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Morphological and spectral characteristics of L-band and VHF scintillations

and their impact on trans-ionospheric communications
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Amplitude scintillations recorded at 1.5 GHz frequency during the high (1998–1999) and low (2004–2005)
sunspot activity periods over a low latitude station, Waltair (17.7◦N, 83.3◦E) revealed that the L-band scintilla-
tions mostly occur during the post-sunset to midnight hours peaking around 21:00 hr local time with maximum
occurrence during equinoxes, moderate during winter and minimum during the summer months. The occurrence,
as well as the intensity of scintillations, is found to be strongly dependant on both the season of the year and
the sunspot number. Strong (S4-index >0.45) and fast fading scintillations (fading rates >40 fads/min) observed
during the post-sunset hours of equinoxes and winter months manifest as several short duration patches at both
VHF (244 MHz) and L-band (1.5 GHz) frequencies and are found to be always associated with the range or total
Spread-F on ionograms and bubbles/depletions in the Total Electron Content (TEC) measured from a colocated
dual frequency GPS receiver, suggesting that these scintillations are of the Plasma Bubble Induced (PBI) type.
On the other hand, relatively weak and slow fading scintillations (fading rates <8 fads/min) observed around the
post-midnight hours of the summer months which appear as long-duration patches (>3 hr) at 244 MHz signal
(with practically no scintillation activity at the L-band frequencies) are often found to be associated with fre-
quency Spread-F on ionograms with no depletions in TEC. Further, the presence of Fresnel oscillations observed
in the spectrum of 244 MHz suggests that the long-duration scintillations observed are due to the presence of
a thin layer of irregularities in the bottom side F-region which are generally known as Bottom Side Sinusoidal
(BSS) irregularities. Further, the PBI-type scintillations at L-band frequencies are often found to exceed 10 dB
power levels (S4 > 0.45) even during the low sunspot activity period of 2004–2005, and cause Loss of Lock in
the GPS receivers resulting in a total interruption in the received signals.
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1. Introduction
Plasma density irregularities in the night time equato-

rial F-region which affect the radio waves by scattering

and diffraction causing scintillations on trans-ionospheric

signals, Spread-F on ionograms, plume-like structures in

HF/VHF radar maps, and intensity bite-outs in airglow im-

ages, are generally known as equatorial Spread-F (ESF)

irregularities. Studies on the formation, growth, and dy-

namics of ESF irregularities using different techniques have

been reported in several earlier papers (Calvert and Cohen,

1961; Woodman and LaHoz, 1976; Aarons et al., 1980).

Scintillation is the most simple, efficient and less expensive

diagnostic technique for the study of ESF irregularities and

has been the subject of extensive investigations over the past

few decades.

The occurrence of scintillations is highly variable from

day-to-day and is controlled by local time, season, solar

cycle, latitude, longitude, and geomagnetic activity. Even

after several studies on the general morphological features

of scintillations (Aarons, 1982) their day-to-day variability

is still one of the challenging problems for predicting iono-

Copyright c© The Society of Geomagnetism and Earth, Planetary and Space Sci-

ences (SGEPSS); The Seismological Society of Japan; The Volcanological Society

of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sci-

ences; TERRAPUB.

spheric scintillations, particularly in the equatorial and low

latitude regions.

With the increasing applications of Global Positioning

Systems (GPS) and satellite-based communication and nav-

igational systems, especially when the millimeter range pre-

cision approach is required, as in Satellite Based Augmen-

tations Systems (such as WAAS in the United States and

GAGAN in India), the precise occurrence characteristics

and prediction of the intensity of scintillations and their ef-

fects on L-band frequencies are now very much needed for

a better understanding of the space-weather relating to the

satellite-based communications.

As the ionosphere over India is situated in one of the

highly dynamic regions of the world, covering the geomag-

netic equator to the ionization anomaly crest region and be-

yond, the studies on L-band scintillations and their effects

on GPS signals over the Indian sector has drawn consider-

able attention during recent years. Bandyopadhyay et al.

(1997) and Das Gupta et al. (2004) have reported from Cal-

cutta (22.64◦N, 88.44◦E a northern anomaly crest region in

India) that the accuracy of position fixing by GPS (L-band

frequencies) is considerably degraded during the periods of

scintillations during both low and high solar activity peri-

ods. Waltair (17.7◦N, 83.3◦E) being located in the transi-

tion zone between the geomagnetic equator and the ioniza-
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tion anomaly crest regions in India facilitated us to carry out

the studies on various scintillation characteristics at L-band

frequencies, the results of which are reported and discussed

in this paper.

