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Abstract—Convolutional neural networks (CNNs) have become
quite popular for solving many different tasks in remote sensing
data processing. The convolution is a linear operation which
extracts features from the input data. However, nonlinear op-
erations are able to better characterize the internal relationships
and hidden patterns within complex remote sensing data, such
as hyperspectral images (HSIs). Morphological operations are
powerful nonlinear transformations for feature extraction that
preserve the essential characteristics of the image, such as
borders, shape and structural information. In this paper, a
new end-to-end morphological deep learning framework (called
MorphConvHyperNet) is introduced. The proposed approach
efficiently models nonlinear information during the training
process of HSI classification. Specifically our method includes
spectral and spatial morphological blocks to extract relevant
features from the HSI input data. These morphological blocks
consist of two basic 2D morphological operators (erosion and
dilation) in the respective layers, followed by a weighted combi-
nation of the feature maps. Both layers can successfully encode
the nonlinear information related to shape and size, playing an
important role in classification performance. Our experimental
results, obtained on five widely used HSIs, reveal that our newly
proposed MorphConvHyperNet offers comparable (and even
superior) performance when compared to traditional 2D and 3D
CNNs for HSI classification. The source code is publicly available
at https://github.com/mhaut/MorphConvHyperNet.

Index Terms—Deep learning (DL), morphological transforma-
tions, latent feature space transfer, convolutional neural networks
(CNNs), hyperspectral images (HSIs), classification.

I. INTRODUCTION

HYperspectral images (HSIs) contain rich spectral and

spatial information comprised by hundreds of highly-

correlated and near-contiguous spectral bands, which are si-

multaneously captured over an observation area (along dif-

ferent wavelengths within the electromagnetic spectrum). The

large and rich information contained HSI data cubes has been

successfully exploited in many different applications, such as

environmental management, surveillance, precision agriculture

and crop analysis, among others.
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Classification is an important technique for HSI data ex-

ploitation. The goal of classification is to assign a land-cover

class to each spectral pixel by analyzing both the spectral

and spatial information contained in the image. However, HSI

classification poses two main challenges: the large spatial

variability of the pixel-based spectral signatures, and the lack

of available labeled samples. These challenges aggravate the

curse of dimensionality problem, which hinders the training

of any supervised algorithm and prevents the achievement of

desirable performance levels, i.e., the obtained classification

accuracies may not always be satisfactory.

To tackle the above problems, deep learning (DL) has

received a lot of attention in the field of HSI classification [1],

[2]. Initially, stacked autoencoders (SAEs) [3] and deep belief

networks (DBNs) [4] were introduced as accurate unsuper-

vised methods to extract layer-wise trained deep features.

However, their standard fully-connected architecture imposes

a feature flattening process before the classification, leading

to the loss of spatial-contextual information. On the contrary,

convolutional neural networks (CNNs) are able to automati-

cally extract spectral-spatial features from the raw input data

through a series of linear transformations (combined with

nonlinear activations) to facilitate the recognition of patterns.

In fact, the stack of convolutions layers is inspired by the

natural visual cortex, where the spatial dimensions of the

convolution kernel define the receptive field, identifying the

presence of certain features and refining the feature extraction

procedure along the entire stack. In this sense, the convolution

kernel can be easily adopted to conduct HSI data analysis [5].

For instance, Bera and Shrivastava [6] explored the perfor-

mance of the CNN model considering different optimizers.

Similarly, Paoletti et al. [7] analyzed the impact of the

input spatial size on model accuracy. Ramamurthy et al. [8]

conducted image denoising and dimensionality reduction by

combining autoencoders and CNNs. Also, Zhao et al. explored

2D CNNs [9] to extract spatial information from reduced

HSI data using principal component analysis (PCA) for clas-

sification, but failed to exploit the entire range of spectral

information contained in the HSI. To overcome this issue,

Konstantinos et al. introduced 2D CNNs to extract spectral-

spatial information separately, combining these two sources of

information to improve classification performance [10]. This

is due to the convolution operation (the basic building block

of the CNN), which simply computes a linear combination

of the input, followed by an activation function to introduce

non-linearity in the feature learning process. Zhong et al.

[11] introduced efficient spectral and spatial residual blocks to

https://github.com/mhaut/MorphConvHyperNet
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extract discriminative features for HSI classification. Roy et al.

