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Morphological classification of galaxies by Artificial Neural Networks
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ABSTRACT

We explore a method for automatic morphological classification of galaxies by an
Artificial Neural Network algorithm. The method is illustrated using 13 galaxy
parameters measured by machine (ESO-LV), and classified into five types (E, SO,
Sa+Sb, Sc+Sd and Irr). A simple Backpropagation algorithm allows us to train a
network on a subset of the catalogue according to human classification, and then to
predict, using the measured parameters, the classification for the rest of the catalogue.
We show that the neural network behaves in our problem as a Bayesian classifier, i.e.
it assigns the a posteriori probability for each of the five classes considered. The
network highest probability choice agrees with the catalogue classification for 64 per
cent of the galaxies. If either the first or the second highest probability choice of the
network is considered, the success rate is 90 per cent. The technique allows uniform

and more objective classification of very large extragalactic data sets.
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1 INTRODUCTION

The origin of the Hubble sequence remains a fundamental
problem in understanding galaxy formation and the large-
scale structure of the Universe. The morphological type
describes the global appearance of a galaxy and provides
useful information about its physical structure and the
history of its stellar populations.

In spite of several attempts (e.g. Thonnat 1989; Okamura,
Watanabe & Kodaira 1989; Lauberts & Valentijn 1989; Doi
et al. 1992; Spiekermann 1992) to classify galaxies by
deterministic algorithms, morphological classification into
ellipticals, lenticulars, spirals and irregulars remains a
process dependent on the eyes of a handful of dedicated
individuals. We have investigated a computing technique,
Artificial Neural Networks (ANNs), to classify galaxies.
ANNSs have several practical advantages. An ANN can be
trained according to a subset classified by a human expert,
and then it can classify the full data set. When more than one

investigator contributes to the initial classification, the ANN

learns each decision pattern, and produces a more uniform
classification process free of such systematic errors as time
effects. A uniform classification is also useful for producing
target lists for surveys of selected type (e.g. a list of ellipticals
for spectroscopic measurements of stellar velocity disper-
sion), and studies of morphological segregation on the large
scale. Such automated procedures are the only practical way

of classifying the enormous amount of data produced by
machine scans of Schmidt plates like those obtained in the
APM survey (Maddox et al. 1990).

Important by-products of developing an automated
system include determining the primary physical paraneters
defining the Hubble sequence (cf. Brosche 1973; Meisels &
Ostriker 1984), identifying new galaxy classes, and preserv-
ing human experience for a time-scale longer than the life-
time of a human expert.

2 ARTIFICIAL NEURAL NETWORKS

ANN algorithms, originally derived from simplified models
of human central nervous system activity (McCullogh & Pitts
1943; Hopfield & Tank 1986), have found utility in
astronomy for the classification of objects in the IRAS Point
Source Catalog (e.g. Adorf & Meurs 1988), adaptive optics
(e.g. Angel et al. 1990), scheduling observation time (e.g.
Adorf 1989), and star-galaxy separation (e.g. Odewahn et al.
1991). Non-astronomical applications somewhat similar to
our problem are speech recognition and identification of
hand-written characters. For a review of these and other
applications see, .g., Gorman & Sejnowski (1988).

Here we use an ANN model known as the Backpropaga-
tion algorithm. It consists of nodes (analogous to human
neurons) arranged in a series of layers. The nodes in a given
layer are fully connected to the nodes in the next layer (see
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Fig. 1). The input layer consists of the input parameters (13
in our case), and the output layer consists of the classes (five
in our case). Any layer between the input and the output
layers is called a ‘hidden layer’. The input vector for each
galaxy, containing the galaxy parameters, is presented to the
network and the output is computed. The galaxy is then
classified according to the class associated with the largest
output component. The ANN can be viewed as a non-linear
operator which transforms the distribution of objects in the
input parameter space to the classification ‘eigen-galaxies’
space. The complexity (and non-linearity) of the ANN
depends on the number of inputs, hidden nodes, layers,
outputs and connections.

