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Recently, much attention has been given to a noteworthy property of some soft tissues: their ability to

grow. Many attempts have been made to model this behavior in biology, chemistry, and physics. Using the

theory of finite elasticity, Rodriguez has postulated a multiplicative decomposition of the geometric

deformation gradient into a growth-induced part and an elastic one needed to ensure compatibility of the

body. In order to fully explore the consequences of this hypothesis, the equations describing thin elastic

objects under finite growth are derived. Under appropriate scaling assumptions for the growth rates, the

proposed model is of the Föppl–von Kármán type. As an illustration, the circumferential growth of a free

hyperelastic disk is studied.

DOI: 10.1103/PhysRevLett.101.068101 PACS numbers: 87.19.lx, 68.55.at, 87.19.R�

Biological tissues are conventionally classified into two

categories: hard tissues (e.g., bones or teeth) and soft

tissues (e.g., muscles, arteries, tendons, or skin), depending

on their mechanical properties. Soft tissues, which typi-

cally exhibit anisotropic, nonlinear, inhomogeneous be-

haviors, are often subject to large stresses and strains.

The theory of finite elasticity therefore forms an appropri-

ate framework to describe their properties [1–3], in the

absence of viscoelastic effects. Along these lines, much

work has been done to establish constitutive relationships

for specific biological materials such as the skin, blood

vessels, lung, brain, liver, and kidney [3,4], although com-

puting stresses and strains under applied external loads

remains a difficult task.

Observation of biological tissues has revealed the exis-

tence of internal stresses, even in the absence of external

loads. These residual stresses are induced by growth [2]

and affect the geometrical properties of tissues. Soft tissues

may undergo volumetric growth [5,6] depending on space,

orientation, and the state of stress within the body. Growth

is a complex process involving biochemical and physical

reactions at many different length and time scales that

occur through cell division, cell enlargement, secretion of

extracellular matrix, or accretion at surfaces. The removal

of mass is referred to as atrophy and occurs through cell

death, cell shrinkage, or resorption. Because of completely

different time scales between relaxation via viscoelastic

effects and the growth process itself which is assumed very

slow, the total deformation of the body is only due to both

change of mass and elastic deformations [7–12].

Before (respectively, after) the deformation, the body is

in the reference (respectively, current) configuration, and

the place of each material point is denoted by X (respec-

tively, x). We define the geometric deformation tensor by

F � @x=@X to describe locally the overall deformation

process. In order to model the growth process, we follow

Rodriguez, Hoger, and McCulloch [13] in making the

following three assumptions: (i) There exists a zero-stress

reference state; (ii) the geometric deformation gradient F

admits a multiplicative decomposition of the form F �
AG, where G is a growth tensor describing the change in

mass and A an elastic tensor characterizing the reorgan-

ization of the body needed to ensure compatibility (no

overlap) and integrity (no cavitation) of the body;

(iii) the response function of the material depends only

on the elastic part of the total deformation. Despite its

simplicity, the Rodriguez theory is yet to be investigated,

because of the complexity of finite elasticity although

inhomogeneous and anisotropic growth has been studied

in details in some simple geometry [14,15]. More sophis-

ticated and time-dependent approaches also based on the

Rodriguez hypothesis have been achieved for spheroids

and cylinders [16,17]. Here we focus on growing thin

samples subject to slow growth-induced finite displace-

ments, and we assume that the sample has time to relax

to its equilibrium shape. This reduction of dimensionality

allows us to derive the equilibrium equations whatever the

constitutive laws of the tissues.

