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Abstract 

Morphogenesis allows millions of cells to self-organize into intricate structures with a 

wide variety of functional shapes during embryonic development. This process emerges 

from local interactions of cells under the control of gene circuits which are identical in 

every cell, and is robust to intrinsic noise and adaptable to changing environments. 
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Constructing human technology with these properties presents a significant opportunity in 

swarm robotic applications ranging from construction to exploration. Morphogenesis in 

nature may use two different approaches: hierarchical, top-down control or spontaneously 

self-organizing dynamics such as reaction-diffusion Turing patterns. In this paper, we 

provide a demonstration of purely self-organizing behaviors to create emergent 

morphologies in large swarms of real robots. The robots achieve this collective 

organization without any self-localization, and instead rely entirely on local interactions 

with neighbors. Results show swarms of 300 robots that self-construct organic and 

adaptable shapes that are robust to damage. This is a step towards the emergence of 

functional shape formation in robot swarms following principles of self-organized 

morphogenetic engineering. 

 

Summary 

  

Endowing robot swarm systems with biological morphogenetic behavior, making swarm 

shape formation – emergent, adaptive and robust. 

 

 

Introduction 

 

While human technology is typically constructed by an external builder (humans or 

robots), most spatially-organized biological systems dynamically create their own physical 

shapes. This process of shape-formation is called morphogenesis and it occurs in a 

distributed, self-organized and emergent manner. For example, collectives of insects, such 

as ants, construct bridges to traverse terrains (fig. 1(A)i.). Organisms such as slime mold 

and bacteria create colonies with regular spatial geometries to optimize nutrient transport 

and consumption (Figs. 1(A)ii. and iii.).  Multicellular organisms provide the most 

impressive example of morphogenesis, where massive collections of cells combine and 

actively collaborate during embryo development to build complex tissues and organs (fig. 

1(A)iv.). Having a functional shape and organization is important for survival, because it 

allows organisms to inhabit certain ecological niches and thrive in given environments. 

Two broad principles of spatial patterning exist in biological morphogenetic systems (1). 

A. Top-down control. In some tissues, cells first access information about their 

location, and then make cell fate choices according to this positional information 

(2). The control system is distributed—all cells have the same regulatory circuits, 

or genetic program—, but the positional information is achieved by means of an 

effective coordinate system, which may be created by molecular gradients or other 

mechanisms (3, 4). 

B. Local self-organisation. As an alternative to positional information, spatial 

patterning may be controlled by purely local self-organization – spontaneous 
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symmetry breaking processes, such as chemical reaction-diffusion (RD) systems 

(5). The mathematics of such processes (such as Turing patterns (6)), has been 

extensively studied over the past half century (7). These processes can only 

produce relatively simple periodic patterns, but they do so without the cells 

requiring access to any positional information, and due to their reliance on 

feedback mechanisms are very robust to noise. 

Segmentation of the Drosophila embryo is a paradigmatic example of the first principle, 

in which each segment is genetically controlled individually (8), while the patterning of 

mouse digits is an example of the second principle, where each digit is a repetition of the 

same local process (9). 

The recent new field of morphogenetic engineering introduces the principles of natural 

morphogenesis into human engineered systems (10). More specifically, it uses the 

distributed control paradigm of developing tissues to program the generation of structures 

that are both robust and show predictable behavior. Ideally, such systems should display a 

high degree of autonomy, self-regulation, and some degree of active self-repair or 

regeneration in the case of damage. In the area of swarm robotics, where the swarm 

consists of simple identical robots, a key challenge is to design control algorithms for 

achieving complex behaviors and shapes, based on robots interacting only with their local 

environment and their neighbors. Swarm morphogenesis might be achieved by the 

principles (A) or (B) above, or a combination of the two. Top-down approaches (A) could 

have the advantage of creating any arbitrary shape, while the self-organized approaches 

(B), although more limited in the patterns they can create, would have the advantage of 

being emergent, naturally scalable, robust to failure of individual agents, and flexible, i.e., 

exhibiting the type of swarm intelligence seen in natural swarms (11). 

Potential applications of such morphogenetic approaches in swarm engineering are 

numerous: Self-constructing buildings which naturally adjust their structure to the 

geometry of their location, reconfigurable robots which adapt their shape for different 

tasks, self-organized swarms of satellites (12) for mapping, or search and environmental 

monitoring. Nanomedicine could also benefit from having self-organizing swarms of 

nanoparticles for more efficient drug targeting and delivery (13). Ultimately, machines 

functioning in this way could achieve dynamically-changing physical structures—
programmable matter (14, 15)—, and as such, would open-up a whole new world of 

machinery. 

In the field of robotics, the problem of controlling the configuration of a group of robots 
has been receiving increasing interest, although mostly in theoretical studies based on 
simulations rather than real robot swarms. The target behaviors for the swarm have 
included collective navigation and flocking, trail formation, seizing and enclosing a target, 
and gap crossing, but rarely focused on controlling the shape of the swarm per se. Control 
systems have included rule-based schemes (16-18), density-based schemes (19, 20), 
attraction/repulsion based on simple signals or gradients (21-29), or have employed more 
complicated interactions between signals such as reaction-diffusion systems  (30, 31), 
gene regulatory networks (GNRs) (32-35) and swarm chemistry (36) (for a more extensive 



Science Robotics                                               Manuscript Template                                                                           Page 4 of 38 

 

review, see (37)). 

However, most prior work required precise motion or sensing abilities such as measuring 
angles to neighbors. Furthermore, when adaptability to different scenarios was tested with 
real robots (16, 17, 18, 22, 28, 30, 32, 33), no more than thirty agents were used. In 
particular, properties such as self-healing of swarm morphologies have mostly been tested 
in simulations (20, 24, 31, 32, 33, 36), with some exceptions (16). As validation has been 
mainly simulation-based, or using few real robots, it is unclear whether self-organized 
morphogenesis algorithms proposed so far would cross the reality gap and scale up in a 
large swarm of simple, noisy robots. 

 

A significant breakthrough in the field of swarm robotics was made by Rubenstein et al. 

when they created the kilobot, a minimal, low-cost robot designed to enable swarm 

experiments in large numbers (38). Two years later, they specifically demonstrated the 

shape formation capabilities of this robotic platform (39), in which a swarm of 1024 

robots successfully arranged itself into pre-defined morphologies, such as a starfish shape, 

in a decentralized manner. This impressive result was achieved with only local 

communication between neighboring robots. However, it depended on the hierarchical 

control principle mentioned above (A)—each robot had an explicit image of the final 

shape that should be created, and every robot had access to a coordinate system 

constructed by the kilobots themselves, such that each robot knew its relative position 

within the swarm. The shapes were thus not fully “emergent” (principle B above) thus 

placing limitations on their ability to be adaptable, scalable and robust. A more recent 

study from the same group extended the approach to create swarm shapes by 

“disassembly” of the swarm using a light attraction/repulsion system (40), but it still relied 

on the same top-down approach. 

