
http://researchrepository.murdoch.edu.au/31173/
Morphological and molecular characterization of *Isospora neochmiae* n. sp. in a captive-bred red-browed finch (*Neochmia temporalis*) (Latham, 1802)

Rongchang Yang*, Belinda Brice, Una Ryan

*School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia, 6150.

*Kanyana Wildlife Rehabilitation Centre, 120 Gilchrist Road, Lesmurdie, Western Australia 6076.

*Corresponding author: Rongchang Yang

Mailing address: School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia, Australia, 6150. Phone: 61 89360 2495. Fax: 61 89310 4144.

E-mail: R.Yang@murdoch.edu.au
Abstract

A new *Isospora* (Apicomplexa:Eimeriidae) species is described from a single red-browed finch (*Neochmia temporalis*) (subspecies *N. temporalis temporalis*), that was part of a captive population in Western Australia. Sporulated oocysts of this isolate are spherical, 18.3 (18.2-18.9) × 18.2 (18.2-18.6) µm, with a shape index (length/width) of 1.0; and a smooth and bilayered oocyst wall, 1.2 µm thick (outer layer 0.9 µm, inner 0.3 µm). A polar granule is present, but the oocyst residuum and a micropyle are absent. The sporocysts are ovoid-shaped, 13.3 (9.5-16.4) × 8.6 (6.8-10.0) µm, with a shape index of 1.5. An indistinct Stieda body is present, but the substieda body is absent. A sporocyst residuum is present and composed of numerous granules of different size scattered among the sporozoites. Morphologically, the oocysts from this isolate are different from those of all known valid *Isospora* spp. Molecular analysis was conducted at 4 loci; the 18S and 28S ribosomal RNA (rRNA), the mitochondrial cytochrome oxidase (COI) gene and the heat shock protein 70 (*hsp70*) gene. At the 18S locus, this new isolate exhibited 99.9%, 99.8%, 99.7%, and 99.5% similarity to *I. sp.* MAH-2013a from a superb starling (*Lamprotornis superbus*), *I. MS-2003* from a Southern cape sparrow (*Passer melanurus*), *I. sp.* Tokyo from a domestic pigeon (*Columba livia domestica*) and *I. MS-2003* from a Surinam crested oropendula (*Psarocolius decumanus*). At the 28S locus, this new isolate exhibited 99.7% similarity to both an *Isospora* sp (MS-2003) from a Northern house sparrow (*Passer domesticus*) and an *Isospora* sp. (MS-2003) from a Southern cape sparrow. At the COI locus, this new isolate exhibited 98.9% similarity to an *Isospora sp. ex Apodemus flavicollis*. At the *hsp70* locus, this new isolate exhibited 99% similarity to isolate MS-2003 (AY283879) from a wattled starling (*Creatophora cinerea*). Based on morphological and molecular data, this isolate is a new species of *Isospora*, which is named *Isospora neochmiae* n. sp. after its host, the red-browed finch (*Neochmia temporalis*).

Keywords: *Isospora*; red-browed finch; morphology; phylogeny; 18S rRNA; 28S rRNA; COI; *hsp70*.
1. Introduction

The red-browed finch (*Neochmia temporalis*) is an easily recognized grassfinch that is widespread along the east and south east coast of Australia: from Cape York in Queensland to the Mt Lofty Ranges in South Australia (Pizzey and Knight, 2007). The red-browed finch, or the red-browed firetail, as it is also known, has a black tail, a scarlet bill, eyebrow and rump, whilst the upper parts of its body are olive-green. Adult birds are 11-11.5 cm in length (Pizzey and Knight, 2007). The red-browed finch is also found in the Darling ranges in southern Western Australia where it established itself after aviary escapes that took place around 1960 (Pizzey and Knight, 2007).