2. Data and Method of Analysis
Simultaneous measurements of scintillations at VHF

(244 MHz) and L-band (1.5 GHz) frequencies have

been carried out from two nearly geostationary satellites,

FLEETSAT (73◦E) and INMARSAT (65◦E), respectively,

during different phases of the sunspot activity periods of

October 1998 to March 1999 (relatively high and ascend-

ing phase where the monthly mean Rz values vary between

55.6 and 81.6) and March 2004 to March 2005 (low and

descending phase where the monthly mean Rz values vary

between 17.9 and 48.4). A colocated digital ionosonde has

also been operated during the same period and the iono-

grams were obtained at 15 min. intervals. The scintillation

data of March 2004–March 2005 has been recorded digi-

tally at a sampling rate of 20 Hz using an online data acqui-

sition system. The data has been analyzed and different pa-

rameters such as percentage occurrences, fading rates, scin-

tillation indices, and power spectra are computed. The data

recorded during October 1998 to March 1999 using pen-

chart recorder is scaled carefully and the scintillation index

(SI) has been calculated by the third peak method of Whit-

ney et al. (1969), whereas, the scintillation data recorded

digitally during March 2004 to March 2005 is used to com-

pute the S4-index which is defined as the square root of the

variance of received power divided by the mean value of the

received power (Briggs and Parkin, 1963). An empirical re-

lationship between S4 and SI given by Whitney (1974) is

used to translate the SI indices into S4 indices so as to com-

pare the intensity levels of scintillations recorded during the

two periods.

A dual frequency GPS receiver installed at Waltair un-

der ISRO/GAGAN program was also operated during the

same period (2004–2005) to record the scintillations (S4-

index) at L1 (1575.42 MHz) frequency along with the Total

Electron Content (TEC) from the differential phase of the

L1 and L2 frequencies. The GPS data from the satellite

passes for elevation angles greater than 50◦ was considered

for the analysis in deriving the S4 index and vertical TEC, to

avoid multipath and tropo-scatter effects. In the conversion

of vertical TEC, the ionosphere and the protonosphere were

assumed as spatially uniform thin shells, and the height of

the centroid of ionization of mass distribution was taken as

the Ionospheric Pierce Point (IPP). In the present study, the

TEC variations during the presence of scintillations at the

GPS-L1 frequency of 1.575 GHz, the IPP height is taken as

350 km (Davies and Hartmann, 1997; Goodwin et al., 1992;

Ciraolo and Spalla, 1997) and the mapping function, assum-

ing the ionosphere as a homogenous thin shell, is used in the

conversion of slant TEC to vertical TEC. The bias of the re-

ceiver is determined by observing the diurnal variation of

TEC at Waltair, and fixing the minimum value by averag-

ing the 3 to 4 hr of data around the day minimum, which

is further validated using the bottom-side electron content

derived from ionosonde data and topside electron content

from the IRI model.

3. Results
3.1 Diurnal, Seasonal and Sunspot activity variations

of L-band scintillations
The diurnal and seasonal variation in the occurrence

characteristics of L-band (1.5 GHz) scintillations for power

levels greater than 3 dB (S4 ≥ 0.15) observed from IN-

MARSAT during the low and descending phase of the

sunspot activity period from March 2004 to March 2005

are presented in Fig. 1. It can be observed from this figure

that the percentage occurrence of scintillations is predom-

inantly higher during the post-sunset hours and reached a

maximum value of 55% around 21:00 hr local time dur-

ing March 2004. Further, the percentage occurrence of

scintillations is higher during equinoxes, low during win-

ter, and absent during the summer months. During this

period (2004–2005), the scintillation occurrence is found

to be higher (50%) during vernal equinox (March, April)

of 2004 than during autumnal equinox (September, Octo-

ber) where the percentage occurrence is about 30% with

the peak around 21:00–23:00 hr local time. Also, the per-

centage occurrence of scintillations is higher in March 2004

(55%) where the mean sunspot number Rz is 49.1, than in

March 2005 (45%) where the mean sunspot number, Rz re-

duced to 24.8 evidencing the decrease in scintillation occur-

rence with the decreasing sunspot number.