Under appropriate scaling assumptions, the resulting

equations are found to be an extension of the well-known

Föppl–von Kármán (FvK) model, a powerful theory for

buckling instabilities, that are widely diffused in nature

(Fig. 2), but which is also able to explain complex post-

buckling phenomena such as crumpling. Experimentally, it

has been shown that growth may affect curvature in various

systems. In growing gels, both homogeneous growth under

constraints [18] and free inhomogeneous growth [19] have

been investigated. Thermal expansion [Fig. 1(a)], as well

as desiccation, can also bend an elastic body and cause it to

crumple as seen in dead leaves [Fig. 1(c)]. In living tissues,

viruses such as the cotton leaf crumple virus (CLCrV)

modify the growth process, and infected plants exhibit

curled or crumpled leaves [Fig. 1(d)], but buckling can

also occur during normal development. Some mushrooms’

or algae’s caps [Fig. 1(b)] may undergo symmetry breaking

and adopt an oscillatory or cup shape. At the cellular level,

a new milestone was reached with the discovery of the

CINCINNATA gene whose local expression affects growth
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and curvatures of the Antirrhinum (snapdragon) leaf [20].

Complementary to the inhomogeneity of growth, anisot-

ropy has been shown to be crucial in the generation of

shape. Indeed ‘‘a key aspect of shape—petal asymmetry—

in the petal lobe of Antirrhinum depends on the direction of

growth rather than regional differences in growth rate’’

[21]. To investigate the effects of anisotropy, for which

our formalism is well suited, we study the problem of a free

elastic disk subject to homogeneous anisotropic growth.

The model.—Since biological soft tissues have a high

volume fraction of water, they are elastically incompress-

ible; in our notation detA � 1. Furthermore, we assume

isotropy of the material for simplicity, and we define a

strain energy function: W �
P

1
r;s�0 crs�I1 � 3�r�

�I2 � 3�s, I1 and I2 being the principal invariants of the

tensor AtA. Any of the common constitutive relationships

can be described by a series of this form [22], at least

locally. After the deformation process, the sheet, of lateral

size L and thickness H, is described by the displacement

field: u � x�X, and we define ��X; Y� � uZ�X; Y; 0� as

the displacement of the middle surface that we assume

smaller than L. When the growth rates gij � Gij � �ij
are in the range of or less than (�=L) when one of the

indices is 3 and ��=L�2 otherwise, the scaling of the

induced strains falls inside the domain of validity of the

FvK model. Since H � L, we also apply the membrane

assumption that states �XZ � �YZ � �ZZ � 0. Then, us-

ing this assumption and to leading orders, we find that all

materials behave according to the constitutive equation

� � �2Y=3��E� pI�, p being the hydrostatic pressure

associated with the incompressibility constraint and E

the in-plane Green tensor. Y, the instantaneous Young

modulus, is equal to: Y � 6�c01 � c10�. Thus all thin elas-

tic samples undergoing small (but finite) deflections follow

a generalized Hooke’s law whatever the constitutive rela-

tionship is, as previously noted in Ref. [23]. The pressure is

given by the assumptions�ZZ � 0, which implies that p �
EZZ. Once these results are established, we derive the

equilibrium equations using the principle of minimal en-

ergy. They can be written in terms of the off-plane dis-

placement and stresses:
 

D��2� � ��� �H@X�����@X��� � P; (1a)

@X���� � 0; (1b)

where the Einstein summation convention is used, indices

run from 1 to 2, D � YH3=9 is the bending rigidity of the

plate, and � is a source of mean curvature linked to the

growth tensor via � � Div�GGt� 	 eZ. � and �2 mean,

respectively, the Laplacian and the bi-Laplacian operator,

and P is a possible external loading pressure acting on the

plate. At this stage, except from the induced average

curvature �, we recover the FvK equations [24], and we

can transform this system (1a) and (1b) with the help of the

Airy potential defined by: ��� � ��;���;�@2	=@X�@X�
(��;� being the Levi-Civita tensor). With 	, we derive
 

D��2� � ��� � 2H
	; �� � P; (2a)

�2	� E�
�; �� �  � � 0; (2b)

where the 
:; :� operator is defined in Refs. [24,25] and the

function  appearing in (2) is a source of Gaussian curva-

ture. It is the Gaussian curvature of the distorted surface

whose first fundamental form is given by dx2 �

G��G��dX�dX� [26]. Calculated to leading orders using

Brioschi’s formula and the Gauss-Bonnet theorem [26], its

value in the Cartesian coordinate system is given explicitly

in Ref. [25] for an arbitrary nondiagonal growth tensor G.