The network operates as follows. Each node (except the
input nodes) receives the output of all nodes in the previous
layer and produces its own output which then feeds the
nodes in the next layer. A node at layer s calculates a linear
combination over the input x{*~") from the previous layer
s=1 according to I\ =X ,w{’x{s~!), where the w,’s are the
weights associated with that node. The node then fires a
signal x{*) =f(z) according to a non-linear threshold function
usually of the sigmoid form f(z)=1/[1+exp(—z)] (in the
interval [0, 1]) or f(z)=tanh(z) (in the interval [—1, 1]),
where z =11,

For a given network architecture the first step is the
‘training’ of the ANN. In this step the weights w;; (the ‘free
parameters’) are determined by minimizing ‘least-squares’.
The novel aspect of Backpropagation is the way this minimi-
zation is done, using the chain rule (gradient descent) as
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proposed independently by several authors (e.g. Werbos
1974; Parker 1985; Rumelhart, Hinton & Williams 1986).

For each galaxy in the training set, the network compares
its output vector in the ‘classification space’ o to the desired
vector d determined by the human expert. The elements of
the vector d are zero except for one element set to 1 corre-
sponding to the actual class of the galaxy, e.g. we define
d=(1,0,0, 0, 0) for ellipticals.

The comparison is done in terms of a cost function,
usually of the form

1
E=— Z (0 _dk)z,
2%

where the sum is over the components of the vectors. This
cost function, averaged over all the training galaxies
presented to the ANN, is minimized with respect to free
parameters, the weights w;. The weights are updated
backwards from the output layer to one or more hidden
layers by a small change in each time-step,

oE
Awy{t+1)=—79 6_u1~+ aAw(y),

ij
where the ‘learning coefficient’ # and the ‘momentum’ a are
‘knobs’ which control the rate of learning of the network (see
e.g. Hertzetal. 1991).

After completion of the ‘learning’ process by the use of a
training set (i.e. fixing the weights w;) the ANN is ready to

Output Layer -> Classification

Figure 1. The ANN configuration (13; 13, 5) used in our study, with an input (galaxy parameters) layer of 13 nodes, a hidden layer of 13
nodes, and an output (classification) layer of 5 nodes. All nodes in a given layer are fully connected to all nodes in the next layer. The input

parameters are explained in Table 1.
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handle new unclassified data for which only the machine
parameters are available. It then produces an output vector
for each galaxy. The jth component of this vector can be
viewed as the probability for class j given the input para-
meters P(C;|x). In fact, it can be proved theoretically (e.g.
Gish 1990; Richard & Lippmann 1991) that the output of an
ideal ANN is indeed a Bayesian a posteriori probability.
Moreover, as our experiments confirm, the sum of the output
vector components is Y ,0, = 1, as expected for a probabilis-
tic classifier. It is worth noting that, unlike discrete classifica-
tion of hand-written characters, galaxies form a continuous
sequence. Hence the combination of probabilities assigned to
different ‘eigen-classes’ may reflect an intermediate class.

We wish to emphasize that supervised ANNs do not
produce an ‘objective’ unique classification. Supervised
networks replicate the choices of their trainer - a network
trained according to the classification made by Hubble or de
Vaucouleurs will classify new data in a manner similar to the
original expert.

3 EXPERIMENTS WITH ANN

Here we illustrate the method using the ESO-LV catalogue
(Lauberts & Valentijn 1989, hereafter LV89). We have
selected galaxies with ESO visual diameter = 1 arcmin and at
high Galactic latitude (| b| > 30°). Only galaxies with morpho-
logical classification performed by visual examination of the
galaxy image are considered in our analysis. We use the 13
catalogue parameters shown in Table 1 to describe each
galaxy. Hence, instead of going from ‘pixels to galaxies’, we
have chosen to work with the much more compact informa-
tion already contained in the ESO-LV catalogue. These 13
parameters were chosen because they are distance-

Table 1. The galaxy parameters.