With a view to examining the long-term variation in the

scintillation activity at L-band frequency with sunspot num-

ber, the percentage occurrence of scintillations (SI ≥ 3

dB power levels) during the relatively high (the monthly

mean Rz value varies between 55.6 to 81.6) and ascending

phase of the sunspot activity period from October 1998 to

March 1999, for which data is available, is compared with

the percentage occurrence of scintillations during the low

(the monthly mean Rz value varies between 17.9 to 48.4)

and descending phase of the sunspot activity from Octo-

ber 2004 to March 2005 are presented in Fig. 2. The top

panel shows the percentage occurrence of scintillations at

1.5 GHz during the period from October 1998 to March

1999 and the bottom panel shows the occurrence for the

period from October 2004 to March 2005. The monthly

mean sunspot numbers (Rz) are shown for each month on

the X-axis. The numerical values of percentage occurrence

of scintillations for each of the months are shown on the top

Fig. 1. Contour diagram showing the diurnal and seasonal variation of the

percentage occurrence of L-band (INMARSAT) scintillations during the

low sunspot year (March 2004–March 2005).
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Fig. 2. Percentage occurrence of scintillations (>3 dB) during (a) high

(October 1998–March 1999) and (b) low (October 2004–March 2005)

sunspot periods.

of the vertical bars.

It is clear from this figure that during each of the months,

the scintillation activity is higher during the high sunspot

activity period (October 1998–March 1999) than that of the

low sunspot activity period (October 2004–March 2005).

Also, it is seen from the figure that the percentage occur-

rence of scintillation is higher during equinoxial months

than during winter months.

It is known that the occurrence of irregularities in the

equatorial region increases with the increase of sunspot

number, maximizing during the high sunspot activity pe-

riods. Also, the occurrence of scintillations is modulated

by the seasonal pattern with maximum occurrence during

the equinoxes followed by winter months and minimum in

summer months. During the high sunspot activity periods,

the seasonal modulation in the occurrence of scintillations

is masked by the influence of the sunspot number control.

However, during relatively moderate to low sunspot number

periods, such as 1998–1999 (ascending phase) and 2004–

2005 (low and descending phase), the seasonal control on

the scintillation activity is predominantly visible over the

sunspot number dependency as may be seen from Fig. 2.

From the present data, it is interesting to note from

Fig. 2(a) that, even though the monthly mean sunspot num-

bers of equinoxial months October 1998 (Rz = 55.6) and

March 1999 (Rz = 68.6) are lower than that of the winter

Fig. 3. Diurnal variation of scintillation occurrence at different power (S4)

levels on each day during the months of March 1999 and March 2005

representing high and low sunspot years, respectively.

months November 1998 (Rz = 73.6) and December 1998

(Rz = 81.6), the scintillation activity is much higher in the

equinoxes. Also, it can be clearly seen from Fig. 2(b) that

the monthly mean sunspot number of the equinoxial month

of March 2005 (Rz = 24.8) is lower than that of the winter

month of November 2004 (Rz = 43.7), but the scintilla-

tion activity is much higher in March 2005 (45.16%) than

in November 2004 where the occurrence is zero, suggest-

ing that the seasonal dependence of scintillation occurrence

dominates the sunspot number dependency.

Over the sunlit hemisphere, the E-region ionization short

circuits the polarization electric fields developed in the F-

region, during the evolution phase of the ESF irregulari-

ties, along the field lines. During the equinoxes, the so-

lar terminator aligns symmetrically over the northern and

southern hemispheres and thereby simultaneously releasing

the E-region conductivity (which acts as a short circuit over

sunlit hemisphere) on both the hemispheres causing favor-

able conditions for the generation of irregularities during

the equinoxial months (Yeh and Liu, 1982).

Figure 3 shows the scintillation occurrence at 1.5 GHz on

a day-by-day basis for different S4-index (dB) levels during

a high sunspot number month of March 1999 (Fig. 3(a))

and a low sunspot number month of March 2005 (Fig. 3(b)).

The color-code assigned to the horizontal bars in this figures

are such that the green indicates the weak scintillations
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(3 dB ≤ S4 < 6 dB), the blue indicates the moderate

scintillations (6 dB ≤ S4 < 10 dB) and the red indicates

strong scintillations (S4 ≥ 10 dB). It may be clearly seen

from this figure that the occurrence, as well as the intensity

of scintillations during the high sunspot activity month of

March 1999 (monthly mean Rz = 68.8), are higher than

those during the low sunspot activity month of March 2005

(monthly mean Rz = 24.8), clearly indicating the effect of

sunspot activity on the occurrence of scintillations.

