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Abstract. The �lter that removes from a binary image the components with
area smaller than a parameter � is called area opening. Together with its dual,
the area closing, it is �rst extended to greyscale images. It is then proved to
be equivalent to a maximum of morphological openings with all the connected
structuring elements of area greater than or equal to �. The study of the rela-
tionships between these �lters and image extrema leads to a very e�cient area
opening/closing algorithm. Greyscale area openings and closings can be seen as
transformations with a structuring element which locally adapts its shape to the
image structures, and therefore have very nice �ltering capabilities. Their e�ect
is compared to that of more standard morphological �lters. Some applications
in image segmentation and hierarchical decomposition are also briey described.

Keywords: algorithm, area opening, extrema, �ltering, opening and closing,
mathematical morphology, shape.

1 Introduction

A classic image analysis preprocessing problem consists of �ltering out small
light (respectively dark) particles from greyscale images without damaging the
remaining structures. Often, simple morphological openings (respectively clos-
ings) [10, 11] with disks or approximations of disks like squares, hexagons, oc-
tagons, etc., are good enough for this task. However, when the structures that
need to be preserved are elongated objects, they can be either completely or
partly removed by such an operation.

Let us consider for example Fig. 1a, representing a microscopy image of a
metallic alloy. It is \corrupted" by some black noise that one may wish to remove
(note that part of what is called noise here is the intra-grain texture!). As shown
in Fig. 1b, a closing of this image with respect to the elementary ball of the
8-connected metric (i.e. a square of 9 pixels) severely damages most of the inter-
grain lines, while still preserving some of the largests bits of noise (like the blobs
in the bottom right and left corners).

? The author is grateful to Henk Heijmans, Christian Lantu�ejoul, Ben Wittner, and
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2 L. Vincent

(a) (b)

Fig. 1. Microscopic image of a metallic alloy (a) and its morphological closing by an
elementary (9 pixels) square (b).

This is the reason why, in this context, openings and closings with line seg-
ments are widely used. In this paper, the morphological opening and closing
by a structuring element B are denoted by B and �B respectively (see, e.g.,
[10, 11, 12]). Denote also by l0n, l

1
n, l

2
n, l

3
n the line segments of length n and

respective orientation 0�, 45�, 90� and 135�. The following operations

� l
n = _i2[0;3]li

n
and �ln = ^i2[0;3]�li

n

are respectively an algebraic opening and an algebraic closing [10, 11, 12]. They
tend to preserve elongated structures better than their disk-based counterparts
(see also [11, pp. 110{112]). However, they are still far from being ideal: in-
deed, they are �rst very computationally intensive, since they involve a series
of expensive operations. Furthermore, as illustrated by Fig. 2, they may remain
unsatisfactory in some cases; when n is small, some of the noise fragments are
still present, and with increasing values of n, the inter-grain lines tend to be
damaged.

The remedy to this last problem is to increase the number of orientations of
the used line segments, but this in turn increases the computational complexity
of the algorithm. In addition, even with a large number of orientations, very thin
lines might still end up broken. As will be seen in Sect. 4, the classic solution
to this involves a transformation called greyscale reconstruction [4, 2, 16, 17]. In
this paper, an even better and more systematic technique is proposed: use all
possible connected structuring elements of a given size (number of pixels). This
will lead to the introduction of the area openings and closings.

The paper is organized as follows: in the next section, area openings and
closings are de�ned and some of their properties are reviewed. Their relations
with image extrema are studied and are at the basis of a very e�cient algorithm.
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(a) (b) (c)

Fig. 2. Maxima of linear openings of increasing size of Fig. 1a.

Lastly, Sect. 4 illustrates their usefulness for some �ltering, segmentation, and
hierarchical decomposition applications.

2 Area Openings and Closings: De�nitions and Properties

2.1 De�nition in Terms of Areas

Throughout the paper, the sets X under study will be constrained to be subsets
of a connected compact set M � IR2 called the \mask". All the notions and
algorithms introduced easily generalize to arbitrary dimensions.

The de�nitions proposed below for area openings and closings are based on
the so-called connected openings [11, 12]:

De�nition1 (connected opening). The connected opening Cx(X) of a set
X �M at point x 2M is the connected component of X containing x if x 2 X

and ; otherwise.