The fact that  is a Gaussian curvature while � is the z
component of the divergence of a tensor proves that both

quantities are intrinsic quantities associated to the growth

tensor and are independent of the choice of coordinate

systems as it is the case for all operators in the Föppl–

von Kármán equations.

The sets of equilibrium equations (1) and (2) are a

generalization of the well-known FvK theory of thin plates,

to which they reduce in absence of growth, i.e., G � I

(� �  � 0). For large deformations (� � H), the prob-

lem can be simplified. Indeed, the bending term D��2� �
��� can be neglected, and a solution that cancels the in-

plane stresses is a solution of 
�; �� �  , called a Monge-

Ampère equation. Once this equation is solved, the pa-

rameters appearing in this solution can be selected through

minimization of the bending energy. For moderate deflec-

tions, i.e., � �H, both bending and stretching terms are of

the same order, and the solution of zero energy is a surface

with prescribed curvatures, which does not always exist;

for example, there is no surface that has positive Gaussian

curvature and zero mean curvature. It is known that in-

FIG. 1 (color online). A few examples of buckling in nature.

(a) A potato chip adopts a saddle shape during frying. (b) Aceta-

bularia schenckii: a green algae. (c) A dead leaf. (d) A leaf

infected by the CLCrV, known to affect growth and induce

curling and the appearance of blisters at the surface of the leaf.
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homogeneous growth can lead to sophisticated surface

geometries [19], so we focus the research on anisotropic

growth, which has been much less studied.

The free disk.—Consider a disk, of initial radius Ri,
subject to anisotropic homogeneous growth, with free

boundaries and no external loading. Referring to a cylin-

drical system of coordinates �R;�; Z�, the growth tensor is

diagonal and homogeneous: G � diag�1� g1; 1� g2; 1�
neglecting the thickening of the plate. If g1 and g2, respec-

tively, the radial and circumferential components of the

growth process, are equal, then growth is homogeneous

and isotropic, and no residual stress appears: The disk

remains flat. The relevant control parameter is k � g2 �
g1. The first case to consider is for k� H2=R2

i that induces

an off-plane displacement � much smaller than H and is

thus outside the scope of the present theory. When k is of

orderH2=R2
i , which leads to � �H, all of the contributions

are of the same order, and a linear stability analysis is

performed. We look for a solution in which the in-plane

fields (displacements UR and U� and stresses �RR, �R�,

and ���) are independent of �. The off-plane displace-

ment, however, can depend on �. Since the disk is free, the

boundary conditions imply that there is no tension or

torque at the free edge and reads �RR�Ri� � �R��Ri� �
0. The only convergent solution of (1b) that fulfills these

boundary conditions is �RR � �R� � 0 leading to

UR�R� � �2R=3��g2=2� g1�, U��R� � 0, and a nonzero

hoop stress ��� � ��2kY�=3. Assuming a solution with

discrete axial symmetry: ��
;�� � ��
� cos�m�� (with


 � R=Ri), Eq. (1a) reduces to

 


4��4��2
3��3���1�2m2�
2��2�

��1�2m2��
2�
��1���m4�4m2�m2�
2���0; (3)

where � � �6kR2�=H2 is a control parameter and ��i� is the

ith derivative of � with respect to 
. At the free edge (
 �
1), the zero-torque conditions are not affected by the

growth process and are described in Ref. [24]. To avoid

singularities at 
 � 0, we impose ��0� � 0 and �0�0� � 0.