3.2 VHF and L-band scintillation characteristics
Simultaneous recording of the scintillations at VHF (244

MHz) signal from FLEETSAT and the L-band (1.5 GHz)

signal from the INMARSAT during the low sunspot ac-

tivity period (2004–2005) has enabled us to make a com-

parative study of the different characteristics of the scin-

tillations with respect to their frequency dependence. The

scintillations observed at both frequencies (VHF and L-

band) during the post-sunset hours of the equinoxes (March,

April, September, and October) and winter months (Jan-

uary, February, November, and December) are generally

characterized by several short-duration patches with sud-

den/abrupt onset, whereas during the summer months the

scintillations at the L-band frequency are almost absent dur-

ing this low sunspot activity year of 2004–2005. But on a

few occasions (eight nights), scintillations have been ob-

served around and post-midnight hours of summer solstice

(May, June, July, and August) at the VHF frequency of 244

MHz for long durations. In order to distinguish these two

types of scintillations, several scintillation patches observed

at VHF and L-band frequencies during this period (March

2004 to March 2005) are carefully examined by evaluating

S4-indices, amplitude fading rates, patch durations, power

spectral characteristics of scintillations, and their associa-

tion with Spread-F on ionograms for further investigation.

A total of 183 scintillation patches were observed at 244

MHz during the post-sunset hours of equinoxes and win-

ter months during the period March 2004–March 2005. In

Fig. 4 is shown the histogram of the patch-duration distri-

butions of scintillation patches observed during the post-

Fig. 4. Histogram showing the patch duration distribution of post-sunset

scintillations observed during the equinoxes and winter months, and the

post-midnight scintillations observed during the summer months.

sunset hours of the equinoxes and winter months and post-

midnight hours (eight nights) of the summer months. The

numerical values shown on the top of the vertical bars indi-

cate the number of the patches observed in each bin. From

this figure, it is observed that the post-sunset scintillation

patch durations during the equinoxes and winter months

mostly vary from 3 to 90 min, whereas, the post-midnight

scintillations observed in the summer months continue to

exist for more than 3 hr.

In Fig. 5 is shown the S4 index as a function of fading rate

and the association of Spread-F for the corresponding scin-

tillation patches observed at the VHF of 244 MHz during

the post-sunset hours of the equinoxes and winter months

(Fig. 5(a)), and during the post-midnight hours of the sum-

mer months (Fig. 5(b)). The Spread-F observed simultane-

ously on ionograms is classified as (i) Range Spread F, (ii)

Frequency Spread F, and (iii) Total (Range & Frequency)

Spread F.

It may be seen from Fig. 5(a) that the fading rates of

these post-sunset scintillations mostly vary from 20 to 45

fades/min and the corresponding S4 indices vary from 0.4 to

0.8, suggesting that the fast fading rates are often associated

with intense scintillations. Also, it can be observed from

this figure that these post-sunset scintillations are always

Fig. 5. Scatter plot showing the fading rates, S4 indices and their associa-

tion with Spread-F on ionograms. (a) scintillation patches observed dur-

ing the post-sunset hours (18:00–00:00 hr IST) of equinoxial and win-

ter months, (b) scintillation patches observed during the post-midnight

hours of (after 00:00 hr IST) of summer months.
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Fig. 6. Typical scintillation records of 244 MHz and 1.5 GHz signals on 26 March 2004 along with the corresponding ionograms showing the presence

of range Sp-F.

found to associate with range Spread-F (98 cases) or total

Spread-F (81 cases) with a few (four) scintillation events

associated with frequency Spread-F which occurred around

23:30 hr IST and are associated with low fading rates as

may be seen from the figure.

But, during the summer months (May, June, July, and

August), the scintillation activity is very much reduced.

However, on a few occasions (eight nights), long-duration

scintillation patches (>3 hr) were observed around and after

midnight hours at 244 MHz with no scintillations at the L-

band frequency of 1.5 GHz. The fading rates, S4 indices

and their association with Spread-F measured at the be-

ginning, middle, and ending phases of these long-duration

scintillations patches and are shown in Fig. 5(b) (with an

expanded scale for better visibility). It is noticeable from

this figure that the fading rates of these post-midnight scin-

tillations vary from 3 to 8 fades/min and the S4 index varies

from 0.3 to 0.5. Also, from Fig. 5(b), it can be observed

that the post-midnight long-duration scintillation patches

are often (15 cases) found to be associated with frequency

Spread-F on ionograms with a few exceptions during the

early phases of the scintillation events, which are associated

with total/range Spread-F.