 

Here, we chose a specific biological inspiration to address the problem of shape 

formation—namely, spontaneous self-organized patterning (principle B) that occurs in 

some examples of multicellular tissue development. Although the many cells in a tissue do 

different things (e.g., becoming different cell types, or migrating in different directions), 

they all contain the same gene regulatory network (GRN)—the same genomic “program” 
(Figs. 1(B)i. and ii.). Biological cells continually sense their neighborhood and 

communicate with other cells with the help of signaling molecules, thus creating an 

interconnected network. The design of the GRN leads to spatially non-uniform patterns of 

gene activity in which different genes are activated in different cells in a coordinated 

manner. These molecular patterns are then responsible for directing secondary processes: 

Coordinated cell movement (migration), tissue proliferation (cell replication) or apoptosis 

(cell death), which physically shape the tissue. Since our individual robots cannot 

replicate, our goal here was to implement swarm morphogenesis based only on cell 

movements (migration), which is indeed known to drive a number of well-studied 

developmental cases, for example gastrulation. 

The key goal was to achieve simple biologically-inspired morphologies by purely 

emergent self-organized morphogenesis (approach B). This would allow morphogenesis 
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without the robots needing to determine their locations, and thus showing a higher degree 

of adaptability and robustness. Drawing directly on inspiration from developmental 

systems, we chose to use reaction-diffusion (RD) circuits, and in particular Turing 

systems, as they have recently been shown to underlie a number of developmental models 

(41-43) (fig. 1(C)i.). RD circuits describe a system of interacting molecular species (such 

as diffusible proteins encoded by the gene circuit) which can encode a genuinely 

symmetry-breaking reaction which produces spatial patterns of spots or stripes (fig. 

1(C)ii.). Although such patterns are limited to periodic arrangements, in nature they have 

led to morphologies with a variety of useful functions. Their lack of dependence on 

positional information removes the potential errors that such self-localization mechanisms 

would experience. Furthermore, we explored whether feedback could be observed 

between patterning and tissue movement. In other words, could examples be found in 

which robot movements would be driven by the “molecular” pattern, but where the 

consequent alterations in swarm shape would also feedback to alter the pattern. This is a 

studied phenomenon in development, known as morphodynamic patterning (44, 45), and 

believed to provide intrinsic adaptability and self-repairing behavior. These results were 

achieved in a real but very simple swarm technology, in which the shape-forming 

behavior of the collective swarm is reliable, even when the behavior of the individual 

robots are relatively unreliable, thus requiring the collective whole to be greater than the 

sum of its parts. 

 

Results  

 

The swarm robotic platform that we used for our work is the kilobot (38). Kilobots are 

minimal robots designed to enable swarm experiments in large numbers. Three main 

functionalities were used: movement, robot-to-robot communication and a multi-color 

LED for experimental monitoring (fig. 2(A)). In kilobots, locomotion is achieved by two 

motors that generate vibrations for the legs resulting in non-holonomic movement with a 

large amount of noise. Communication is performed by passing infrared messages and is 

limited in range (see Methods for more details). Noisy distance measurements to 

neighbors can directly be extracted through communication, but not angle, i.e., when 

receiving a message, a robot cannot detect from which direction the message arrived. The 

lack of directional sensing and the degree of noise in motion and communication were 

ideal to demonstrate robust self-organized collective behavior (morphogenesis) even with 

robots that are simple and unreliable—a key goal for robust but economical technologies.  

The morphogenetic mechanism explored was the interaction of the two activities 

described above (fig. 2(B)): Pattern formation driven by GRNs, and migration or “tissue 

movement”—the collective motion of the individual kilobots responsible for re-shaping 

the swarm morphology. These two processes should happen simultaneously (not 

sequentially) thus directly interacting with each other to achieve dynamic morphogenesis. 
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For the first part, pattern formation, the Turing system was used as the underlying 

mechanism, comprising a GRN of two virtual molecules, U and V, conceptually 

represented in fig. 2(C)i. Each robot kept track of its own concentrations of U and V, and 

the interactions between the two molecules were configured as an activator-inhibitor 

network, where molecule U acted as an activator and molecule V acts as an inhibitor. The 

change in concentration of each molecule was given by the reaction-diffusion equations: 𝝏𝒖𝝏𝒕 = 𝑹𝒇(𝒖, 𝒗) + 𝑫𝒖𝜵𝟐𝒖 𝝏𝒗𝝏𝒕 = 𝑹𝒈(𝒖, 𝒗) + 𝑫𝒗𝜵𝟐𝒗 

𝒇(𝒖, 𝒗) = (𝑨𝒖 + 𝑩𝒗 + 𝑪) − 𝜸𝒖𝒖 𝒈(𝒖, 𝒗) = (𝑬𝒖 − 𝑭) − 𝜸𝒗𝒗 

The reaction part of the equation could be solved directly on each kilobot, just by using 

the current values of U and V. For the diffusion part, the values of both the activator and 

inhibitor of each neighbor in range was necessary, which can be obtained via message 

passing (fig. 2(C)ii. —details given in Methods). In fig. 2(C)iii., we also show examples 

of different Turing patterns produced by varying a parameter of the reaction-diffusion 

equations. Green activation of the LEDs was programmed to appear where the 

concentration of the activator U was high (i.e., above a threshold value). By varying 

parameter C, the type of pattern (spots, stripes or inverted spots) could be controlled. For 

the purpose of this paper we term the green spots, Turing spots. 

The second process—migration, or tissue movement—allowed robots to reposition 

themselves from areas with low activator U to areas with high activator (Turing spots), 

given in fig. 2(D). This mimicked the flow of cells seen in natural morphogenesis, or 

could alternatively be seen as equivalent to localized tissue growth in the region of the 

green spots, and localized cell death in between (as seen during digit formation in 

tetrapods (46)).There were two conditions for a kilobot to start moving: (a) It must detect 

that it is on the outer side of the swarm (“edge detection”) which is based on the estimate 
of the relative change of the local swarm density, and (b) it must detect a local 

concentration of U lower than a certain threshold value. To relocate robots we used an 

edge-following algorithm where each individual robot moved along the outer edge of a 

group of static robots, while attempting to maintain constant distance to its current nearest 

neighbor. Finally, the robots were programmed to stop when in proximity to a Turing spot, 

i.e., when they detected a neighbor with a high concentration of U, thus creating an 

accumulation of kilobots around the Turing spots. The details of the movement algorithm 

are given in Methods. An example of kilobot movement, following the previously 

described movement algorithm is given in fig. 2(D)ii. 

A conceptual example of the execution of the morphogenesis algorithm is given in fig. 

2(E). Swarms started from an initial shape, with arbitrary low morphogen concentrations. 
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As soon as the pattern was formed and the Turing spots were established, individual bots 

(in blue) started moving and settling on locations adjacent to the Turing spots. In parallel 

with the movement, the Turing pattern adjusted to the new shape by changing the 

morphogen concentrations in both the newly positioned bots and the bots that had already 

become a part of the Turing spots (denoted in light green). This process of tissue 

movement and pattern adaptation continued, resulting in the emergence of a shape. 