On binary two-dimensional images (i.e., on subsets of the maskM), the area
opening a� is de�ned as follows:

De�nition2 (binary area opening). Let X �M and � � 0. The area open-
ing of parameter � of X is given by

a�(X) = fx 2 X j Area(Cx(X)) � �g: (1)

More intuitively, if (Xi)i2I denotes the connected components of X, it becomes
clear that a�(X) is equal to the union of the connected components of X with
area greater than �:

a�(X) =
[
fXi j i 2 I;Area(Xi) � �g: (2)

By area is meant the Lebesgue measure in IR2.
Obviously, a� is increasing, idempotent, and anti-extensive. It is therefore

legitimate to call it an opening [7, 11, 12]. By duality, the binary area closing
can be de�ned as follows:
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De�nition3. The area closing of parameter � � 0 of X �M is given by:

�a�(X) = [a�(X
C )]C:

where XC denotes the complement of X in M, i.e. the set M nX (n denoting
the set di�erence operator). As the dual of the area opening, the area closing
�lls in the holes of a set whose areas are strictly smaller than the size parameter
�.

The growth of these transformationsmakes it possible to extend them straight-
forwardly to greyscale images [12], i.e., to mappings fromM to IR:

De�nition4 (greyscale area opening). For a mapping f : M �! IR, the
area opening a�(f) is given by:

(a�(f))(x) = supfh � f(x) j Area(x(Th(f))) � �g (3)

= supfh � f(x) j x 2 a�(Th(f))g: (4)

In this de�nition, Th(f) stands for the threshold of f at value h, i.e:

Th(f) = fx 2M j f(x) � hg: (5)

In other words, to compute the area opening of f , all the possible thresholds
Th(f) of f are �rst considered and their area openings a�(Th(f)) are found. Since
a� is increasing, Y � X =) a�(Y ) � a�(X). Thus, the fa�(Th(f))gh2IR are
a decreasing sequence of sets which by de�nition constitute the threshold sets of
the transformed mapping a�(f).

By duality, one similarly extends the concept of area closing to mappings
fromM to IR. These area openings and closings for greyscale images are typical
examples of at increasing mappings (also called stack mappings) [12, 19, 13].
Their geometric interpretation is relatively simple: a greyscale area opening ba-
sically removes from the image all the light structures which are \smaller" than
the size parameter �, whereas the area closing has the same e�ect on dark struc-
tures. It is stressed that the word size exclusively refers here to an area (or
number of pixels in the discrete case). Theorem 10 below will provide a more
re�ned interpretation of this intuitive interpretation.

2.2 Second Approach to Area Openings and Closings

In this section, it is shown that area openings can be obtained through maxima
of classic morphological openings with connected structuring elements. Recall
that B denotes the morphological opening by structuring element B.

Lemma5. Let B �M. B � a� if and only if B is a �nite union of connected
components of area greater or equal to �.

Proof. If B = [ni=1Bi with 8i 2 [1; n], Bi connected and Area(Bi) � �, then for
any i, Bi

� a�. Thus, B � a�. Conversely, if B � a�, then B(B) � a�(B),
i.e. B � a�(B). Since 

a
� is anti-extensive, this implies that B = a�(B). Thus,

by de�nition of a�, this implies that every connected component of B is of area
� �. Since we operate in domainM these components are in �nite number. ut
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The following theorem can now be stated:

Theorem6. Denoting by A� the class of the subsets of M which are connected
and whose area is greater than or equal to �, the following equation holds:

a� =
[

B2A�

B : (6)

Proof. a� being a translation-invariant algebraic opening, a famous result by
Matheron [7] states that it is the supremum of all the morphological openings
B that are smaller than or equal to a�:

a� =
[
fB j B morphological opening ; B � a�g:

Thus, applying lemma 5,

a� =
[
fB j B =

Sn

i=1Bi, Bi connected, Area(Bi) � �g:

Obviously, for each of these Bs, B � Bi
; 8i. The above union can thus be

reduced to the connected sets B of area � �:

a� =
[
fB j B connected ;Area(B) � �g;

which completes the proof. ut

Similarly, it can be proved that the area closing of parameter � is equal to the
in�mum of all the closings with connected structuring elements of area greater
or equal to �.