The red-browed finch is one of four species in the *Neochmia* genus. The three subspecies of *Neochmia temporalis* are: *N. temporalis temporalis*, which is found on much of the east coast (north east Queensland to south Victoria and south east South Australia) *N. temporalis minor*, which is found in north east Queensland (Cape York Peninsula) and *N. temporalis loftyi* in the south west corner of South Australia (avibase.bsc-eoc.org). *Neochmia temporalis loftyi* is not always listed as a subspecies due to the relatively small differences between it and the type species (Morcombe, 2003).

Isospora spp. from passerine birds have been reported worldwide (Duszynski et al., 1999), and in recent years especially, several species of *Isospora* have been characterised (Schrenzel et al., 2005; Berto et al., 2011; Berto et al., 2013; Schoener et al., 2013; Yang et al., 2014; Yang et al., 2015a, b and c). In Australia, five species of *Isospora* from passerine birds have been described; (1) *I. lesouefi* from the endangered regent honeyeater (*Xanthomyza phrygia*), which is endemic to south-eastern Australia (Morin-Adeline et al., 2011), (2) *I. anthochaeræ* from a red wattlebird (*Anthochaera carunculata*), (3) *I. streperæ* from a grey currawong (*Strepera versicolor plumbea*), (4) *I. serinuse* from a domestic canary (*Serinus canaria forma domestica*) and (5) *I. manorinae* from a yellow-throated miner (*Manorina flavigula wayensis*). Of these, the latter four have been reported in Western Australia (Yang et al., 2014; 2015a and b; Yang et al., 2016). To date, no
species of *Isospora* has been characterized from the red-browed finch. In the present study, we
categorized a new species of *Isospora* from a red-browed finch, both morphologically and
molecularly, and propose the species name *Isospora neochmiae* n. sp.

2. Materials and methods

2.1 Sample collection

Two red-browed finch carcasses were sent to the Kanyana Wildlife Rehabilitation Centre,
Perth for investigation. These finches were from a private captive-bred finch collection. These birds
had shown signs of discomfort that included plucking feathers from around the vent area. No other
finch species seemed to be affected even though they shared an aviary with other species. On
examination both birds were found to be underweight and had soiled vents. Faecal matter was
collected from the intestine of both birds. Microscopy was performed and both samples were found
to contain coccidian oocysts as well as large numbers of tapeworm eggs and tapeworms. The
Isospora oocysts were morphologically identical in both red-browed finches. PCR amplification
was only successful from one of the two samples and therefore only one finch sample was used for
this study. No other faecal samples from other finch species were examined.

2.2 Morphological analysis

The presence of oocysts was identified by direct microscopic examination of a faecal
suspension in saline. A portion of oocyst-containing faeces was placed in 2% (w/v) potassium
dichromate solution (K₂Cr₂O₇), mixed well and poured into Petri dishes to a depth of less than 1
cm and kept at room temperature (20-22°C) in the dark to facilitate oocyst sporulation. The sample
was checked for sporulation twice per day in the first 48 hours and four times during the third day.
(between 48 - 72 hours). Sporulated oocysts were observed using the 100 × oil immersion objective of an Olympus CH-2 binocular microscope, in combination with an ocular micrometre.

2.3 DNA extraction

Total DNA was extracted from 200 mg of each faecal sample using a Power Soil DNA Kit (MolBio, Carlsbad, California) with some modifications. Briefly, samples were subjected to four cycles of freeze/thaw by liquid nitrogen and boiling water to ensure efficient lysis of oocysts before being processed using the manufacturer’s protocol.