Computer simulations were used to explore how the combination of Turing patterns with 

movement can spontaneously and reliably give rise to morphogenesis (fig. 3(A)). To 

conveniently monitor the states of the kilobots and the local concentrations of the virtual 

molecules, we used the color of the LEDs. As shown in fig. 3(A), the LED color depends 

on the level of the activator U, ranging from green (as highest level) through teal, blue and 

purple at decreasingly lower levels, until the LED is turned off for very low values. We 

explored the parameter space of the Turing pattern around the values provided in 

Miyazawa et al. (47). As shown in fig. S1, replication of the type of patterns obtained by 

varying parameters A and C was successful, hence confirming results shown in that work. 

We also explored what types of patterns would result in better morphogenesis based on 

our approach, i.e., spots, stripes or inverted spots. Neither stripes nor inverted spots were 

useful, as these patterns resulted in many of the edge robots experiencing high 

concentrations of U, and thus being restricted from moving. By contrast, normal spots 

worked well, as they tended to appear on the edge of the swarm but they left significant 

numbers of edge robots with low concentrations of U. They provided a good compromise 

between number of robots that could move (in areas of low concentration) and areas of 

“growth” where moving robots would accumulate (the spots themselves). Parameter 

values that maximized the number of the spots on the edge without becoming stripes were 

considered as a good starting point for a complex morphology to develop (values given in 

Methods). 

The morphogenesis approach was then validated on a real swarm of 300 kilobots. The 

objective was to transform an initially disc-shaped swarm into a more interesting 

morphology displaying an array of “tentacles” or protrusions. An interesting question was 

whether regular morphologies could be generated (e.g., with a 4-fold symmetry of 

protrusions), and/or more dynamic organic shapes reminiscent of simple organisms. 

Ideally, the shape-formation process should be emergent, adaptive and robust. The 

program that had been tested previously in simulation (emulating the Turing GRN) was 

run in the robots, and starting from the initial disc shape (fig. 3(B)), the swarms were able 

to re-organize themselves into new coherent shapes. In the case shown in fig. 3(B), five 

Turing spots emerged—four on the surface of the swarm, roughly equidistant to each 

other and one in the center. Subsequently, when the edge robots started to move, they 

reliably relocated from regions with low concentrations of the Turing molecules (no LED 

illumination) to the vicinity of the Turing spots (green LED). Over a short time, robots 

built-up around the four spots to create four protrusions—showing a 4-fold symmetry. 

Occasionally individual kilobots were “lost” from the swarm, but this was a relatively rare 

event, and the vast majority remained in the evolving morphology. Fig. 3(C) shows the 

results from three more experiments, in which the same basic shape, with 4-fold symmetry 

was created. A close-up of the stages in the growth of a single protrusion can be seen in 
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more detail in fig. 3(D). Reliability of this emergent morphogenesis was high. The 

successful parameter values were able to create robust organic shapes every time (nine 

runs performed in total with an initial circular morphology), and five of these produced the 

4-fold symmetry highlighted by the white dashed boxes in Figs. 3(B) and (C). From the 

nine runs, six of them were replicates with the same Turing parameters, motion rules and 

experimental conditions. The approximate running time of each experiment was around 

three hours. The regular shape shown in Figs. 3(B) and (C) was highly reproducible, but it 

must be noted that it was transient—further evolution of the swarm led to a more dynamic 

morphologies, which were studied next. The complete summary of all these experiments 

is given in the supplementary materials, fig. S2. 

An important question was whether morphogenesis really emerged from patterning or 

simply from robots moving around the swarm. To test that, three experiments were 

performed in which robots had initial random concentrations and patterning was switched 

off (meaning that they would keep the same concentration throughout the experiment and 

no reaction-diffusion was taking place). Motion rules, number of robots and initial circular 

shape were kept the same as in the previous experiments. We then compared both set of 

experiments and demonstrated that Turing patterning is essential for the emergent 

morphogenesis process, and that shapes cannot grow from random patterning (fig. 

S3(A)i.). Shape index was used as the metric to compare experiments (details in 

Methods). 

The process of swarm morphogenesis, besides producing shapes in an emergent manner, 

also proved to be a dynamic and adaptive process. If we changed the initial configuration 

of the swarm to a rectangle, the patterning process adapted to this and the shape again 

evolved Turing-driven protrusions (at each corner) as shown in fig. 4(A). To 

quantitatively test that, we compared the set of replication experiments with initial circular 

shape with a set of five experiments starting from a rectangle and having the same code as 

the circular experiments. Results showed that shapes grow indistinguishably even though 

they started from different initial configurations and therefore had a different initial shape 

index (fig. S3(A)ii.). In addition, we ran the same program on a smaller swarm (110 

kilobots) to explore the impact of swarm size. These tests produced a similar pattern, but 

with three protrusions instead of four—resembling the letter T (fig. 4(B)). This is 

consistent with Turing patterning systems, where for a given parameter settings the 

frequency of the spots remains the same irrespectively of the surface size, i.e., smaller 

surfaces do not have smaller Turing spots, but fewer. 

Another important question, related to swarm adaptability, was whether morphodynamic 

processes occur. This describes the scenario in which a large-scale feedback loop is 

observed—pattern drives morphology, but the change in swarm shape also feeds back to 

alter the molecular pattern (44, 45). Fig. 4(C) shows two examples of the molecular 

pattern shifting through the swarm, while the shape changes. In this first case (fig. 4(C)i.) 

this is a necessary part of the growth of a protrusion. The spot always maintained its 

position at the distal tip of the protrusion, even though the tip did not consist of the same 

robots over time (growth occurred by new robots arriving and adding to the existing 

protrusion). This is an important mechanism for tip-extension. If the spot were static 
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(remaining in the same group of robots throughout) then it would gradually become 

enclosed and “hidden” by non-green robots. Any subsequently arriving robots would 

continue to edge-follow their way right past the spot, to a different part of the swarm, and 

growth of the protrusion would be frozen. In the second case (fig. 4(C)ii.), a Turing spot 

could be seen to shift through the tissue. This type of pattern adjustment endows the 

swarm with a powerful form of adaptability. If the evolving shape is not compatible with 

an optimal periodic arrangement (either due to random noise, or constraints in the 

environment) the pattern can adjust and thus self-correct its own morphogenesis. The 

adjustment of this molecular pattern could occur either as a gradual shift or as a more 

abrupt reorganization—in both cases settling to a new, more stable configuration. Driven 

by this morphodynamic processes, our swarm produced a variety of other morphologies, 

whose main feature was that they are very organic, or organism-like shapes. Fig. 4(D) 

shows a variety of swarm shapes, with tentacle-like protrusions growing out of them. 

Individual quantification of morphologies is shown in fig. S3(B)i. as supplementary 

material. 

The swarm also showed robustness to direct swarm damage. We explored a couple of 

damage scenarios – cutting off the protrusions, and cutting the whole swarm in half. In the 

first case, either the original protrusion re-grew (fig. 5(A)), or the loss of one protrusion 

promoted the growth of others (on the other side of the swarm in the case of fig. 5(B)). 