Figure 6 shows scintillation patches recorded simultane-

ously both at 244 MHz (panel-a) and at 1.5 GHz (panel-

b) frequencies on a typical night of 26 March 2004. The

measured average fading rates for each of the scintillation

patches are indicated with the double-headed arrows on the

records for the corresponding durations. The small rect-

angular boxes in the right-top corners of both the panels

show the expanded view of a one-minute scintillation data

segment during 21:00 to 21:01 local time. It is very clear

from the figure that the fading rates are much higher at VHF

(varies between 30 and 46.2 fades/min) than at L-band fre-
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Fig. 7. Typical scintillation records of 244 MHz and 1.5 GHz signals on 22 July 2004 along with the corresponding ionograms showing the presence of

frequency Sp-F.

quencies (varies between 13.8 and 20.4 fades/min). The

bottom panel (panel-c) shows the presence of range type

Spread-F on ionograms during the corresponding times of

the scintillation activity on the same night.

Figure 7 shows example of a typical record of a long-

duration (222 min) late-night scintillation patch at 244 MHz

on 22 July 2004 (panel-a) with practically no scintillation

activity at the L-band frequency of 1.5 GHz (panel-b). The

average fading rates measured at various stages of this scin-

tillation patch are found to vary mostly between 4 and 5

fades/min. The bottom most panel (panel-c) shows a clear

association of frequency type of Spread-F on ionograms

with this late-night, long-duration scintillation event.

3.3 Spectral characteristics of VHF Scintillations
With a view to observe the spatial scale-size distribution

of the density irregularities causing the two types of scintil-

lations shown in Figs. 6 and 7, power spectra are computed

using the FFT algorithm for a two-minute digital data seg-

ment of the scintillation patches at 244 MHz recorded at

21:00 hr of 26 March 2004 and at 23:03 hrs of 22 July 2004

and are presented in Fig. 8.

The spectrum of the scintillation patch of 26 March 2004,

shown in Fig. 8(a), exhibits a flat response at the low fre-

quency region and steep roll-off in the high frequency re-

gion with a break of around 0.8 Hz suggesting the presence

of smaller scale size irregularities. The power law spectral

index (p), determined from the slope of the best fit straight-

line in the frequency range 0.8 to 8 Hz, is found to be −5.86.

However, the spectrum of 22 July 2004, shown in

Fig. 8(b), shows a lower break frequency ( fB) of 0.09 Hz

with a relatively lower spectral slope of −3.04. Also, the

spectrum exhibits a systematic modulation superimposed
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Fig. 8. Power spectrum of 2-min data segments of the scintillation patches

observed at 244 MHz shown in Figs. 4 and 5, respectively.

on the linear roll-off portion of the spectrum known as Fres-

nel oscillations. The first three Fresnel minima are observed

at f1,
√

2 f1,
√

3 f1, where f1 is 0.15 Hz in this spectrum.

The presence of Fresnel oscillations in the spectrum sug-

gests that the irregularities causing these scintillations are

confined to a thin layer of thickness, less than 100 km, in

the bottom side of the F-region. It was shown by Rufenach

(1972) and Yeh and Liu (1982) that the first Fresnel min-

imum f1 = Vo/
√

(λZ), where λ is the wavelength of the

signal, Z is the slant range of the observer to the irregular-

ity layer, and Vo is the irregularity velocity normal to the

propagation path of the satellite signal. In the present case,

the slant range Z comes out at 379 km (assuming the ef-

fective height of the ionospheric pierce point (IPP) as 350

km) and the wavelength λ at 244 MHz as 1.23 m which

gives rise to a horizontal drift velocity of 102 m/s. Using

this value of horizontal drift velocity, the break frequency

( fB = 0.09 Hz) of Fig. 8(b) corresponds to a spatial scale

size of 1138 m, suggesting that the major contribution of

forward scattered power is from the irregularities of kilo-

meter scale sizes and a relatively less significant amount of

power is contributed from the irregularities of smaller scale

sizes.