2.4 PCR amplification of four loci

A nested PCR with the primers EiGTF1 5’ – TTC ACA GGA CCC TCC GAT C (This study) and EIGTR1 5’- AAC CAT GGT AAT TCT ATG G (this study) was used for the external amplification of the 18S rRNA gene. The expected PCR product was ~1,510 bp. The primers EiGTF2 5’ – TTA CGC CTA CTA GGC ATT CC (this study) and EiGTR2 5’ – TGA CCT ATC AGC TTT CGA CG were used for the internal reaction. The PCR reaction contained 2.5 µL of 10 × Kapa PCR buffer, 2 µl of 25 mM MgCl2, 1.0 µL of 10mM dNTP’s, 10 pM of each primer, 1 unit of KapaTaq (Geneworks, Adelaide, SA), 1 µL of DNA (~50 ng) for the external reaction or 1 µL of external PCR product for the internal reaction, and 16.4 µL of H2O. PCR cycling conditions both for the external and internal reactions were 1 cycle of 94°C for 3 min, followed by 40 cycles of 94°C for 30 sec, 55°C for 30 sec and 72°C for 2 min and a final extension of 72°C for 5 min.
The PCR for the 28S rRNA locus was carried out using a nested PCR with the external primers: 28SExF: 5’-TAC CCG CTG AAC TTA AGC and 28SExR: 5’- CMA CCA AGA TCT GCA CTA G as previously described (Schrenzel et al., 2005), which produced a PCR product size of ~1,362 bp. The internal primers (28InF: 5’ – ACT ATG TTC CCT AGT AAC G and 28InR 5’- AAC GCT TCG CCA CGA TCC) produced an amplicon size of 1,420 bp (Yang et al., 2014). The PCR reaction contained 2.5 µL of 10 × Kapa PCR buffer, 2 µL of 25mM MgCl₂, 1 µL of 10mM dNTP’s, 10 pM of each primer, 1 unit of KapaTaq (Geneworks, Adelaide, SA), 1 µL of DNA (~50 ng) and 16.9 µL of H₂O. Both primary and secondary PCR’s were conducted using the same cycling conditions; 1 cycle of 94°C for 3 min, followed by 35 cycles of 94°C for 30 sec, 60°C for 30 sec and 72°C for 90 sec and a final extension of 72°C for 5 min.

The partial COI gene sequence (723 bp) was amplified using a nested PCR with the following primers COIF1 (Ogedengbe et al., 2011) and COXR1 (Dolnik et al., 2009) for the external reaction and COIF2 (Yang et al., 2013a) and COXR2 (Dolnik et al., 2009) for the internal reaction. The PCR reaction contained 2.5 µL of 10 × Kapa PCR buffer, 2 µL of 25 mM MgCl₂, 1.0 µL of 10mM dNTP’s, 10 pM of each primer, 1 unit of KapaTaq (Geneworks, Adelaide, SA), 1 µL of DNA (about 50ng) and 13.4 µL of H₂O. PCR cycling conditions were 1 cycle of 94 ºC for 3 min, followed by 40 cycles of 94 ºC for 30 sec, 58 ºC for 30 sec and 72 ºC for 1 min and a final extension of 72 ºC for 5 min. The external and internal PCR cycling conditions were identical.

PCR for the hsp70 gene was carried out using the primers HSP70F 5’ AAY GAY CAR GGW AAY MGD ACR ACH CC 3’ and HSP70R 5’ CCV BNK CCY TTY TTR TSN ARA CC 3’, as described by Schrenzel et al. (2005).

2.5 Sequence analysis
The amplicons from the second round PCRs were gel purified using an in-house filter tip method as previously described (Yang et al., 2013b). All the PCR products were sequenced using forward and reverse primers in duplicate using amplicons from different PCR runs. An ABI Prism™ Dye Terminator Cycle Sequencing kit (Applied Biosystems, Foster City, California) was used for Sanger sequencing according to the manufacturer’s instructions.

The results of the sequencing reactions were analysed and edited using Finch TV® v1.4.0 (http://www.geospiza.com/Products/finchtv.shtml). Sequences were compared to existing *Isospora* and other coccidian parasite sequences available on GenBank using BLAST searches and aligned with reference sequences with BioEditor (http://bioeditor.sdsc.edu/download.shtml).

2.6 Phylogenetic analysis

Phylogenetic trees were constructed for *Isospora* spp. at the 18S, 28S, COI and hsp70 loci with additional isolates from GenBank. Parsimony analyses were conducted using MEGA (Molecular Evolutionary Genetics Analysis software, version 6, Arizona State University, Tempe, Arizona, USA). Neighbor-joining (NJ) and maximum likelihood (ML) analyses were conducted based on the most appropriate model selection using ModelTest in MEGA 6 (Tamura-Nei). Bootstrap analyses were conducted using 1,000 replicates to assess the reliability of inferred tree topologies.
2.7 Line drawing

Oocyst line drawings were conducted using Inkscape (http://www.inkscape.org/en/).