In the discrete domain, any connected set of area greater or equal to � 2 IN
contains a connected set of area equal to �. The theorem can thus be made more
speci�c as follows:

Corollary7. Let ZZ2 be the discrete plane equipped with e.g., 4- or 8-connectivity.
For X 2 ZZ

2 \M and � 2 IN,

a�(X) =
[
fB(X) j B 2 ZZ

2 connected ;Area(B) = �g:

Theorem 6 can now be extended to greyscale:

Proposition8. Let f : M �! IR, be an upper semi-continuous mapping [10,
pp. 425{429]. The area opening of f is given by:

a�(f) =
_

S2A�

S(f): (7)

Note that to extend theorem 6 to greyscale, we need to apply it to the threshold
sets Th(f). They thus have to be compact, and this is why upper semi-continuity
of f is required. A dual proposition can be stated for greyscale area closings,
which now requires lower semi-continuity for f .

The previous proposition leads to a di�erent understanding of area openings
(respectively closings). As a maximum of openings with all possible connected
elements of a minimal size, it can be seen as adaptive: at every location, the
structuring element adapts its shape [1] to the image structure so as to \remove
as little as possible".
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3 Relation with Extrema, Algorithm

This section exclusively deals with openings, the dual case of the closings being
easy to derive from the results. We �rst recall the notion of maximum on a
mapping [10, page 445].

De�nition9 (regional maximum). Let f be an upper semi-continuous (u.s.c.)
mapping fromM to IR. A (regional) maximumof f at level h 2 IR is a connected
component M of Th(f) such that

8h0 > h; Th0 \M = ;: (8)

The following theorem can now be stated:

Theorem10. Let f be a u.s.c. mapping from M to IR, � � 0. Denoting M�

the class of the u.s.c. mappings g :M 7�! IR such that any maximum M of g is
of area greater than or equal to �,

a�(f) = supfg � f j g 2 M�g: (9)

Proof. Let g 2 M�, g � f , and let h 2 IR. Let A be an arbitrary connected
component of Th(g). Since g is u.s.c., A is a compact set and therefore, there
exists x 2 A such that g(x) = maxfg(y) j y 2 Ag. Let h0 = g(x) and B =
Cx(Th0 (g)). B is obviously a maximumof g at altitude h0. Indeed, if there existed
a y 2 B such that g(y) > h0, we would have y0 62 A (the maximal value of g
on A is h), and thus A � A [ B � Th(g). Furthermore, A [ B is connected
as the union of two connected sets with non-empty intersection, which would
be in contradiction with the fact that A is a connected component of Th(g). B
is therefore a maximum at altitude h0 of g and B � A. Since by hypothesis,
Area(B) � �, we therefore have Area(A) � �.

Thus, for every h 2 IR, a�(Th(g)) = Th(g). Besides, Th(g) � Th(f). There-
fore, by growth of a�, 

a
�(Th(g)) = Th(g) � a�(Th(f)). This being true for every

threshold, we conclude that g � a�(f).
Conversely, 8h 2 IR, any connected component A of Th(a�(f)) is of area � �.

Thus, all the maxima of a�(f) are of area � �. It follows that a�(f) 2M� and
(anti-extensivity) a�(f) � f , which completes the proof. ut

This theorem provides a third interpretation of greyscale area openings useful
for implementation purposes. Indeed:

{ Obviously, applying de�nition 2 and computing a�(I) for every threshold of
the original greyscale image I then \piling up" the resulting binary images
is a much too computationally expensive operation.

{ Similarly, computing all the possible openings with all the possible connected
structuring elements of � pixels (see Sect. 2.2) becomes an impossible task as
soon as � is greater than 4 or 5. Indeed, the number of possible structuring
elements becomes tremendous! Note however that an approximate algorithm
based on such principles has been proposed for � � 8 [1]. It is however still
very slow and inaccurate, and the constraint � � 8 does not leave enough
�ltering power for most applications.
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The algorithm developed for this study is based on theorem 10 and corol-
lary 7. Its �rst step is to extract (and label) the regional maxima of image I
under study (for this step, refer to [15, 18, 2]). Then, to each maximum are
progressively added its neighboring pixels, starting with those with largest value
(in other words, the local threshold around the maximum is progressively low-
ered). As soon as the area of the current broadened maximum becomes larger
than �, the process stops and value v is assigned to all pixels of the broadened
maximum. The next maximum is then considered, etc. Implementation of this
procedure on a Sun Sparc Station 2 allows us to compute area openings of size
100 on a 256� 256 image in less than 3 seconds on average! Adapting it to area
closings is straightforward.