[12] introduced a new hybrid deep model which combines 3D

and 2D convolutions to improve spatial–spectral feature repre-

sentation. Furthermore, Roy et al. [13] combined convolution

kernels with generative adversarial minority oversampling to

enhance the model performance by addressing the imbalanced

data challenge imposed by HSI classification. Wang et al. [14]

proposed an end-to-end cubic CNN, which applies convolu-

tions in different directions of the feature volume to fully

exploit spatial and spatial–spectral features. Driven by the goal

of extracting and exploiting the best possible features, Alipour

et al. [15] and Roy et al. [16] explored new architectural

designs to make the convolutional kernel more flexible.

However, in order to fully exploit the spatial-contextual

information contained in the HSI, the shapes and contours of

the border regions should be well-preserved when extracting

features (by keeping their geometry unchanged). Despite the

success of previous works focused on capturing high-level

features, complex spatial features and relationships can be

missed in this context due to the kernel and subsequent

pooling operations. In this context, morphological operators

have been widely used to address the aforementioned issues

and better capture the spatial-contextual information [17],

[18]. In the following, a number of related works combining

morphological operations and deep architectures are presented.

A. Related works

A constant critique of deep networks is their feature extrac-

tion process, which is completely opaque. Indeed, kernels self-

adjust through the forward-backward procedure, without any

control over what features they are extracting. In this context,

several efforts have been conducted to open the black box and

provide an interpretation of the extracted features, some of

them inspired by morphological operators. In these operators,

the structuring element (SE) plays an important role and helps

to preserve the semantic meaning of structures according to the

size and shape of the SE. For instance, Shen et al. attempted to

learn both the SE and the morphological operations. They have

also defined the residual morphological neural network with

the help of subtraction of dilation and erosion operation [19].

Furthermore, it has been proved that nonlinear functions can

better capture the intrinsic structure of abstract features [20]. In

this context, the intrinsic linear combination operations within

the CNN model can be replaced by nonlinear morphologi-

cal operations to reduce the number of activation functions,

while maintaining (or even increasing) the performance of

the model. In addition, Mellouli et al. have defined a soft

version of dilation and erosion using Counter-Harmonic Mean

(CHM), validating the method in digits recognition, where the

proposed CHM-based layer achieved higher performance than

conventional models [21]. Also, Nogueira et al. [22] conducted

an extensive study on the combination of deep models and

multiple morphological operations such as opening, closing,

top-hat operations, which have been combined with CNN to

perform classification task on aerial images.

Mathematical morphology (MM) is well-known for its

capacity to analyze and recover specific structures within

images using combinations of nonlinear filtering operations,

such as dilation (⊕) and erosion (⊖) [23]. MM operations have

been successfully applied in many areas of computer vision,

such as feature extraction (FE), semantic image segmentation,

denoising and edge detection, among others [24]. Tradition-

ally, standard methods for HSI classification consist of two

stages: FE and classification, using for instance support vector

machines (SVM) [25]. Commonly used FE techniques based

on MM are morphological attribute profiles (MAPs) [26],

morphological profiles (MPs) [27], derivatives of morpho-

logical profiles (DMPs) [28], and extended morphological

profiles (EMPs) [29]. These FE approaches have been widely

used in the HSI research domain, normally by reducing the

HSI to a few representative components using, for instance,

PCA. Franchi et al. [30] introduced a morphological pooling

layer similar to convolutional max-pooling. The resulting

network is used for image de-noising and edge detection. The

great success of MM features has inspired us to design a

completely new approach for HSI classification which com-

bines the dilation and erosion operations with the conventional

CNN in a layered fashion design, without increasing model

complexity (in terms of trainable weight parameters) [30]. In

fact, two new blocks have been designed to improve the FE

procedure conducted by the deep CNN model:

• On the one hand, a newly designed SpectralMorph

block implements a dual-path module, where the first path

applies the erosion operation over the data and the second

path performs the dilation operation. The obtained fea-

tures are processed along the channel dimension by two

lightweight 1× 1 convolution layers, and then combined

to obtain the final SpectralMorph feature maps.

• On the other hand, the SpatialMorph block also

implements a dual-path module. However, the obtained

(eroded and dilated) features are processed along the

spatial dimension by two 3 × 3 convolution layers, and

then combined to obtain the final feature maps.