® (B—R): average colour in region with B surface brightness 20.5
to 26;

o NZ: exponent of the fit of a generalized de Vaucouleurs law to B
octants (N=0.25 corresponds to a perfect elliptical galaxy and
N=1 to a pure exponential disc);

® log(Dsy/DZ), where Dgy and D? are the major diameters of the
ellipses at 80 per cent and half total Blight, respectively;

® V:i: arctangent of the absolute value of the ratio of the mean
tangential and radial gradients, which is an indicator of the
degree of asymmetry of the galaxy image;

° ,uoﬁl: B central surface brightness from the fit of a generalized de
Vaucouleurs law to B octants;

log(b/a), where b/ais the galaxy axial ratio;
EM. errorin ellipse fit to Bisophotes at B surface brightness 23;
Vg: gradient of the B surface brightness profile at D2,

log(D1/D¥), where Dy is the major diameter of the ellipse at 26
Bmag arcsec™?;

® NZX:exponent of the fit of a generalized de Vaucouleurs law to R
octants;

® uJ: average B surface brightness within 10 arcsec diameter
circular aperture;

® u?2: Bsurface brightness at half total Blight;
® u%: Rsurface brightness at half total R light.

independent, and they are very similar to those used by
LV89 to perform the automated classification presented in
the ESO-LV catalogue (hereafter ESO AUTO). This allows
us to compare meaningfully the success rate of the classifica-
tions provided by our ANN with ESO AUTO. After select-
ing only galaxies with all 13 parameters available, our final
data set has 5217 galaxies. We then randomly sort these
galaxies in two independent sets of 1700 and 3517 objects
for training and testing (samples TRAIN and TEST, respec-
tively). We have also normalized our input data between 0
and 1 by using the minimum and maximum values of each
parameter.

We have grouped the ESO-LV catalogue subclasses into
five major classes and assigned each of the five output nodes
of our networks to one of five classes of galaxies: E, SO,
Sa+Sb, Sc+ Sd, Irr. The distribution of the full set of 5217
galaxies as determined by LV89 is: E (—5.0<T<-2.5;
466 galaxies); SO (—2.5<7<0.5; 851 galaxies); Sa+Sb
(0.5=<T<4.5; 2403 galaxies); Sc+Sd (4.5<T<8.5; 1132
galaxies); and Irr (8.5 < T<10.0; 365 galaxies), where T is the
coded type.

‘We have investigated a variety of multilayer Backpropaga-
tion algorithins. All networks had 13 input nodes, one for
each galaxy parameter, and five output nodes for classifica-
tion. We present here results obtained with a very simple
network, with only one hidden layer with 13 nodes. This
configuration, labelled hereafter (13; 13, 5), is depicted in
Fig. 1. We have used the sigmoid as our non-linear transfer
function. The learning and momentum coefficients were kept
constant at #=0.5 and a=0.2, for all layers. We have
verified, however, that our results are robust over a large
range of these parameters. During training (using sample
TRAIN), the ANN compared the output of these five nodes
to the visual classification decisions of LV89. We then tested
the network against the TEST sample. Morphological classi-
fication was performed by assigning the galaxy to the class
corresponding to the maximal output component. It is worth
mentioning that a classification scheme where one calculates
the Euclidean distance of the ANN output from the vector
representing each of the five possible classes, and then
assigns the galaxy to the class producing the minimum vector
distance, has produced exactly the same results (cf. Richard
& Lippmann 1991).

Our main results, after 1 500 000 training iterations, are
shown in Table 2, where we compare the visual and auto-
mated classifications for the TEST sample. Rows in the
tables represent the visual type distribution, while the
columns depict the automated type distribution. The
diagonal presents the numbers of galaxies in each class for
which human and automated procedures perfectly agree.
From these tables one can verify that the percentage of
galaxies correctly classified by ESO AUTO is 56 per cent.
Our ANN, on the other hand, performs better: 64 per cent of
the galaxies in the TEST sample were correctly classified. If

Table 2. Galaxy classification.

(a) ANN (b) ESO AUTO
Class E SO Sa+Sb Sc+Sd Ir E SO Sa+Sb Sc+Sd Ir
E 203 7 25 1 5 197 87 17 5 5
SO 109 229 240 7 2 184 218 155 28 2
Sa+Sb 12 85 1281 218 15 106 12 791 664 38
Sc+Sd 1 4 304 415 36 22 11 24 631 72
Ir 0 0 53 69 126 22 9 31 42 14
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we consider classification to within the nearest neighbour the
success rate is much higher, 96 per cent.