3. Results

3.1 Description of *I. neochmiae* n. sp.

Sporulated oocysts of *Isospora neochmiae* n. sp. are spherical, 18.3 (18.2-18.9) × 18.2 (18.2-18.6) \(\mu \text{m} \), with a shape index (length/width) of 1.0; and a smooth and bilayered oocyst wall, 1.2 \(\mu \text{m} \) thick (outer layer 0.9 \(\mu \text{m} \), inner 0.3 \(\mu \text{m} \)). The sporocysts are ovoid-shaped, 13.3 (9.5-16.4) × 8.6 (6.8-10.0) \(\mu \text{m} \), with a shape index of 1.5. An indistinct Stieda body is present, but the substieda body is absent. A sporocyst residuum is present and composed of numerous granules of different size scattered among the sporozoites. Morphologically, the oocysts from this isolate are different from those of all known valid *Isospora* spp. (Fig. 1a and 1b and Table 1).

Type hosts: the red-browed finch (*Neochmia temporalis*).

Type locality: Perth, Western Australia.

Prevalence: Unknown

Other hosts: Unknown.

Prepatent period: Unknown.

Site of infection: Unknown

Sporulation time: 48-72 hours (The sample was checked for sporulation twice per day during the first 48 hours and four times during the third day (between 48 -72 hours).

Material deposited: DNA sequences have been deposited in GenBank under the accession numbers KT224380, KT224382, KT224378 and KX013543 for the 18S, 28S, COI and *hsp70* loci respectively.

Etymology: This species is named *Isospora neochmiae* n. sp. after its host, *Neochmia temporalis* (red-browed finch).
3.2 Histological study of the small intestine

Histological studies were conducted on different sections of the small intestine. Coccidian merozites and meronts were found in the intestine in the jejunum region (Fig. 2).

3.2 Phylogenetic analysis of I. neochmiae n. sp. at the 18S locus

A 1,226 bp 18S rRNA sequence of I. neochmiae n. sp was aligned with nine other Isospora spp. sequences from passerine birds; I. gryphoni (AF080613) (Olson et al., 1998), I. robini (AF080612) (Carreno and Barta, 1999), I. sp. MS-2003 (JX984668), I. sp. MS-2003 (JX984668 and AY331569), I. sp. MS-2003 (AY331571) (Schrenzel et al., 2005), I. serinuse (KR477877) (Yang et al., 2015b), I. sp. MAH-2013a (KF648870), I. sp. MAH-2013b (KF648871), and I. manorinae (KT224379) (Yang et al., 2016), two Isospora spp. sequences from domestic pigeons (Isospora sp. Tokyo - AB757860 and AB757862), as well as 17 Eimeria 18S rRNA sequences from GenBank. Toxoplasma gondii was used as the outgroup.

Phylogenetic analysis using distance, parsimony and ML revealed that I. neochmiae n. sp. exhibited 99.9%, 99.8%, 99.7% and 99.5% similarity to an Isospora sp. (MAH-2013a) (KF648870) from a superb starling (Lamprotornis superbus) from Canada, an Isospora sp. (MS-2003) (AY33157) from a Southern cape sparrow (Passer melanurus) from America, an Isospora sp. (Tokyo) (AB75786) from a domestic pigeon (Columba livia domestica) from Japan and an Isospora sp. (MS-2003) (AY331569) from a Surinam crested oropendola (Psarocolius decumanus) from America (Fig. 3a). Further analysis of a subgroup of shorter 18S sequences (300 bp) (n=11), including I. anthochaerae and the other four Isospora characterized in birds in Western Australia was conducted. The results were similar to the phylogenetic analysis from the longer 18S sequences and showed that I. neochmiae n. sp. was 100% identical to two Isospora sp.; MAH-2013a (KF648870) and MAH-2013b (AY33171) (Fig. 3b).
3.3 Phylogenetic analysis of *I. neochmiae* n. sp. at the 28S locus