To the best of our knowledge, this is the first time in the

literature that morphological operators such as dilation and

erosion are integrated into the conventional CNN architecture

for extracting structural information and classifying HSIs in

an end-to-end fashion.

The remainder of the paper is structured as follows. Section

II provides the architectural details of the proposed model,

detailing the pre-processing step and the considered mor-

phological operations. Section III discusses the experimental

results obtained with several HSI classifiers and the proposed

method, using five HSI datasets. Finally, Section IV concludes

paper with some remarks and hints at plausible future research

lines.

II. PROPOSED CLASSIFICATION FRAMEWORK

In the following, we provide the details of our new deep

morphological CNN model for remote sensing HSI data clas-

sification. Our model is composed of two trainable morpholog-

ical blocks called SpectralMorph and SpatialMorph.

They respectively implement a spectral and a spatial conv2D

operation followed by 2D erosion and dilation. The overall
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Fig. 1. Graphical overview of the proposed mophological convolutional network (MorphConvHyperNet) for spectral-spatial HSI classification.

architecture of our model is shown in Fig. 1. The flow of

the proposed framework involves 3D HSI patch extraction,

morphological operations and automatic selection of mor-

phological features using 2D erosion and dilation. In the

following, we describe these stages in detail.

A. Pre-processing of HSI data

A spectral-spatial HSI can be represented by a 3D tensor

with dimensions W (width), H (height) and B (channels),

defined as the data cube X ∈ R
H×W×B .The range of spectral

features should be standardized to prevent features with higher

variances (or wider ranges) from dominating the deep model

optimization metrics. In this regard, the data are standardized

by removing the mean and scaling to unit variance as a pre-

processing step, forcing all features to contribute equally to

the model performance. For this purpose, the Z-score method

is implemented following Eq. (1):

x̂i,j =
xi,j − µ

σ
, (1)

where xi,j ∈ R
D = [xi,j,1, . . . , xi,j,D] is a pixel from X,

∀i ∈ [1, H], j ∈ [1,W ] and x̂i,j ∈ R
D defines its standardized

counterpart, with zero mean and unit standard deviation. µ and

σ are the mean and the variance, respectively.

Hereinafter and with the aim of simplifying the nomencla-

ture, when we refer to as X, we mean the reduced data cube

that has been standardized. Then, to capture both spectral and

spatial information, X is cropped into overlapping 3D input

patches of size xi,j ∈ R
S×S×B , ∀i ∈ [1, H], j ∈ [1,W ],

with a stride of 1. Finally, the obtained patches xi,j are sent

to the neural model to be processed, so that every position

(i, j) needs to be associated with one of L land-cover classes

defined in advance.

Fig. 2. Graphical visualization of the dilation operation. An input image patch
of size (7×7×1) is dilated with a structuring element (SE) of size (3×3×1)
and produces same output size if padded.
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Fig. 3. Graphical visualization of the erosion operation. An input image patch
of size (7×7×1) is eroded with a structuring element (SE) of size (3×3×1),
removing the irrelevant data.

B. Morphological operations

Morphological operations are very powerful in terms of

capturing the shape and size of objects in the image. In this

work, a deep network based on two elementary morphological

operations is proposed. In particular, morphological dilation

and erosion operations are considered. Let I ∈ R
M×N×C be
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an intermediate feature map extracted from the HSI data, with

spatial size M × N and C channels. The dilation (⊕) and

erosion (⊖) operations over the feature map centered at spatial

location (i, j) can be defined as follows:

(I⊕ S
d)(i, j) = max

(̂i,ĵ,k̂)∈U

(I
i+î,j+ĵ,k̂

+ Sd

î,ĵ,k̂
), (2)

(I⊖ S
e)(i, j) = min

(̂i,ĵ,k̂)∈U

(I
i+î,j+ĵ,k̂

− S
e

î,ĵ,k̂
), (3)

where U = { (̂i, ĵ, k̂) | î ∈ {1, 2, 3, ..,M}; ĵ ∈
{1, 2, 3, .., N}; k̂ ∈ {1, 2, 3, .., C}}, and S

d and S
e are the

SEs for the dilation and erosion operations, respectively.

Fig. 2 depicts the dilation operation with an SE of size 3×3.

It may be noted that the dilation and erosion operations are

nonlinear and piece-wise differentiable. A gray scale image

can be viewed as a surface over the image plane. The dilation

will increase the surface of the particular feature in the feature

space (according to the size and shape of the SE). Similarly,

the erosion will suppress the feature in the surface. Fig. 3

provides a graphical representation of the erosion operation

For HSIs, morphological erosion and dilation can be applied

in band-by-band fashion.