3.4 L-band scintillation characteristics observed si-
multaneously from GPS and INMARSAT satellites
from Waltair

With the availability of the simultaneous data of S4-

index of the L-band scintillations from the colocated dual

frequency GPS receiver (from orbiting satellites) and the

INMARSAT satellites (geostationary) from Waltair, an at-

Fig. 9. Bar diagrams of L-band scintillations, at different power (S4) lev-

els, observed from GPS and INMARSAT satellites over Waltair during

the month of March 2004.

tempt is made to compare the characteristics of the scin-

tillations from the two different sources. The spatial cov-

erage of the GPS satellites is relatively good and, at any

given point of time, a total of about eight satellites are visi-

ble from Waltair. The scintillation data (S4-index) recorded

at L1 (1575.42 MHz) frequency using dual frequency GPS

receiver and those of the L-band (1.5 GHz) scintillations

recorded from INMARSAT satellite, broadly show similar

morphological features.

In Fig. 9 is shown the occurrence of scintillations for dif-

ferent S4-index (dB) levels at both the L-band frequencies

(1.575 and 1.5 GHz) on a day-to-day basis for a typical

equinoxial month of March 2004 during the low sunspot

year of 2004. Figure 9(a) shows the occurrence of scintilla-

tions observed from GPS at the L1 frequency of 1.575 GHz

whereas in Fig. 9(b) is shown the scintillation occurrence

at 1.5 GHz frequency recorded from INMARSAT. It can be

seen from the figure that there is a high degree of correspon-

dence in the occurrence features of scintillations observed

from both orbiting GPS as well as the geostationary satellite

(INMARSAT) signals, particularly during the pre-midnight

hours.

3.5 Association of S4-index with depletions in TEC
Further, the scintillations observed in the GPS signals at

L1 frequency, shown in Fig. 9(a), are always found to be

associated with significant depletions in the Total Electron

Content measured from the same GPS satellites visible at
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elevation angles greater than 50◦, suggesting that these post-

sunset scintillations are of the Plasma Bubble Induced (PBI)

type (Rama Rao et al., 2004) and are stronger in amplitude.

Further, Yeh et al. (1979) and Das Gupta et al. (1983) have

also found that TEC-depletions, which are the signatures of

plasma bubbles, are always accompanied by an amplitude

scintillation of very high intensity and fading rate. They

have also reported that during the pre-midnight hours there

were occasions when a series of bubbles were observed

within a single scintillation patch.

A typical example in the variation of the vertical To-

tal Electron Content (vTEC), derived from GPS, under the

strong scintillation conditions of 26 March 2004, as seen

from the S4-index is shown in Fig. 10. The solid line repre-

sents the variation in the GPS-derived vertical TEC and the

dotted line represents the S4 index variation measured by

the GPS receiver at the L1 frequency. The scale for vertical

TEC in TEC units is shown on the left-hand side of the ver-

tical axis and the S4-index is shown on the right-hand side

of the vertical axis. It can be observed from this figure that

there is a significant depletion in TEC (about 10 TEC units)

starting from 19:25 hr local time, which coincides with the

onset of scintillations as observed by the sudden increase

in the S4-index (dotted line). The depletion in TEC is in-

dicative of a plasma bubble. It may also be noticed here

that the scintillations observed at the 1.5 GHz frequency

from the geostationary satellite INMARSAT (65◦E) shown

in Fig. 6 (panel-b), also starts at the same time. By about

20:00 hr local time, the TEC restores to the normal trend

with a value of 52 TEC units, indicating a weakening of

the plasma bubble and it is interesting to note that the scin-

tillations at the L1 frequency, as observed from the GPS

S4-index (dotted line in Fig. 10) and the scintillations ob-

served at 1.5 GHz frequency observed from the geostation-

ary satellite, INMARSAT (Fig. 6 (panel-b)), have ceased

to be present at this local time. Again, another depletion

event in TEC observed to start at 20:09 hr local time is also

found to be associated with the onset of another scintilla-

Fig. 10. Variation of L-band scintillation index (S4) observed at L1

frequency from GPS on a typical night of March 26, 2004 and the

corresponding variation of Total Electron Content (TEC) derived from

the GPS data.

tion patch, as observed by both the S4-indices measured

from GPS (dotted line in Fig. 10) as well as the geosta-

tionary satellite signal (Fig. 6 (panel-b)) at the same time.

The TEC value again starts recovering from 21:15 hr local

time and the scintillations observed by S4-index measured

from GPS, starts decaying which suggests that these scin-

tillations are associated with the depletions in TEC, which

are the signatures of the plasma bubbles.