A 1,367 bp amplicon from *I. neochmiae* n. sp. was obtained at the 28S rRNA locus. Phylogenetic analysis included thirty-one *Isospora* sequences from the North American passerine birds from a single report by Schrenzel et al., (2005), *I. anthochaerae* (KF766053) from a red wattlebird (Yang et al., 2014), *I. serinuse* (KR477878) (Yang et al., 2015b) and *I. manorinae* (KT224381) (Yang et al., 2016). In this analysis, *I. neochmiae* n. sp. grouped separately but exhibited 99.7% similarity with an *Isospora* sp. (MS-2003) from a Northern house sparrow (*Passer domesticus*, AY283843) and an *Isospora* sp. (MS-2003) (AY283847) from a Southern cape sparrow from America (Fig. 4).

3.4 Phylogenetic analysis of *I. neochmiae* n. sp. at the COI locus

A 725 bp amplicon at the COI locus from *I. neochmiae* n. sp. was obtained. Phylogenetic analysis included 18 sequences from avian *Isospora* isolates available in GenBank and 18 *Eimeria* COI gene sequences. *Toxoplasma gondii* (HM771690) was used as the outgroup (Fig. 5a). *Isospora neochmiae* n. sp. again grouped separately and exhibited the highest similarity (98.9%), with an *Isospora* sp. ex *Apodemus flavicollis* (JQ993711) from a yellow-necked mouse (*Apodemus flavicollis*) from the Czech Republic and 98.7% and 98.6% similarity respectively with *Isospora* sp. MAH-2013b and. MAH-2013a (KF648869 and KF648868) obtained from a superb starling from Canada. A subset of 215 bp long COI gene sequences, including *I. anthochaerae* and another 5 isolates from the Eurasian blackcap (*Sylvia atricapilla*) in Germany were used for further phylogenetic analysis. For this shorter analysis, *I. neochmiae* n. sp. was 100% identical to *Isospora* sp. ex *Apodemus flavicollis* and MAH-2013b (Fig. 5b).
3.5 Phylogenetic analysis of *I. neochmiae* n. sp. at the *hsp70* locus

A 435 bp amplicon at the *hsp70* locus from *I. neochmiae* n. sp. was obtained. Unfortunately only one *hsp70* sequence from an isosporid coccidian was available in GenBank. At this locus, *I. neochmiae* n. sp. was 99.0% similar to isolate MS-2003 (AY283879) from a wattled starling (*Creatophora cinerea*).

4. Discussion

Sporulated oocysts of *I. neochmiae* n. sp. are morphologically distinct from other characterized *Isospora* species and did not match any *Isospora* species from Passeriformes (http://biology.unm.edu/biology/coccidia/passeri1.html (Accessed on 19 January 2015) and other additional species, which were not in the database (Trachta e Silva et al., 2006; Yang et al., 2014; Yang et al., 2015a, 2015b). As shown in Table 1, the dimensions of the *I. neochmiae* n. sp. oocyst are smaller than other identified *Isospora* species with the exception of *I. braziliensis*, which was identified from a lesser seed-finch (*Oryzoborus angolensis*) in Brazil (Trachta e Silva et al., 2006) (Table 1). The oocyst of *I. neochmiae* n. sp. is spherical in shape with a L/W ratio of 1.0 and a polar granule was present. Both *I. neochmiae* n. sp. and *I. braziliensis* have similar oocysts with indistinct Stieda bodies and the absence of a substieda body, however, there was no polar granule present in the oocysts of *I. braziliensis*. Unfortunately, no morphological data is available from the *Isospora* isolates (MAH-2013a and MAH-2013b) from a superb glossy starling in Canada and isolate MS-2003 (AY283879) from a wattled starling.