Again, this demonstrated the value of the self-organizing behavior. From any given state 

of the pattern and morphology, the Turing mechanism always pushed the pattern towards 

an even-spaced periodic one—whether from the initial un-patterned configuration, or from 

a perturbed pattern due to damage. For supplementary quantitative analysis on this first 

case, see fig. S3(B)ii. In the second case, when the swarm was cut into two roughly-equal 

parts, the two halves re-fused to create a single swarm relatively fast (fig. 5(C)). The self-

organizing dynamic of the Turing spots actually facilitated the merging of the two 

swarms, contributing to the robustness of the system. 

Finally, we quantified the varying and dynamic morphologies created by our robot swarms 

(fig. 6). We considered the outer contour of the swarm shapes as the main feature to 

analyze (as this represents the pure morphology of the system) and chose two shape 

analysis metrics to quantify it: the shape index and the minimum number of characterizing 

points (48, 49) (details in Methods). The first measure gave an indication of how much the 

shape was different from a circle, and the second measured the roughness of the contour. 

We tracked the dynamical change of the shapes over time from nine experiments, starting 

from the initial, roughly-circular shape, finishing with the final evolved shape. By plotting 

the values of the two measurements for each experiment over time we produced a 

trajectory of the swarm through morphospace (50) (fig. 6(A)). Three clear features of 

these trajectories can be seen – the starting position, a transient region of a regular 

morphologies, and a dynamic region of variable shapes – which will be discussed in the 

next section (fig. 6(B)). 
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Discussion  

In summary, we have successfully endowed a large swarm of 300 robots with a self-

organized morphogenetic behavior (described as approach B in the introduction). It is 

directly based on the principles of developmental biology, and results in emergent, 

adaptive, and robust shapes. Rather than using pre-defined patterns and explicit 

information about where each robot is, we used a GRN which implemented a self-

organizing Turing process as the basis for the pattern formation. This was translated into 

physical shape change using the concept of robot migration (in analogy with natural 

developmental biology). Analysis of swarm shape over time revealed the over-arching 

control process involved. Starting from the initial circular conditions, all swarms moved in 

a consistent direction through morphospace (fig. 6(B)). This movement represented the 

emergent but reliable process of protrusions forming on the outer edge of each swarm 

(blue region). The second feature was the region of transient regular 4-fold morphologies 

(green region), which are highlighted in dashed white boxes in fig. 3. The third feature 

was a region of morphospace in which the swarms accumulated. They drifted around this 

region in a dynamic, adaptable way, but reliably staying within this particular shape space 

(red region). Thus, both the dynamic adaptability and the shape predictability could be 

understood within this plot of the morphospace. 

A key question was whether the phenomenon of morphodynamic patterning could be 

found within our robot swarms—a dynamical process documented in the biological 

literature (44, 45). We indeed demonstrated the existence of this large-scale feedback loop 

between the patterning process and the changes of the shape morphology (fig. 4(C)). On 

the one hand, the “molecular” patterning process drives the physical shape change (of the 

swarm), but on the other hand, changes to the shape (which act as boundary conditions for 

the Turing system) feedback to cause the molecular pattern to change. As in biology, this 

feature makes the swarm more dynamic and adaptable. In particular, the same types of 

morphology were created when starting from different initial shapes, and also upon 

damage to the swarm from external perturbations (when the researcher “cuts” protrusions 
off the swarm, or cuts the swarm in half). 

Another important feature of this system is scalability. In human technology, the 

reliability of the whole machine often depends on the reliability of the components (“the 
strength of the chain is in the weakest link”). The decentralized and collective nature of 
our system avoids this problem. Even though a few robots are lost during morphogenesis, 

this does not impede the remaining swarm to fulfill its function (and indeed it is 

reminiscent of real embryo development, in which not all cells survive). Loss of robots 

can occur for a variety of reasons—loss of digital IR messages, inaccuracy in distance 

estimation and unreliable movements of robots—, all of which relate to the general lack of 

reliability of these relatively simple, cheap kilobots. Despite this, the swarm as a whole 

continues to control its global shape, even when reduced to less than one third of its 

original size, or when physically “damaged”. 

 

This work is an important step in the direction of human-designed hardware showing the 

dynamic and organic adaptability of living organisms. Although the shapes were not 
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formed with a particular task in mind, this proof-of-concept should be extended to create 

functional shapes. The conditions that lead to adaptability and regeneration are understood 

at a general level (the self-organizing of Turing systems, and the feedback of 

morphodynamics). However, a more detailed theoretical understanding will help to 

engineer these systems for specific tasks, improving our control of the shapes that emerge. 

An important idea is to explore greater interactions with the outside world, such as getting 

the whole swarm to collectively navigate towards an external light source, surrounding 

and herding foreign objects, searching an environment for areas of interest, or building 

environment-driven structures (e.g., dynamic bridges to “flow” over a river). In these 
cases, external cues would influence the GRN state (e.g., gene production), thus directing 

the growth of the swarm and possibly resulting in whole swarm movement. Overall, we 

believe these results provide a glimpse into the future of “programmable matter” in which 
the limits to the design and flexibility of useful machines may be restricted only by our 

imagination. 
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Materials and Methods 

   Study design 

The objective of our study is to demonstrate that the morphogenesis algorithm produces 

emergent morphologies in large swarms of real robots. One hundred and twenty-two 

computer simulations of 1000 agents were performed to find the most suitable parameters 

for the reaction-diffusion equations. Experiments with swarms of real robots were 

conducted to validate our algorithm. Concretely, one experiment with a swarm of 110 

robots, one experiment with a swarm of 250 robots and thirteen experiments with a swarm 

of cca. 300 robots were conducted. From the thirteen experiments, eleven corresponded to 

experimental replicates with the same code and experimental conditions, divided in two sets 

with different initial configuration. Six of them were initialized with a circular shape, 

whereas the other five were initialized with a rectangular shape. Three additional 

experiments were conducted on a swarm of 300 robots to test the rehabilitation properties 

of the morphogenesis algorithm. Finally, another three extra experiments with a random 

morphogenesis algorithm on a swarm of 300 robots with the same code and experimental 

conditions were conducted as control. Therefore, twenty-one experiments with large 

swarms of real robots were conducted. 

 

   Morphogenesis algorithm 

The morphogenesis algorithm gets executed in a loop on each individual robot. It consists 

of the same sequence of updates, which run in parallel and asynchronously on all kilobots 

of the swarm. The algorithm can be summarized in four basic steps as: 

1. Communication 

2. Patterning 

3. Motion 

In the first step, all the inputs, i.e., messages received from neighboring robots are 

processed. Next, the values of the two morphogens (U and V) of the gene regulatory 

network (GRN) are calculated, which underlies the swarm patterning process. Depending 

on these values and some additional conditions (like edge detection), a robot updates its 

movement state and halts or activates its motors accordingly in the last step. The robot 

also sets the values of the message variables that it broadcasts and the color of the LED 

light, which depends on the value of the activator U. We summarize the algorithm in fig. 

