Ecosystems 1, 143-156 (1998).

49. D. Moser, H. G. Zechmeister, C. Plutzar, N. Sauberer, T. Wrbka, G. Grabherr, Landscape

patch shape complexity as an effective measure for plant species richness in rural

landscapes. Landscape Ecology 17, 657-669 (2002).

50. P. Mitteroecker, S. M. Huttegger, The concept of morphospaces in evolutionary and

developmental biology: Mathematics and metaphors. Biological Theory 4, 54-67 (2009).

Acknowledgments: D.C-Z. thanks Alan Winfield and Luca Giuggioli for useful discussions

about the work presented. D.C-Z. and S.H. also thank Jerry Wright for the high-quality photos of

the robots. Funding: I.S., N.C., X.D., F.J., J.S. and J.K. were supported by the Swarm-Organ

project, project number 601062 in the European Commission 7th Framework Program. I.S., N.C.,

X.D. and J.S. were additionally supported by the Spanish Ministry of Economy and

Competitiveness, through ‘Centro de Excelencia Severo Ochoa 2013-2017’, SEV-2012-0208.

D.C-Z. was supported by the EPSRC Centre for Doctoral Training in Future Autonomous and

Robotic Systems (FARSCOPE) at the Bristol Robotics Laboratory. Author contributions: J.S.

conceived the project, obtained the primary funding, created the team and designed the theoretical

framework. I.S. developed, created and tested the morphogenetic approach (both pattern

formation and the robot movement control), parameter optimization and troubleshooting, first in

the simulation software and then in the kilobot platform. D.C-Z. performed the large-scale kilobot

runs, test simulations and the morphometric analyses. S. H. supervised the large-scale runs and

simulations. X.D. developed and tailored the Turing model for the swarm. N.C. helped with

simulations. F.J. contributed to implementation on the kilobots, which was supervised by J.K. The

manuscript was written by I.S., D.C-Z. S.H. and J.S. Competing interests: The authors declare

that they have no competing interests. Data and materials availability: All data needed to

evaluate the conclusions in the paper are present in the paper or the Supplementary Materials.

Source code of the morphogenesis algorithm described in this paper has been released under MIT

license, and it can be accessed via https://github.com/Danixk/Turing_morphogenesis

Science Robotics Manuscript Template Page 27 of 38

Figure 1. Morphogenesis in natural systems. (A) (i.) Fire ants constructing bridges. (ii.) Bacterial colonies

structures formed by swarming. (iii.) Slime mold network for optimal nutrient transport. (iv.) Lungs consisting of a

large network of alveoli for respiration. (B) Gene regulatory network (GRN) as the underlying mechanism behind

patterning and morphogenesis processes in real tissues (e.g. heart valve) or robot swarms. (i.) Each individual cell has

an identical GRN and cells communicate by secreting morphogens or direct cell-to-cell communication. A

multicellular tissue consists of many cells that are interconnected and communicate to each other, thus allowing for

coordinated tissue behavior. (ii.) Robots emulate this behavior by running the same GRN and communicate to each

other by sending messages about their GRN state. (C) Turing patterns in different biological organisms (i.) zebra,

giraffe, seashell, butterfly and different types of Turing patterns (ii.) on fish skin.

Science Robotics Manuscript Template Page 28 of 38

Figure 2. Swarm morphogenesis approach description. (A) Kilobots are small robots, each containing a

microprocessor, infrared (IR) receiver/transmitter, a battery, a multi-colored LED and two vibration motors. (B) Top

view of a kilobot swarm consisting of cca. 300 robots. (C) A Turing patterning system consisting of two diffusing

molecules U (green) and V (red) that act as an activator and an inhibitor, respectively. Each individual robot

calculates the values of U and V by using reaction-diffusion equations (i.), and transmits them to neighboring robots

(ii.). (iii.) Turing patterns in simulated and real robot swarms for varying values of parameter C. (D) Kilobots move

along the surface of the swarm and aggregate around Turing spots (i.). A robot detects that it is on the edge of the

swarm (1.), and starts moving along the outer surface of the swarm (2.). It stops (3.) when it gets to the proximity of

the Turing spot. (ii.) An example of kilobot movement in a real robot swarm. (E) Conceptual execution of the swarm

morphogenesis algorithm. The Turing pattern should be formed (dark green) and several robots on the edge of the

swarm (in blue) move and stop in the proximity of the Turing spots. Ideally, the Turing pattern should adjust to the

new morphology (light green) by changing its configuration, while other bots continue moving and surround the

Turing spots to build up the protrusions of the swarm.