Molecular characterization of *I. neochmiae* n. sp. at the 18S rRNA locus showed that it was most closely related to an *Isospora* sp. (MAH-2013a) from a superb starling in Canada, an *Isospora* (MS-2003) from a Southern cape sparrow, an *Isospora* sp. (Tokyo) from a domestic pigeon and an
Isospora (MS-2003) from a Surinam crested oropendola. At the 28S rRNA locus, *I. neochmiae* n. sp. was most closely related to an *Isospora* sp. MS-2003 (AY283843) from a Northern house sparrow and an *Isospora* sp. MS-2003 (AY283849) from a Southern cape sparrow from America. Phylogenetic analysis of COI gene sequences revealed that *I. neochmiae* n. sp. exhibited the highest similarity (98.9%) with an *Isospora* sp. ex *Apodemus flavicollis*, followed by 98.6% with *Isospora* sp. MAH-2013b and MAH-2013a (KF648869 and KF648868) from a superb starling from Canada. At the hsp70 locus, *I. neochmiae* n. sp. was 99.0% similar to isolate MS-2003 (AY283879) from a wattled starling.

Interestingly, *I. neochmiae* n. sp. was isolated from red-browed finches, which were aviary bred birds. No other wild-caught finches were in the collection and none were recently imported from other countries. The red-browed finches were housed in a mixed collection of both Australian and exotic finch species. None of the other finch species showed any signs of illness. The finches were all housed in a large open-air aviary but the feed station was protected from the weather and it is unlikely that the feed could have been contaminated with droppings from wild birds. Wild birds commonly seen in the area include magpie-larks (*Grallina cyanoleuca*), willie wagtails (*Rhipidura leucophrys*), New Holland honeyeaters (*Phylidonyris novaehollandiae*), Australian ravens (*Corvus coronoides*), silveryeyes (*Zosterops lateralis*) and various dove species. It is possible that the open flight section may have been contaminated with faeces from wild birds. It is not known if the coccidia were solely responsible for the birds’ death. Large numbers of tapeworms and their eggs were seen in the faeces by microscopy and these parasites may well have played a role in their death. It may be useful to screen wild birds for parasites before introducing them into aviaries containing captive populations.

Further investigation and identification of more isolates from wild red-browed finches from the eastern coast of Australia is necessary to track where this *Isospora* species originally came from and whether they are the same species reported from Canada and America.
Acknowledgments

The authors wish to thank Ms. Cathy Stuart for providing the specimens and we are also appreciative of Ms. Aileen Elliott for her assistance with microscope images.
References

Fig. 1a. Nomarski interference-contrast photomicrographs of *Isospora neochmiae* n. sp. Scale bar = 20 µm. Fig. 1b. Composite line drawing of *Isospora neochmiae* n. sp. sporulated oocyst. Scale bar = 20 µm.

Fig. 2. H and E stained section of the jejunum region in the intestine showing (a) merozites and (b) meronts.

Fig. 3a. Evolutionary relationships of *Isospora neochmiae* n. sp. inferred by distance analysis of 18S rRNA sequences. Percentage support (>50%) from 1000 pseudoreplicates from distance, ML and parsimony analysis, respectively, is indicated at the left of the support node (‘_’ = Not available). b. Phylogenetic relationships of *I. neochmiae* n. sp., and 10 other *Isospora* sequences including *I. anthochaerae* from a red wattlebird in Western Australia (300 bp of 18S rRNA sequence only).

Fig. 4. Evolutionary relationships of *Isospora neochmiae* n. sp. inferred by distance analysis of 28S rRNA sequences. Percentage support (>50%) from 1000 pseudoreplicates from distance, ML and parsimony analysis, respectively, is indicated at the left of the support node (‘_’ = Not available).

Fig. 5a. Evolutionary relationships of *Isospora neochmiae* n. sp. inferred by distance analysis of COI sequences. Percentage support (>50%) from 1000 pseudoreplicates from distance, ML and parsimony analysis, respectively, is indicated at the left of the support node (‘_’ = Not available). b. Phylogenetic relationships of *I. neochmiae* n. sp., and 14 other *Isospora* sequences including *I. anthochaerae* from a red wattlebird in Western Australia (215 bp of COI sequence only).