7(A) and give the details of the implementation of each of these steps in the following 

text. 

 

1. Communication 

The primary kilobot inputs are the received messages from other surrounding kilobots (fig. 

7(B)). For passing a message, an infrared broadcast is used and the message itself has a 

payload of 9 bytes. It can be received by any kilobot within communication range (~ 10 
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cm) and the frequency of the message broadcast is “hardwired” in the kilobots and 

happens at regular intervals. At any point in the program, the content of the message 

values can be updated, and they will be transmitted at the next broadcast interval. On the 

receiving side, when a kilobot detects an incoming message, a program interrupt is 

generated, and a user-defined handler function processes the received message. In our 

program, we used a function that stores each incoming message in a circular buffer. The 

messages from this buffer are emptied and processed at the beginning of each of the main 

loop executions. 

We used 8 out of 9 bytes for our message payload and we transmitted the values of 5 

variables. First is the (locally) unique ID value of a kilobot that took up 2 bytes of the 

message. The second is the number of neighbors that a robot has, and used 1 byte. The 

robots can be in one of several states which is also transmitted in a 1 byte. The remaining 

4 bytes are used for the Turing patterning process, namely to transmit the value of the U 

and V morphogens of a robot, each one taking 2 bytes.  

As the morphogen concentrations of U and V are stored as single-precision floating point 

numbers (4 bytes each) inside the kilobots, they have to be converted to half-precision on 

the transmitter side and then decoded to single-precision on the receiving robot side (with 

a small percentage of error incurred during conversion). The reason is that the 9 bytes 

message that kilobots can send needs to include the other information described above 

(ID, state and number of neighbors). Out of the 16 bits available in the 2-bytes, half-

precision floating point numbers, 10 bits are used for the fraction of the number, the next 5 

bits for the exponent of the number and 1 bit for the sign, as described in the IEEE 754 

standard. 

After a message from the receiving buffer is processed, it is stored in a so-called 

neighbors’ table. The neighbor’s ID, its number of neighbors and its state are stored as 

they are. The received bytes of the morphogens U and V are converted to single-precision 

floating point numbers and stored. Additionally, a time stamp is added to each message, 

which is the current kilo tick number of the bot. The neighbors’ table keeps the most 

recent messages received from the neighbors in range for a certain amount of time and 

older messages are discarded (set at 2 seconds old). 

 

2. Patterning  

The state of the gene regulatory network of each robot is responsible for the patterning 

process of the whole swarm. The equations for the Turing patterning system are given in 

fig. 7(C)i. These are reaction-diffusion equations that give the rate of change of the 

morphogens U and V, where R is the reaction parameter and UD  and VD are the diffusion 

parameters. The production of U and V is given by functions f and g and it depends on the 

synthesis and on the degradation of U and V. The two functions (f and g) are linear 

functions given in fig. 7(C)i. The parameter values of the linear equations used in our 

experiments are the following: A = 0.08, B = -0.08, C = 0.03, γu = 0.03, E = 0.1, F = 0.12 

and γv = 0.06. The synthesis terms are limited between zero and user defined maximum 

values, which for our experiments are given as: maxsynU = 0.23 for U and maxsynV = 0.5 for 
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V. The reaction parameter is R = 160 and the diffusion parameters are UD = 0.5 and VD = 

10 for U and V correspondingly. In our implementation of these equations we use a 

discreet version with a time step dt = 0.00005. 

The morphogen diffusion (fig. 7(C)ii.) is emulated with the help of the message passing of 

the morphogen concentrations of the robots. At a given moment, each robot has 

information about its neighbors’ morphogen (U and V) concentrations. By subtracting 

these neighboring morphogen values from its own and then summing up these differences, 

each robot determines the net morphogen diffusion that takes place. This allows the robot 

to edit its own morphogen values, either by increasing or decreasing them due to 

“diffusion”. With the help of the kilobot's LEDs, the Turing pattern can be visible in the 

swarm. We used different LED colors for different ranges of values of the morphogen U, 

defined as follows: green LED for U > 4.0, teal for U > 3.0 and U <= 4.0, blue for U > 2.0 

and U <= 3.0, purple for U > 1.0 and U <= 2.0 and the LED was off for U <= 1.0. 

 

3. Motion  

The process of edge detection is relevant for updating the robot state and is the main 

process responsible for determining if a robot moves or not. It is based on estimation of 

the relative difference of local swarm density, as illustrated in fig. 7(D)ii. Each robot 

transmits the number of its own neighbors N to the robots in range and in return, it 

receives the same information iN  from them. If an individual robot’s own number of 

neighbors N is smaller than the average number of its neighbor’s neighbors NN, then the 

robot is on the outer edge of the swarm. The intuition is that if robots are on the inner part 

of the swarm, they would have an approximately similar number of neighbors. The 

threshold for detecting an edge robot that was used, thedge , had a value of 0.8. 

Due to the inherent noise in the kilobot swarm, some messages from robots are not 

received or dropped. This can potentially impact the edge detection and make it unstable. 

In order to compensate for this, instead of taking the current number of neighbors, or the 

current average of neighbor’s neighbors, an approximate running average is used, given 
with:  

avgNNsoldavgNNscurravgNNs .)1(. −+=   

for the average number neighbor’s neighbors and: 

NsoldNscurrN s .)1(. −+=   

for the average number of neighbors, where   = 0.0001. 

 

After a kilobot detects itself on the edge, motion might start (described below). The 

default movement in our approach is the edge following movement. It is based on orbiting 

movements, where the aim of a moving robot is to maintain a constant distance to a static 

one (fig. 7(D)i.). The orbiting robot is moving in one of the preferred directions 

(clockwise or counterclockwise) while estimating the distance to the static robot based on 
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the messages it receives. If the distance is larger than the predefined one ( thd ), the robot 

starts rotating in a direction that brings it closer to the static robot. As soon as this 

movement brings the robot to a distance less than thd , it switches to the opposite direction 

of rotation. This constant switching of rotation direction produces a forward motion, thus 

moving the robot in a circle around the static one. The edge following algorithm is a 

simple extension of this orbiting algorithm. Namely, there is a swarm of static robots, 

instead of just one, and a moving robot goes around the edge of this static swarm by 

always orbiting its nearest neighbor. 

The recover movement (approaching), moves a robot towards a static one, bringing it to a 

predefined distance of thd , the threshold distance. It is used when a robot is too far from a 

swarm and needs to “recover”. The movement starts by the robot rotating in an arbitrary 

direction and measuring the change of distance from the static robot. If the change is 

negative, this means that the robot is approaching the static robot and the current direction 

of rotation is maintained. If this change is positive, i.e., the distance to the static robot is 

increasing, then the robot switches the direction of movement. It does so by selecting the 

nearest neighbor from the swarm as a static robot and approaching it until it is at a 

distance lower than thd . 