C. SpectralMorph and SpatialMorph Blocks

Dilation and erosion are shape-sensitive operations. This

property is quite helpful to extract discriminative spatial-

contextual information during the training stage. In this con-

text, we designed our network using nonlinear MM filters. As

mentioned in [20], a single-layer dilation or erosion (followed

by a linear combination) can be used for complex classifica-

tion tasks. Dilation and erosion operations on morphological

feature maps generate dilated and eroded feature maps. To

combine the resulting feature maps we can take a linear

combination of these maps as follows:

I
2
(i,j) = b+

C∑

k=1

wkI
2
(i,j,k), (4)

where the feature maps of I1 are combined linearly in order to

generate I2. The linear combination can be viewed as a 1× 1
convolution. To generate additional features, we may apply

multiple dilation/erosion operations (and generate multiple

linear combinations of dilation and erosion).

In this work, shape features have been incorporated by in-

troducing trainable (and therefore, learnable) MM operations,

i.e. dilation and erosion into the conventional CNN model.

Consequently, we have defined two separate morphological

blocks:

• First, the SpectralMorph is built as a spectral mor-

phological block, which comprises two parallel MM

operations (dilation or erosion) followed by a linear

combination of dilated and eroded feature maps. We

further add (in element-wise fashion) the resulting feature

maps. Fig. 1 provides the graphical representation of the

SpectralMorph block.

• Similarly, 3×3 convolutions can be used instead of linear

combinations of feature maps. This helps to extract spatial

features from dilated and eroded feature maps. In this

case, we call the resulting block SpatialMorph (see

Fig. 1).

Before training, for all the considered SEs, the weights

of the linear combination and the convolution weights are

initialized randomly. In particular, network weights have been

set through He’s operator [31], the well-known variance-

scaling initializer which enhances the network performance

when ReLU activation functions are implemented. Moreover,

biases have been set to 0. For simplicity, in this work we design

a network that focuses on simple nonlinear MM operations

(erosion and dilation) and explore their performance in the

context of HSI classification. However, more sophisticated

MM operations such as opening, closing, reconstruction-based

operations, etc., can also be included in future developments.

In the following subsection we describe in details the adopted

network configuration.

D. Proposed Morphological CNN

Our morphological CNN comprises several convolution and

morphological layers. In each layer, we have taken multiple

convolutions and dilation/erosion operations to generate mul-

tiple feature maps. Fig. 1 illustrates the overall architecture of

the proposed network. A layer-wise detailed summary of the

proposed model is provided in Table I.

As it can be seen, for the design of the proposed network

we have employed two symmetric morphological blocks des-

ignated as SpectralMorph and SpatialMorph. These

blocks are intended to extract MM features from the feature

maps. It should be noted that the dilation and erosion op-

erations may also work as redundant layers. For example, a

dilation operation using a SE of size 3×3 with a center element

set to 0 and all other elements set to − inf propagates the input

to the next layer without changing the value of the input. As a

result, multiple dilation or erosion operations help to generate

multiple morphological feature maps.

In our experiments, we have considered B/4 dilations and

B/4 erosions in each block. It should also be noted that

dilation and erosion are based on min /max operations, so

they may produce many zero gradient values while conducting

the back-propagation step. To boost the gradient, we use a

convolution layer to specifically enhance the desired output of

each operation. Then normalization and activation functions

are applied to each block. The obtained feature maps are

then concatenated and processed by a spatial down-sampler,

i.e. a MaxPool layer, followed by a stack of convolution,

normalization and activation layers. Finally, a global average

pooling is applied to reshape the data into vectors suitable for

the processing of fully connected (FC) layers, which are used

for classification purposes.