4 Applications

4.1 Grains Image Filtering Problem Revisited

It was mentioned in the introduction that greyscale reconstruction helps in this
image �ltering task. As illustrated by Fig. 3a, dual reconstruction (refer to [15,
16, 17]) of Fig. 1a from the minimum of closings of Fig. 2c yields a very clean
image. However, the area closing introduced in this paper performs even better:
Fig. 3b represents an area closing of size 40 of Fig. 1a.

(a) (b)

Fig. 3. (a) After dual reconstruction of Fig. 1a from Fig. 2c. (b) Area closing of Fig. 1a.

One can see that, while the overall cleanliness is relatively similar in Fig. 3a
and Fig. 3b, the latter does a better job of preserving the inter-grain separations,
especially those whose orientation is not one of the four orientations used in the
original minimum of closings with line segments. This is illustrated by Fig. 4,
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which is the thresholded algebraic di�erence between Fig. 3a and Fig. 3b. Note
that on the contrary to classic morphological openings and closings, both the
reconstruction method and the present area openings/closings yield �ltered im-
ages where no roughness due to the shape of the chosen structuring elements
may be observed.

Fig. 4. Areas where the area closing performs substantially better than the �lter of
Fig. 3a at preserving the thin dark lines between grains.

4.2 Use for Image Segmentation

Just as with classic openings and closings, one can very well perform top-hats
[8] with area openings and closings. This allows the straightforward extraction
of small light or dark structures regardless of their shape. As an example, let us
consider Fig. 5a, an image of eye blood vessels where microaneurisms have to be
detected. These are small light structures which are
� disconnected from the network of the blood vessels,
� predominantly located on the dark areas of the image, i.e. here, the central
region.

A direct area opening of size larger than any possible aneurism yields Fig. 5b
and its subtraction from the original image (area top-hat) is shown in Fig. 6a.
The aneurisms are clearly visible but some other small structures not located on
the dark image areas are also present.

Now, by computing an opening of Fig. 5a with respect to a large square,
we basically remove all the light structures and end up with an image of the
\background" (see Fig. 6b). After inverting this image and computing a pixelwise
multiplication of the result with Fig. 6a, we get Fig. 7a where the aneurisms
really stand out. A simple thresholding of this image then provides an accurate
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(a) (b)

Fig. 5. (a) Original image (angiography) of eye blood vessels with microaneurisms; (b)
area opening of size 60.

detection (see Fig. 7b). Note that an alternative solution to this microaneurism
detection problem is given in [16, 17].

4.3 Area Alternating Sequential Filters, Hierarchical Image
Decomposition

Having a fast area opening/closing algorithm at our disposal allows us to use
these transformations in more complex �lters. In particular, since the fa�g�2IN
and the f�a�g�2IN obviously constitute a size distribution and an anti-size distri-
bution [7], they can be used in alternating sequential �lters (ASF) [14, 11, 12].

In most practical cases however, there is almost no di�erence between the
following ASF

�ak � 
a
k � �

a
k�1 � 

a
k�1 � � � � � �

a
1 � 

a
1

and the simple open-close �lter �ak � 
a
k ! (This statement would be wrong in the

case of weird nested structures.) Besides, the latter is also extremely close to the
close-open �lter ak � �

a
k. It �lters darks and lights equally well and is very good

at removing impulse noise while preserving the shape of the underlying image
structures, as illustrated by Fig. 8.

With increasing sizes of area ASF (or simply open-close), one progressively
gets images with more and more at \plateau" areas, originally corresponding
to minima and maxima. As illustrated by Fig. 9, this process produces a series
of images of decreasing complexity (or level of detail) and could therefore be
used in a hierarchical image decomposition scheme.
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(a) (b)

Fig. 6. (a) Pixelwise algebraic di�erence between Fig. 5a and Fig. 5b (area top-hat);
(b)morphological opening of Fig. 5a by a large square.