There are three motion-related states in which a robot can be: WAIT, EDGE FOLLOW 

and RECOVER, as shown in fig. 7(D)iii. There is one central stationary state, the WAIT 

state, from which a robot can transit into one of the two moving states—EDGE FOLLOW 

or RECOVER. The EDGE FOLLOW and RECOVER states are both blocking states, 

meaning that if a robot is in this state, then all neighbors that are receiving messages from 

it cannot initialize movement. This constraint is due to the design of the movement 

algorithms, related to the EDGE FOLLOW and RECOVER state, coming from the 

kilobots lack of directionality sensing.  

The properties of each state are the following: 

• The WAIT state is the default kilobot state, in which the robot it is not moving, it is 

just updating its GRN and checking if the conditions for transitioning into the EDGE 

FOLLOW or RECOVER state are fulfilled. 

• In the EDGE FOLLOW state, the kilobot is performing the edge following movement. 

• In the RECOVER state, the kilobot’s goal is to approach the swarm, in case it drifted 

too far away from it. 

 

The main rules for transition between the states are summarized in Table 1. Unless this 

rule allows a state transition to be triggered, the kilobot will by default stay in its current 

state. There are a few common functions and constants that are used for the state transition 

rules: 

• edge_detected(): TRUE if robot on the edge of the swarm. 

• check_wait_state(): TRUE if neighboring robot(s) are in the WAIT state. 
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• dist(): returns distance to a specified neighbor robot. 

• dist_to_Turing(): returns distance to the nearest neighbor with a Turing spot (if 

applicable). 

• dist_far: upper distance limit beyond which a robot is considered too far from the 

swarm. 

• dist_th: distance threshold used for the edge following movement. 

• ALL: all neighbors. 

• NN: nearest neighbors.  

A robot that is in the WAIT state can transit to EDGE FOLLOW if it is on the edge, no 

other neighbors are moving, and it is not a part of, or in near proximity to a Turing spot. 

The transition in the opposite direction (from EDGE FOLLOW to WAIT) occurs only if a 

robot is no longer on the edge, is close or became part of a Turing spot, if the kilobot that 

it is currently trying to orbit is also moving and additionally if it goes too far away from 

the swarm. 

If a robot is too far away from the swarm, it instantly switches to the RECOVER state via 

the WAIT state. The robot remains in this state until satisfactory distance to the swarm is 

achieved, after which it switches back to the WAIT state.  

 

Summary of the morphogenesis algorithm 

Below is a serial outline of the program that the kilobots execute (patterning and motion). 

It is worth noticing that the kilobots run several processes such as sending and receiving 

messages following a timer-interrupt approach. Only the main functions and variables are 

presented here. A link to the source code can be found at the end of this article. 

 

 

program main: 

 

 u, v, id, state ← initialize_variables() // Random initial concentrations for molecules U and V, random 

                   // initial id, robot in WAIT state, message with random 

      // concentrations starts to be sent 

 

 A ← 0.08, B ← -0.08, C ← 0.03, γu ← 0.03, E ← 0.1, F ← 0.12, γv ← 0.06, Du ← 0.5, Dv ← 10, 

 R ← 160, ∆t ← 0.00005, synUmax ← 0.23, synVmax ← 0.5 

 

 MAX_DIST_NEIGH ← 85 // Maximum distance in millimeters to neighbors for the diffusion term 
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 neigh_table ← create_empty_list() // Initializes neighbors table to store their messages 

  

 

 while TRUE: 

 

  // Messages from neighbors are processed and neighbors table is updated. It also  

  // calculates running averages for number of neighbors and number of neighbors’ neighbors 

  n_neighbors, neigh_table ← process_inputs(neigh_table) 

 

  if state = WAIT then 

 

   u, v ← update_GRN(u, v, A, B, C, γu, E, F, γv, Du, Dv, R, ∆t, synUmax, synVmax, 

         MAX_DIST_NEIGH, neigh_table) 

 

  end if 

 

  if kilo_ticks ≥ 20000 then // Movement starts after about 10 minutes, when pattern is stable 

 

   state ← update_movement(state, neigh_table) 

 

  end if 

 

  show_concentration(u) // The color of the LED depends on concentration of molecule u 

 

  id ← local_unique_id(id) // If a neighbor has the same ID, another will be chosen at random 

 

  update_message(id, n_neighbors, state, u, v) // It updates the message that will be sent 

 

 end while 

end program 

 

algorithm update_GNR: 

 input:    internal concentrations u and v of molecules U and V, 

     parameters A, B, C, γu, E, F, γv, Du, Dv, R of the linear model, 

     incremental step ∆t for the discretization, 

     maximum production rates synUmax, synVmax for molecules U and V 
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     maximum distance MAX_DIST_NEIGH in millimeters to neighbors for the diffusion term 

     neighbors table neigh_table with all the information from neighbors 

      

 output:    new concentrations u and v of molecules U and V 

 

 laplaceu ← 0, laplacev ← 0 

  

 // The Laplace operator is calculated 

 for i ← 1 to length(neigh_table) do 

 

  neighbor ← neigh_table[i] 

 

  if distance(neighbor) ≤  MAX_DIST_NEIGH then 

 

   laplaceu ←laplaceu + concentration_u(neighbor) - u 

   laplacev ←laplacev + concentration_v(neighbor) - v 

 

  end if 

 end for 

 

 creationu ← A*u + B*v + C 

 creationv ← E*u – F 

  

 if creationu  < 0 then 

  creationu ←0 

 else if  creationu  > synUmax then 

  creationu  ← synUmax 

 end if 

 

 if creationv  < 0 then 

  creationv ←0 

 else if  creationv  > synVmax then 

  creationv  ← synVmax 

 end if 

 creationu ← creationu  - γu*u 

 creationv ← creationv  - γv*v 
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 u ← u + ∆t*(R*creationu  + Du*laplaceu) 

 v ← v + ∆t*(R*creationv  + Dv*laplacev) 

 

 return u, v 

end algorithm 

 

algorithm update_movement: 

 input:    state state of the robot, 

     neighbors table neigh_table with all the information from neighbors 

      

 output:    new state state of the robot 

 

 if state = EDGE_FOLLOW then 

 

  if edge_follow_to_wait() then 

 

   state ← WAIT 

   stop_motors() 

 

  else // Stays in EDGE_FOLLOW state 

 

   nearest_neigh ← find_nearest_neighbor(neigh_table) 

 

   // By moving around the nearest robot, an edge-following movement is achieved 

   move_around(nearest_neigh) 

 

  end if 

 

 else if state = WAIT then 

 

  if wait_to_edge_follow() then 

 

   state ← EDGE_FOLLOW 

   start_motor_right() 
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  else if wait_to_recover() then 

 

   state ← RECOVER 

   start_motor_right() 

   

  else // Stays in WAIT state 

 

   do_nothing() 

 

  end if 

 

 else if state = RECOVER then 

 

  if recover_to_wait() then 

 

   state ← WAIT 

   stop_motors() 

 

  else // Stays in RECOVER state 

 

   nearest_neigh ← find_nearest_neighbor(neigh_table) 

 

   // By moving towards the nearest neighbor, the bot tries to get back to the swarm 

   move_towards(nearest_neigh) 

 

  end if 

 end if 

 return state 

end algorithm 

   Quantifying swarm morphologies 

 

Shape characterizing points 

In the field of landscape ecology, it is of great interest to quantify the heterogeneity of 
landscapes by identifying and analyzing spatial homogeneous patches (48) in order to 
counteract the effects of human-induced biodiversity, as Moser et al. point out in (49). In 
their work, they analyze the relation between shape complexity of the patches and richness 
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of plant species. In particular, they propose a metric of geometric complexity based on the 
contour of the patches which can be useful here. This metric is called number of shape 
characterizing points (NSCP), and it is defined as the minimum number of points required 
to define the shape. The idea is that the greater the NSCP, the more complex the shape is. 
As a result, this metric can potentially describe the morphology of the protrusions by 
means of the spikiness of shapes. In their work, they propose to calculate the polygon 
defining the patch and take only the vertices forming an angle of less than 160 degrees. 