On the other hand, on 22 July 2004, no significant scin-

tillations and/or TEC depletions are observed from the GPS

data, which suggests that the long-duration scintillation

patch observed at 244 MHz around the post-midnight hours

(Fig. 7 (panel-a)), is not due to plasma bubble-induced ir-

regularities, but could be due to a thin-layer of irregularities

in the bottom side of F-region which are generally known

as Bottom Side Sinusoidal (BSS) irregularities. Das Gupta

et al. (1983) and Basu et al. (1986) have also reported that

these BSS-type scintillations generally exist for long dura-

tions which maximizes around the post-midnight hours of

the local summer and are not associated with any depletions

in TEC.

3.6 Loss of Lock in GPS receivers
In Fig. 10, is shown the S4-index on the GPS-L1 fre-

quency and the corresponding TEC variations. Around

21:05 hr local time, where the S4 index reaches a value of

0.65, the TEC suddenly drops to zero, resulting in the loss

of lock in the phase channel of the GPS receiver, causing

a total interruption in the received signal. However, the re-

ceiver regains its phase lock with the signal within a short

duration of about 2 to 3 min. It has been reported by Rama

Rao et al. (2004) from the data of the S4-index and the ver-

tical TEC obtained from the network of GPS receivers in-

stalled at various locations in India, that the scintillations

with the S4-index often exceeds 0.45 (power level >10 dB)

at the L1-frequency of 1.575 GHz resulting in the Loss of

Lock of the GPS receiver for short durations, resulting in

interruption in the satellite communication.

4. Discussion
During the early evening hours, soon after the sunset

when the E-region ionization is quickly eaten away due to

the recombination of electrons and ions, the F-region ion-

ization remains relatively high, giving rise to steep vertical

gradients in the electron density. Further, the pre-reversal

enhancement of the east-ward electric field raises the F-

layer at the magnetic equator to high altitudes, where the

recombination effects are negligible, creating conditions fa-

vorable for the generation of irregularities (Woodman and

LaHoz, 1976). Then, through the Rayleigh–Taylor (RT)

Instability mechanism, large-scale irregularities (plasma-

depleted bubbles) that developed are lifted to the topside

of the ionosphere, well above the F-region peak altitude

(Kelly, 1989). The polarization electric fields within the

bubbles are higher, as a result the bubbles rise to the topside

at a velocity much greater than the ambient F-region verti-

cal plasma drift velocity (Anderson and Haerendel, 1979).

Steep gradients on the edges of the depletions (Costa and

Kelly, 1978) help to generate small-scale irregularities as

the bubbles rises to greater heights. These small-scale ir-

regularities in the size range of 100 to 500 m, which are
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known to be responsible for producing strong scintillations

at L-band frequencies, co-exist with the kilometer size ir-

regularities causing intense (almost saturated) scintillations

with fast fading rates at VHF frequencies.

The co-existence of small-scale irregularities, together

with the kilometer size irregularities, causes strong multi-

ple scattering of radio waves, resulting in a range type or

total Spread-F on ionograms. Figure 10 further confirms

that the scintillations observed on 26 March are associated

with TEC depletions, which are the signatures of the plasma

bubbles. Das Gupta et al. (1983) have also reported that the

scintillations occurring during the post-sunset hours of the

equinoxes, which appear as several short-duration patches

interspersed with absolutely quiet intervals, are always as-

sociated with the depletions in TEC suggesting that these

scintillations are induced by Plasma Bubbles.

On the other hand, during the post-midnight hours of

summer solstice, the F-region ionization is relatively low

and the density gradients are also weak. During these late-

night hours the west-ward electric field will not allow the

irregularities to grow into plasma-depleted bubbles and are

thus confined to thin layers in the bottom side F-region,

which manifest in the form of frequency Spread-F on iono-

grams and cause moderate to intense scintillations at VHF

with no scintillations on L-band frequency signals. The

smaller value of break frequency (0.09 Hz) observed in the

spectrum shown in Fig. 8(b) suggests that the irregularities

of Fresnel scale dimensions contribute the most to the ob-

served scintillations at VHF (Fig. 7(a)). Krishna Moorthy

et al. (1979) have also reported that scintillations with slow

fading rates (which are termed as Class-II by them) are ba-

sically due to irregularities of much larger scale sizes than

those responsible for scintillations with fast fading rates

(Class-I). These large-scale and relatively weak irregular-

ities are responsible for high fading periods (low fading

rates) and low S4-index values in VHF scintillations with

practically no scintillation activity at L-band frequencies.

Also, the presence of Fresnel oscillations in the roll-off por-

tion of the power spectrum (Fig. 8(b)) indicates that the ir-

regularities are confined to a thin layer of thickness of less

than 100 km (Rufenach, 1972; Yeh and Liu, 1982).