Science Robotics Manuscript Template Page 29 of 38

Figure 3. Emergence of swarm morphologies. (A) Morphogenesis in a simulated swarm. Different LED colors

indicate different concentrations of the activator U. Initially, a swarm of kilobots is visible with arbitrary

concentrations of U. Next, five Turing spots emerged, around which, noticeable protrusions appear (last panel). (B) A

temporal sequence of morphogenesis of a kilobot robot swarm (cca. 300 robots). The initial swarm configuration was

roughly circular with five distinct Turing spots, including four spots on the edge of the swarm and one spot in the

center of the swarm (top four panels). The robots rearranged around the Turing spots (bottom four panels), forming

initial protrusions. Finally, a distinct cross-like shape was formed, which consisted of four tentacles with Turing spots

on their tips. (C) Three replicates of morphogenesis with cca. 300 robots, which show similar cross-like, four

tentacles morphologies. (D) Close-up of a growing tentacle during the swarm morphogenesis process. Starting from a

Turing spot in the initial panel, there is a progressive build-up of kilobots around it, resulting in a clear tentacle

growth in the final panel.

Science Robotics Manuscript Template Page 30 of 38

Figure 4. Adaptability of swarm morphologies. (A) Shape formation of a large swarm (cca. 300 robots) starting

from a rectangular shape. Four spots emerged on the edges where four tentacles grew, while the central spot moved,

adapting to the changing morphology. (B) A temporal sequence of morphogenesis in a smaller kilobot swarm (cca.

110 robots), with the same settings for the Turing parameters as in (A). Three Turing spots drove the formation of a

T-like tentacled morphology. (C) Two examples of Turing pattern (spot) adaptation in response to the swarm

changing morphology. In (i.) we show adaptation during tentacle growth, where the Turing spot visibly changed

shape, size and location during the growth of a single tentacle, always tending to stay on the tip of the outgrowth. In

(ii.) starting from the initial spot location on the edge of the swarm, the spot is slightly shifted towards the center of

the swarm and after a while it is completely moved to the center, while another spot appears close to its initial

location. (D) Four variable swarm morphologies with irregular, organic shapes, obtained from different runs. Inset

images show the initial configuration of the swarm. (i.) starts from an initial square morphology, while the swarms in

(ii.-iv.) start from circular ones.

Science Robotics Manuscript Template Page 31 of 38

Figure 5. Robustness of swarm morphologies. (A) Regeneration response to minor damage. The starting point was

the “standard” four spot pattern, from which four tentacles developed, as visible in the second panel. The robots from

one tentacle were removed, as indicated by the red dashed line and left behind a Turing spot with a dent in the

middle. After a while the tentacle regenerated with a small dent in the middle. (B) Redirected tentacle growth

response. Two tentacles were completely cut off and the whole Turing spots were removed. Unlike the example in

(A), where there was some of the original Turing spot remaining, here these tentacles could not grow back. Instead,

by cutting them off, we effectively freed up a larger surface of edge robots that could freely move and aided the

growth of the remaining two tentacles in the swarm, as visible in the third and fourth panel of the figure. (C)

Regeneration response to major damage. The developing swarm was cut in two, approximately equal parts, along the

red dashed line. We left the two swarms in close proximity to each other and after a while they managed to merge

into one entity again.

Science Robotics Manuscript Template Page 32 of 38

Figure 6. Quantitative analysis of swarm morphologies. (A) Morphospace of nine runs of the morphogenesis

algorithm, all starting from an initial circular configuration. Grey lines trace the change of swarm morphologies and

the morphospace is populated by both regular (transient) shapes and more organic shapes. The corresponding

morphologies are plotted alongside each point. (B) Three distinct regions of morphospace trajectories. The first one is

the thin “adherent” region (blue), where all the individual trajectories go through in proximity to each other. Next is

the transient region (green) where most of the regular morphologies reside. The third region (red) is where the more

organic morphologies reside. Their trajectories in this region are more spread out than in the blue region. However,

they still remain in a constrained space.