 

In our work, all the points in the contour of each shape were obtained using the 
findContours function included in OpenCV 3.2.0 using CHAIN_APPROX_NONE. To 
calculate the number of characterizing points of the shape, the length of the array resulting 
from applying the following algorithm to the array of all contour points with a threshold of 
160 degrees was obtained: 

 

algorithm shape_characterizing_points: 

 input:    array P containing all points of the shape contour, 

     angles threshold t between 0 and 180 degrees 

output:    array Q containing points in the same order from P with angles < t for all three    

   consecutive points 

 

 Q ← P 

 if Q contains at least 3 points then 

  base ← 1 

  for k ← 2 to length(Q) do 

   angle ← compute internal angle from points Qbase, Qk and Qk+1 

   // Q is circular. When k = length(Q), then Qk+1 = Q1 

 

   if angle ≥ t then 

    Q ← remove point Qk from Q 

   else 

    base ← k 

   end if 

  end for 

 end if 

 return Q 

 

end algorithm 
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Perimeter-area ratios 

The simplest metrics to measure shape complexity are those using the perimeter and area 
of the shapes in question. In our scenario, the area of the swarm is practically constant, as 
the number of robots remains the same throughout the experiment—with the exception of 
the few ones which get lost and the gaps between robots. The perimeter then describes 
how the contour of the swarm grows/shrinks over time. The longer the protrusions, the 
bigger the perimeter. Therefore, a metric involving perimeter can be a good estimate of the 
development of the shape. 

Among all perimeter-area ratios, we decided to use a dimensionless one to allow for 
comparison across experiments, even with different swarm sizes. Moreover, we were 
interested in comparing the shapes during the morphogenesis process with the initial 
circular configuration of the swarm. The metric with all these features was shape index, 
which is a measure of the circularity of a shape. Its formula is: 

 𝑠ℎ𝑎𝑝𝑒 𝑖𝑛𝑑𝑒𝑥 = 𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟2√π𝑎𝑟𝑒𝑎  

 

As can be seen, the shape index of a circle is 1. This metric can be useful to quantify how 
the swarm develops morphological features and how different it becomes from a circle 
(shape index greater than 1). 

 

To calculate the shape index of the shapes in our work, we used the built-in functions 
contourArea and arcLength of OpenCV 3.2.0 to calculate the area and perimeter of the 
shape, respectively. The contour used for this metric was the result of applying the 
algorithm shape_characterizing_points to the contour with all the points with a threshold 
of 160 degrees, as described in the subsection above. 

 

Supplementary Materials 

Figure S1. Parameters exploration in simulation. 

Figure S2. Summary of fifteen different runs of the morphogenesis algorithm. 

Figure S3. Quantitative analysis of emergence, adaptability and robustness. 

Movie S1. Morphogenesis in Robot Swarms. 
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Figure 1. Morphogenesis in natural systems. (A) (i.) Fire ants constructing bridges. (ii.) Bacterial colonies 

structures formed by swarming. (iii.) Slime mold network for optimal nutrient transport. (iv.) Lungs consisting of a 

large network of alveoli for respiration. (B) Gene regulatory network (GRN) as the underlying mechanism behind 

patterning and morphogenesis processes in real tissues (e.g. heart valve) or robot swarms. (i.) Each individual cell has 

an identical GRN and cells communicate by secreting morphogens or direct cell-to-cell communication. A 

multicellular tissue consists of many cells that are interconnected and communicate to each other, thus allowing for 

coordinated tissue behavior. (ii.) Robots emulate this behavior by running the same GRN and communicate to each 

other by sending messages about their GRN state. (C) Turing patterns in different biological organisms (i.) zebra, 

giraffe, seashell, butterfly and different types of Turing patterns (ii.) on fish skin. 
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Figure 2. Swarm morphogenesis approach description. (A) Kilobots are small robots, each containing a 

microprocessor, infrared (IR) receiver/transmitter, a battery, a multi-colored LED and two vibration motors. (B) Top 

view of a kilobot swarm consisting of cca. 300 robots. (C) A Turing patterning system consisting of two diffusing 

molecules U (green) and V (red) that act as an activator and an inhibitor, respectively.  Each individual robot 

calculates the values of U and V by using reaction-diffusion equations (i.), and transmits them to neighboring robots 

(ii.). (iii.) Turing patterns in simulated and real robot swarms for varying values of parameter C. (D) Kilobots move 

along the surface of the swarm and aggregate around Turing spots (i.). A robot detects that it is on the edge of the 

swarm (1.), and starts moving along the outer surface of the swarm (2.). It stops (3.) when it gets to the proximity of 

the Turing spot.  (ii.) An example of kilobot movement in a real robot swarm. (E) Conceptual execution of the swarm 

morphogenesis algorithm. The Turing pattern should be formed (dark green) and several robots on the edge of the 

swarm (in blue) move and stop in the proximity of the Turing spots. Ideally, the Turing pattern should adjust to the 

new morphology (light green) by changing its configuration, while other bots continue moving and surround the 

Turing spots to build up the protrusions of the swarm.  
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Figure 3. Emergence of swarm morphologies. (A) Morphogenesis in a simulated swarm. Different LED colors 

indicate different concentrations of the activator U. Initially, a swarm of kilobots is visible with arbitrary 

concentrations of U. Next, five Turing spots emerged, around which, noticeable protrusions appear (last panel). (B) A 

temporal sequence of morphogenesis of a kilobot robot swarm (cca. 300 robots). The initial swarm configuration was 

roughly circular with five distinct Turing spots, including four spots on the edge of the swarm and one spot in the 

center of the swarm (top four panels). The robots rearranged around the Turing spots (bottom four panels), forming 

initial protrusions. Finally, a distinct cross-like shape was formed, which consisted of four tentacles with Turing spots 

on their tips. (C) Three replicates of morphogenesis with cca. 300 robots, which show similar cross-like, four 

tentacles morphologies. (D) Close-up of a growing tentacle during the swarm morphogenesis process. Starting from a 

Turing spot in the initial panel, there is a progressive build-up of kilobots around it, resulting in a clear tentacle 

growth in the final panel. 
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Figure 4. Adaptability of swarm morphologies. (A) Shape formation of a large swarm (cca. 300 robots) starting 

from a rectangular shape. Four spots emerged on the edges where four tentacles grew, while the central spot moved, 

adapting to the changing morphology. (B) A temporal sequence of morphogenesis in a smaller kilobot swarm (cca. 