From scintillation measurements at Huancayo (12◦S),

Basu et al. (1986) reported that the discrete amplitude scin-

tillation patches observed were associated with plasma bub-

bles mostly in the post-sunset hours, while continuous scin-

tillation events existing for longer durations were associated

with Bottom Side Sinusoidal (BSS) irregularities around

post-midnight hours. It has also been reported that the fre-

quency of occurrence of BSS irregularities maximizes in the

local summer, as is seen in the present study.

The Plasma Bubble Induced (PBI) scintillations observed

during the equinoxial month of March 2004, shown in

Fig. 8, 9 exceeds the 10 dB power level in many cases, and

resulted in Loss of Lock of the GPS receiver (Rama Rao et

al., 2004), resulting in interruption of the transionospheric

signal. It has also been reported earlier that the accuracy

of position-fixing by GPS is considerably degraded with an

increase in the position dilution of precision (PDOP) value

over Calcutta (a northern anomaly crest region over the In-

dian sector) during the periods of scintillations, even in low

solar activity periods (Bandyopadhyay et al., 1997). Fur-

ther, it is to be expected that the scintillation activity in-

creases substantially during high sunspot activity periods

and will adversely effect the trans-ionospheric communi-

cations and navigation. Das Gupta et al. (2004) have also

shown that, seven or eight GPS/GLONASS satellite links

out of 15 satellites simultaneously showed scintillations in

excess of 10 dB, which resulted in a position error of 11 m

in latitude and 8 m in longitude during the high sunspot ac-

tivity years of 1999–2002.

5. Summary
The occurrence of scintillations at L-band frequencies is

found to be higher in equinoxes, moderate in winter, and

almost absent in summer solstice during this low and de-

scending phase of the sunspot activity period from March

2004 to March 2005. Also, the scintillation activity is found

to maximize during the post-sunset hours. The occurrence,

as well as the intensity of L-band scintillations, is found

to be higher during the high sunspot activity period from

October 1998 to March 1999 than during the low sunspot

activity period from October 2004 to March 2005 suggest-

ing that the scintillation activity is strongly dependant on

the sunspot number. It was also found that the seasonal de-

pendence of scintillation occurrence is more dominant than

that of the sunspot number dependency.

The scintillations observed during the post-sunset hours

of the equinoxes and winter months are found to be in-

tense with high fading rates, large S4-indices, and appear

as several short-duration patches at both VHF and L-band

frequencies. These intense and fast scintillations are al-

ways found to be associated with range or total Spread-F on

ionograms and depletions/bubbles in TEC measured from

the colocated dual frequency GPS receiver, suggesting that

these scintillations are of the Plasma Bubble Induced (PBI)

type. The spectrum of these Plasma Bubble Induced scintil-

lations at 244 MHz frequency reveals that the smaller scale

size irregularities co-exist with the kilometer scale size ir-

regularities causing intense (almost saturated) scintillations

at VHF and moderate to intense scintillations at L-band fre-

quencies.

During the summer solstice, no significant scintillations

are observed both on the GPS and INMARSAT signals

at L-band frequencies. On the other hand, on a few oc-

casions, strong to moderate scintillations were observed

at VHF around the post-midnight hours of the summer

solstice. These scintillations are characterized by long-

duration patches (3 to 4 hr) with slow fading rates (3 to 8

fades/min) and are often found to be associated with the fre-

quency Spread-F on ionograms. No depletions in TEC were

found to be associated with these long-duration scintilla-

tions during the summer solstice months. Further, the pres-

ence of Fresnel oscillations in the spectrum of these scin-

tillations at 244 MHz suggests that the irregularities caus-

ing scintillations are confined to a thin layer of thickness

of less than 100 km in the bottom side of F-region, gener-

ally known as Bottom Side Sinusoidal (BSS) irregularities

(Rufenach, 1972; Yeh and Liu, 1982; Bhattacharya et al.,

2001).

The Plasma Bubble Induced scintillations at L-band fre-
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quencies during the post-sunset hours of the equinoxes and

winter often exceed the 10 dB power levels (S4 > 0.45),

which may cause Loss of Lock in the GPS receivers and

consequently create an interruption in the received signal,

even during the low sunspot activity periods. Further, the

scintillations activity is expected to increase substantially

during the high sunspot activity periods and is likely to

increase the Loss of Lock events and adversely affect the

trans-ionospheric communications and satellite navigation

systems.
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