Conclusions

In this paper, greyscale morphological area openings and closings have been in-
troduced, and their properties studied. It has been proved that the area opening
of size � is equivalent to a supremum of morphological openings with connected
structuring elements of area � �. We conjecture that, in fact, this is true with
connected structuring elements of area exactly equal to �. This latter result is
true anyway in the discrete case and establishes the connectivity-preserving be-
havior of these openings and closings. It has been showed that these operators
are ideal for many di�cult image �ltering tasks. Moreover, they can be of great
interest in image segmentation and decomposition applications. A fast algorithm
derived from the results of this paper has been outlined and will be detailed in
future publications. Hopefully these new area openings and closings will be useful
for solving a variety of image analysis problems.

References

1. Cheng, F., Venetsanopoulos, A.N. (1991). Fast, adaptive morphological decompo-
sition for image compression, Proc. 25th Annual Conf. on Information Sciences
and Systems, pp. 35{40.

2. Grimaud, M. (1992). A new measure of contrast: dynamics, Proc. SPIE Vol. 1769,
Image Algebra and Morphological Processing III, San Diego CA.

3. Knuth, D.E. (1973). The Art of Computer Programming, Vol. 3 : Sorting and
Searching, Addison Wesley.

4. Lantu�ejoul, Ch., Maisonneuve, F. (1984) Geodesic methods in image analysis,
Pattern Recognition, Vol. 17, pp. 117{187.



Morphological Area Openings and Closings for Greyscale Images 11

(a) (b)

Fig. 7. (a) pixelwise multiplication of inverted image 6b with Fig. 6a; (b) microa-
neurisms detected after straightforward thresholding.

5. La�y, B. (1987). Recursive Algorithms in Mathematical Morphology, Acta Stereo-
logica, Vol. 6/III, Proc. 7th Int. Congress For Stereology, pp. 691{696.

6. Maragos. P., Schafer, R.W. (1987). Morphological �lters|part II : their relations
to median, order-statistics, and stack �lters, IEEE Transactions on Acoustics,
Speech, and Signal Processing, Vol. 35 (8), pp. 1170{1184.

7. Matheron, G. (1975). Random Sets and Integral Geometry, J. Wiley & Sons, New
York.

8. Meyer, F. (1979). Iterative image transformations for the automatic screening of
cervical smears, J. Histochem. and Cytochem., Vol. 27, pp. 128{135.

9. Meyer, F. (1990). Algorithme ordonn�e de ligne de partage des eaux, Tech. Report
CMM, School of Mines, Paris.

10. Serra, J. (1982). Image Analysis and Mathematical Morphology, Academic Press,
London.

11. Serra, J. (ed.) (1988). Image Analysis and Mathematical Morphology, Part II:
Theoretical Advances, Academic Press, London.

12. Serra, J., Vincent, L. (1992). An overview of morphological �ltering, Circuits,
Systems, and Signal Processing, Vol. 11 (1), pp. 47{108.

13. Soille, P., Serra, J., Rivest, J-F. (1992). Dimensional measurements and operators
in mathematical morphology, Proc. SPIE Vol. 1658 Nonlinear Image Processing
III, pp. 127{138.

14. Sternberg, S.R. (1986). Grayscale morphology, Computer Vision, Graphics, and
Image Processing, Vol. 35, pp. 333{355.

15. Vincent, L. (1990). Algorithmes Morphologiques �a Base de Files d'Attente et de
Lacets. Extension aux Graphes, PhD dissertation, School of Mines, Paris.

16. Vincent, L. (1992). Morphological grayscale reconstruction; de�nition, e�cient
algorithm, and applications in image analysis, Proc. IEEE Conf. on Computer
Vision and Pattern Recognition, Champaign IL, pp. 633{635.



12 L. Vincent

(a) (b)

Fig. 8. (a) A radar image with impulse noise and speckle; (b) its area open-close �lter
of size 9.

Fig. 9. Area open-close �lters of increasing size of Fig. 8a.

17. Vincent, L. (1993). Morphological grayscale reconstruction in image analysis: ap-
plications and e�cient algorithms, IEEE Trans. on Image Processing, to appear
in April.

18. Vincent, L. (1992). Morphological algorithms. In: Dougherty, E. (ed.), Mathemat-
ical Morphology in Image Processing, Marcel-Dekker, New York.

19. Wendt, P.D., Coyle, E.J., Gallagher, N.C. (1986). Stack �lters, IEEE Transactions
on Acoustics Speech, and Signal Processing, Vol. 34 (4), pp. 898{911.