Fig. 2 compares the galaxy morphological distribution
produced by our network and by ESO AUTO with the visual
distribution. As expected, both ESO AUTO and our
network have difficulty agreeing with Lauberts & Valentijn
about the decision boundaries between E and SO and
between Sc+Sd and Irr. However, ESO AUTO deviates
dramatically from the visual perception of Lauberts &
Valentijn in the distribution of Sa+ Sb versus Sc+ Sd, with
ESO AUTO actually reversing the human finding of the
number of Sa+ Sb being larger than that of Sc+Sd in this
sample. On the other hand, our network reproduces very
well Lauberts & Valentijn’s distribution of visual morpho-
logical types.

As discussed earlier, it can be shown that the ANN
behaves like a Bayesian classifier (see e.g. Gish 1990;
Richard & Lippmann 1991). Now we show that our network
produces outputs which are indeed consistent with Bayesian
a posteriori probabilities. First, in order to estimate prob-
abilities, the network outputs should sum to 1 for each galaxy
presented. Indeed, we find for the TEST sample that on the
average > ,0,=1.01 £0.15. Secondly, the output o, averaged
over all inputs should be the a priori class probability P(C,)
for a class C,. These expected values can be estimated by
averaging the network outputs over all input data. Table 3
(for the TEST sample) compares the observed and estimated
a priori class probabilities and indicates that our network
correctly estimates these probabilities.

The probabilistic nature of the network not only provides
insight into how the network operates, but also provides
useful information on the classification quality of each
individual galaxy. The distribution of P,,,, the value of the
maximal output component, is different for galaxies correctly
and wrongly classified. For the TEST sample, galaxies
correctly classified have a median P,,, = 0.84, while galaxies
wrongly classified have a median P, ~0.71, i.e. the ANN
‘admits’ making a fuzzier classification in this case. If either
the first or the second highest outputs are considered in the
comparison with the visual classification, the success rate is

B ANN13:13,5
B Lauberts & Valentijn

[J ESO Auto

E SO Sa+Sb Sc+8d Ir

Galaxy Classification

Figure 2. The classification of the TEST sample (3517 galaxies)
according to the human eye (LV), ESO AUTO, and our ANN
(13; 13, 5). ESO AUTO exhibits Sc +Sd excess and underestimates
Sa + Sb as compared to human and ANN classifications.

Table 3. The a priori class probability.

Class E SO Sa+Sb Sc+Sd I
L&V Visual 0.088 0.167 0.458 0.216 0.071
ANN  0.093 0.152 0.482 0.216 0.062

90 per cent. We have also found that filtering of ill-defined
galaxies in the training set further improves the classification.

4 DISCUSSION

We have illustrated that the ANN artificial intelligence
method is able to produce useful galaxy classification by
assigning Bayesian probabilities to each possible morpho-
logical type. In spite of the facts that ESO-LV is based on
plate material, the training set was produced by several
observers, and the galaxy parameters were chosen somewhat
arbitrarily, the ANN predicted reasonably well the morpho-
logical type of galaxies. Clearly, by using CCD frames, a
uniform training set, and a more optimal set of galaxy para-
meters, one can improve the classification further.

The ANN classification method improves considerably on
statistical techniques commonly used. ANN algorithms make
no prior assumptions about the statistical distribution of test
objects, and invoke no heuristics to help define class
membership. Our initial success with simple Backpropaga-
tion has encouraged us to pursue other aspects of ANN tech-
nique, including: (i) determining the optimal choice of
network parameters, e.g. the number of hidden layers and
nodes, and learning and momentum coefficients; (ii) assess-
ing the contribution of the galaxy characteristics, and finding
the ‘best parameters’; (iii) finding which fundamental para-
meters are defining the Hubble sequence; (iv) utilizing the
Automated Plate Measuring (APM) facility in Cambridge to
provide ANNs with the input of full 2D pixel maps of
thousands of galaxies, and (v) producing catalogues of
galaxies with assigned Bayesian probability of morphological
classification.
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