These boundary conditions, together with Eq. (3), form an

eigenvalue problem for the threshold �. Using Frobenius’s

method [27], we find the four eigenfunctions correspond-

ing to each m. The most unstable mode, occurring when

growth is mainly circumferential (�> 0), is characterized

by m � 2—a saddle shape—with a threshold value of

� � 3:08. An axially symmetric solution, i.e., m � 0,

appears when radial growth dominates (�< 0), at the

threshold value � � �7:82. This simple model explains

surprisingly well the changes of cap shape that the algae

Acetabularia acetabulum undergoes during its develop-

ment. Experiments performed in Ref. [28] show that radial

growth occurs in the earliest stage of the development,

which leads to a symmetric conical shape. At a later stage,

however, circumferential growth predominates to produce

the saddle shape (see Fig. 2).

We now consider large deformations: 1 � k� H2=R2
i ,

for which H � � . Since the stretching contribution is

much bigger than the bending energy, we first solve the

Monge-Ampère equation 
�; �� �  in which  is given by

 � k��
�=
 in our case. The general solution is a cone

that has zero Gaussian curvature except at the tip of the

cone, where the effect of bending becomes important and

which would require a more precise treatment [29,30]. We

focus only on the outer solution. The equation of the cone

is simply ��
;�� � 
g���. Using this expression, the

condition that the Airy potential vanishes everywhere [so

(2a) and (2b) are satisfied] gives for the in-plane displace-

ment field:

 U
 � �



2
g���2;

U� �



2

Z �

g���2 � g0���2 � 2k�d�:

(4)

Periodicity in the orthoradial displacement implies that

U��
; 0� � U��
; 2��. Let g��� be represented by its

Fourier series: g��� �
P

1
n�0�ane

in� � a?ne
�in��. The pe-

riodicity condition leads to 2
P

1
n�1
ana

?
n �n

2 � 1�� �
�a0 � a?0 �

2 � 2k. A cone of revolution (for which a0 is

the only nonzero coefficient of the Fourier series) can

satisfy the periodicity condition only if k < 0, that is,

when radial growth dominates. Infinitely many solutions

satisfy the periodicity condition, but the selected shape

must have minimal bending energy [29–31]. The bending

contribution reads Eb / f2
P

1
n�1
ana

?
n �n

2 � 1�2� � �a0 �
a?0 �

2g. For negative k values, the solution of minimal outer

bending energy is given by ��R;�� � R
��������

2jkj
p

and for

FIG. 2 (color online). Top: The two first destabilized modes.

(a) On the left k > 0, and the disk adopts a saddle shape, with

m � 2, at the threshold � � 3:08. (b) On the right k < 0, and the

disk adopts an axially symmetric shape characterized by m � 0,

at the threshold � � �7:82. Bottom: Shape changes in the

Acetabularia algae; the figures indicate the fraction of algae

that undergo the shape transition from an initial population of

85 plants. Picture drawn from Ref. [28].
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positive values by ��R;�� � R
�����������

4k=3
p

cos2�. For large

deformations, those predictions can be easily checked by

constructing a cone from a disk of paper in which a sector

defined by two radii is withdrawn and then either replaced

by a bigger one or just glued to close it (see Fig. 3). This

simple demonstration illustrates the fact that singularities

can arise from growth as observed in dead leaves or in the

leaves infected by the CLCrV.

Conclusion.—Using the formalism introduced by

Rodriguez, Hoger, and McCulloch, we have developed a

theory describing the behavior of thin elastic bodies sub-

ject to growth. By explicating the sheet’s small thickness,

we showed that all materials behave according to a gener-

alized Hooke’s law and the equilibrium equations general-

ize the FvK equations with growth. This extension

describes a broad range of physical phenomena involving

mass reorganization, from biological growth to thermal

dilatation, as well as desiccation. Once observed in experi-

ments, shape instabilities with a well-defined wavelength

may give relevant information on the growth process itself.

The treatment presented in this Letter also includes growth

anisotropic effects. We have shown that anisotropic growth

induces rich structures such as curling and crumpling.

We thank A. Boudaoud, P. Ciarletta, and E. Sharon for

many enlightening discussions.
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