110 robots), with the same settings for the Turing parameters as in (A). Three Turing spots drove the formation of a 

T-like tentacled morphology. (C) Two examples of Turing pattern (spot) adaptation in response to the swarm 

changing morphology. In (i.) we show adaptation during tentacle growth, where the Turing spot visibly changed 

shape, size and location during the growth of a single tentacle, always tending to stay on the tip of the outgrowth. In 

(ii.) starting from the initial spot location on the edge of the swarm, the spot is slightly shifted towards the center of 

the swarm and after a while it is completely moved to the center, while another spot appears close to its initial 

location. (D) Four variable swarm morphologies with irregular, organic shapes, obtained from different runs. Inset 

images show the initial configuration of the swarm. (i.) starts from an initial square morphology, while the swarms in 

(ii.-iv.) start from circular ones. 
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Figure 5. Robustness of swarm morphologies. (A) Regeneration response to minor damage. The starting point was 

the “standard” four spot pattern, from which four tentacles developed, as visible in the second panel. The robots from 

one tentacle were removed, as indicated by the red dashed line and left behind a Turing spot with a dent in the 

middle. After a while the tentacle regenerated with a small dent in the middle. (B) Redirected tentacle growth 

response. Two tentacles were completely cut off and the whole Turing spots were removed. Unlike the example in 

(A), where there was some of the original Turing spot remaining, here these tentacles could not grow back. Instead, 

by cutting them off, we effectively freed up a larger surface of edge robots that could freely move and aided the 

growth of the remaining two tentacles in the swarm, as visible in the third and fourth panel of the figure. (C) 

Regeneration response to major damage. The developing swarm was cut in two, approximately equal parts, along the 

red dashed line. We left the two swarms in close proximity to each other and after a while they managed to merge 

into one entity again. 
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Figure 6. Quantitative analysis of swarm morphologies. (A) Morphospace of nine runs of the morphogenesis 

algorithm, all starting from an initial circular configuration. Grey lines trace the change of swarm morphologies and 

the morphospace is populated by both regular (transient) shapes and more organic shapes. The corresponding 

morphologies are plotted alongside each point. (B) Three distinct regions of morphospace trajectories. The first one is 

the thin “adherent” region (blue), where all the individual trajectories go through in proximity to each other. Next is 

the transient region (green) where most of the regular morphologies reside. The third region (red) is where the more 

organic morphologies reside. Their trajectories in this region are more spread out than in the blue region. However, 

they still remain in a constrained space. 
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Figure 7. Morphogenesis approach implementation details. (A) Morphogenesis algorithm execution loop. (B)  

Each kilobot broadcasts an 8-byte message containing its ID, number of neighbors, state and the values of the two 

morphogens of the Turing system. Received messages are stored in a neighbors’ table, together with the distance to 

the transmitting robot and the kilotick time stamp. (C) A linear Turing system (i.), consisting of two morphogens, 

whose concentration is determined by solving the reaction-diffusion equation on each robot. Morphogen diffusion 

(ii.) is calculated by first comparing (substracting) the morphogen values of each neighbor, to a robot’s own 
morphogen concentrations and then these differences are summed up, yielding the net diffusion of each morphogen. 

(D) Orbiting and approaching movements are the basis for edge following and loss recovery movement (i.). When an 

orbiting robot is moving around its current nearest neighbor, the resulting movement is edge following. If the robot is 

approaching its nearest neighbor from a given swarm, the result is loss recovery movement. (ii.) By calculating the 

ratio of the average local density of kilobots (NNs) to its own number of neighbors (N), given a threshold thr , a robot 

determines whether it is an edge bot (yellow) or not (gray). (iii.) Three robot states: WAIT, EDGE FOLLOW and 

RECOVER. The WAIT state is a static, non-blocking state. In the other two states, a robot performs the 

corresponding movement algorithms described in (i.). 
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Table 1. Transition rules for switching between kilobots states. 

WAIT EDGE FOLLOW RECOVER 

WAIT default • edge_detected() 

• check_wait_state(ALL) 

• dist_to_Turing () > dist_th 

• dist(NN) > 

dist_far 

EDGE 

FOLLOW 

• dist_to_Turing () < dist_th 

• !edge_detected() 

• !check_wait_state(NN) 

• dist(NN) < dist_far  

default N/A 

RECOVER • !check_wait_state(NN) 

• dist(NN) < dist_far 

N/A default 
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Supplementary Materials 

 

 

Figure S1. Parameters exploration in simulation. As shown in Miyazawa et al. (47), different types of patterns can 

be obtained by varying parameters A and C (B and E as well) in the linear reaction-diffusion model. We performed a 

similar exploration of the parameter space defined by parameters A and C for reproducibility purposes in the 

simulator Kilombo. The other parameters were the same as shown in Fig. 7. Number of agents was set to 1000, and 

the same seed was used for all runs. Snapshots were taken after the patterns were stable, i.e., no substantial change in 

concentration was seen. Colors indicate concentration of molecule U, where green is a value greater than 4 units and 

no color means a value less than or equals to 4 units.  
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Figure S2. Summary of fifteen different runs of the morphogenesis algorithm.  (i.-ix) are morphologies emerging 

from an initial circular shape, with an approximately similar number of robots (number given as n).  (i.-v.) form 

“regular” (4-fold) morphologies, while the rest (vi.-ix.) make more organic shapes. In (x.) the swarm has an initial 

ellipse shape and it is significantly smaller 110 robots) than the other runs.  It also manages to form a regular (3-fold) 

morphology. (xi.-xv.) start from and initial rectangular shape and in (xi.) a regular (4-fold) morphology emerges, 

while in (xii.-xv.) organic shapes are visible.  

 

 



Science Robotics                                               Manuscript Template                                                                           Page 37 of 38 

 

 

Figure S3. Quantitative analysis of emergence, adaptability and robustness. (A) Emergence and adaptability 

graphs showing the median, absolute maximum and absolute minimum shape index every forty seconds of six 

repetitions of the Turing morphogenesis algorithm starting from a circular shape and three repetitions of 

morphogenesis with random concentrations, i.e., no Turing patterning (control) (i), and starting from a circular shape 

and five repetitions of the same Turing morphogenesis algorithm starting from a rectangular shape (ii). (B) Individual 
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graphs showing the median of a moving window of thirteen minutes (centered at the current time on the x axis) and 

real shape index of the six repetitions of the Turing morphogenesis algorithm starting from a circular shape (i), and 

three regeneration experiments where half of a Turing spot was removed (left), two complete Turing spots were 

removed (center) and half of two Turing spots were removed (right) (ii).  

 

 

 

  