Science Robotics Manuscript Template Page 33 of 38

Figure 7. Morphogenesis approach implementation details. (A) Morphogenesis algorithm execution loop. (B)

Each kilobot broadcasts an 8-byte message containing its ID, number of neighbors, state and the values of the two

morphogens of the Turing system. Received messages are stored in a neighbors’ table, together with the distance to

the transmitting robot and the kilotick time stamp. (C) A linear Turing system (i.), consisting of two morphogens,

whose concentration is determined by solving the reaction-diffusion equation on each robot. Morphogen diffusion

(ii.) is calculated by first comparing (substracting) the morphogen values of each neighbor, to a robot’s own
morphogen concentrations and then these differences are summed up, yielding the net diffusion of each morphogen.

(D) Orbiting and approaching movements are the basis for edge following and loss recovery movement (i.). When an

orbiting robot is moving around its current nearest neighbor, the resulting movement is edge following. If the robot is

approaching its nearest neighbor from a given swarm, the result is loss recovery movement. (ii.) By calculating the

ratio of the average local density of kilobots (NNs) to its own number of neighbors (N), given a threshold thr , a robot

determines whether it is an edge bot (yellow) or not (gray). (iii.) Three robot states: WAIT, EDGE FOLLOW and

RECOVER. The WAIT state is a static, non-blocking state. In the other two states, a robot performs the

corresponding movement algorithms described in (i.).

Science Robotics Manuscript Template Page 34 of 38

Table 1. Transition rules for switching between kilobots states.

WAIT EDGE FOLLOW RECOVER

WAIT default • edge_detected()

• check_wait_state(ALL)

• dist_to_Turing () > dist_th

• dist(NN) >

dist_far

EDGE

FOLLOW

• dist_to_Turing () < dist_th

• !edge_detected()

• !check_wait_state(NN)

• dist(NN) < dist_far

default N/A

RECOVER • !check_wait_state(NN)

• dist(NN) < dist_far

N/A default

Science Robotics Manuscript Template Page 35 of 38

Supplementary Materials

Figure S1. Parameters exploration in simulation. As shown in Miyazawa et al. (47), different types of patterns can

be obtained by varying parameters A and C (B and E as well) in the linear reaction-diffusion model. We performed a

similar exploration of the parameter space defined by parameters A and C for reproducibility purposes in the

simulator Kilombo. The other parameters were the same as shown in Fig. 7. Number of agents was set to 1000, and

the same seed was used for all runs. Snapshots were taken after the patterns were stable, i.e., no substantial change in

concentration was seen. Colors indicate concentration of molecule U, where green is a value greater than 4 units and

no color means a value less than or equals to 4 units.

Science Robotics Manuscript Template Page 36 of 38

Figure S2. Summary of fifteen different runs of the morphogenesis algorithm. (i.-ix) are morphologies emerging

from an initial circular shape, with an approximately similar number of robots (number given as n). (i.-v.) form

“regular” (4-fold) morphologies, while the rest (vi.-ix.) make more organic shapes. In (x.) the swarm has an initial

ellipse shape and it is significantly smaller 110 robots) than the other runs. It also manages to form a regular (3-fold)

morphology. (xi.-xv.) start from and initial rectangular shape and in (xi.) a regular (4-fold) morphology emerges,

while in (xii.-xv.) organic shapes are visible.

Science Robotics Manuscript Template Page 37 of 38

Figure S3. Quantitative analysis of emergence, adaptability and robustness. (A) Emergence and adaptability

graphs showing the median, absolute maximum and absolute minimum shape index every forty seconds of six

repetitions of the Turing morphogenesis algorithm starting from a circular shape and three repetitions of

morphogenesis with random concentrations, i.e., no Turing patterning (control) (i), and starting from a circular shape

and five repetitions of the same Turing morphogenesis algorithm starting from a rectangular shape (ii). (B) Individual

Science Robotics Manuscript Template Page 38 of 38

graphs showing the median of a moving window of thirteen minutes (centered at the current time on the x axis) and

real shape index of the six repetitions of the Turing morphogenesis algorithm starting from a circular shape (i), and

three regeneration experiments where half of a Turing spot was removed (left), two complete Turing spots were

removed (center) and half of two Turing spots were removed (right) (ii).