The SEs and the convolutional kernels are all 3× 3 pixels

in size, and all of them are initialized randomly before

training. The network is trained in end-to-end fashion using

the back-propagation algorithm. In the following section we

quantitatively and qualitatively verify the performance of our

network using real HSI data. We also provide an ablation study

to validate if morphological layers help extracting features that

further contribute to the final classification performance.
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TABLE I
ARCHITECTURAL DETAILS OF OUR MORPHCONVHYPERNET MODEL

Layer ID Kernel/Neurons BatchNorm Act. function Stride

CNN B/4× 1× 1× B No 1
S-MORPH B/4 Yes ReLU 1

SP-MORPH B/4 Yes ReLU 1
MAX pool 2× 2 1

CNN 128/2× 3× 3× B/2 Yes ReLU 1
AVG pool 8× 8 8

FC1 nclasses No Softmax

Fig. 4 visualizes different feature maps extracted from

several input samples at particular stages of the network

architecture. As we can see, although the feature maps ob-

tained by the initial convolution layer are quite smooth, the

SpectralMorph and SpatialMorph blocks are able to

extract valuable information through their erosion and dilation

paths, which is combined to obtain the final output. As a result,

the block outputs contain rich information, improving the data

representation by means of highly discriminating information.

Fig. 4. Graphical visualization of the obtained features. Each column indicates
a different sample, whilst each row provides the obtained feature obtained after
being processing through the different filters and blocks of the network. In this
sense: row 1 provides the original sample; rows 2 provide the extracted feature
maps after the first convolution layer; rows 3 and 4 provide the extracted
feature maps after spectral erosion and dilation; rows 5 and 6 provide the
extracted feature maps after spatial erosion and dilation, and finally rows 7
and 8 provide the feature maps obtained by the SpectralMorph block and
the SpatialMorph block, respectively.

III. EXPERIMENTAL RESULTS

A. HSI datasets

In order to evaluate the performance of the proposed

MorphConvHyperNet, five different HSI scenes1 have been

1Available online: http://dase.grss-ieee.org/

Color Land cover type Samples

Background 10776

Alfalfa 46

Corn notill 1428

Corn min 830

Corn 237

Grass/Pasture 483

Grass/Trees 730

Grass/pasture-mowed 28

Hay windrowed 478

Oats 20

Soybeans notill 972

Soybeans min 2455

Soybean clean 593

Wheat 205

Woods 1265

Bldg Grass Tree Drives 386

Stone steel towers 93

Total samples 21025

Fig. 5. The ground truth, type associated with the land-cover classes, and
number of available samples in the Indian Pines (IP) dataset.

Color Land cover type Samples

Background 164624

Asphalt 6631

Meadows 18649

Gravel 2099

Trees 3064

Painted metal sheets 1345

Bare Soil 5029

Bitumen 1330

Self Blocking Bricks 3682

Shadows 947

Total samples 207400

Fig. 6. The ground truth, type associated with the land-cover classes, and the
number of available samples in the University of Pavia (UP) dataset.

considered: Indian Pines (IP), University of Pavia (UP), Uni-

versity of Houston (UH), Salinas Valley (SV) and Bostwana

(BW) scenes. Figs. 5, 6, and 7 respectively show a detailed

summary of the IP, UP and UH scenes, including their

corresponding ground truth, the type associated with the land-

cover classes, and the number of available labeled samples per

class. In the following, we describe the datasets considered in

this paper:

• The Indian Pines (IP) dataset was gathered by the Airborne

Visible/Infrared Imaging Spectrometer (AVIRIS) [32] over

the Indian Pines test site in North-western Indiana. It con-

tains 224 spectral bands within a wavelength range of 400
to 2500 nm. The 24 null and corrupted bands have been

removed. The spatial size of the image is 145× 145 pixels,

and it comprises of 16 mutually exclusive vegetation classes.

The spatial resolution is 20 meters per pixel (mpp).

• The University of Pavia (UP) dataset was acquired by the

Reflective Optics System Imaging Spectrometer (ROSIS)

sensor during a flight campaign over the university campus

at Pavia, Northern Italy [33]. It consists of 610×340 pixels
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Color Land cover type Samples train Samples test

Background 662013 652648

Grass-healthy 198 1053

Grass-stressed 190 1064

Grass-synthetic 192 505

Tree 188 1056

Soil 186 1056

Water 182 143

Residential 196 1072

Commercial 191 1053

Road 193 1059

Highway 191 1036

Railway 181 1054

Parking-lot1 192 1041

Parking-lot2 184 285

Tennis-court 181 247

Running-track 187 473

Total samples 664845 664845

Fig. 7. The ground truth, type associated with the land-cover classes, and
the number of available samples in the University of Houston (UH) dataset,
where the image at the top is the training set and the image at the bottom is
the testing set.

with 103 spectral bands in the wavelength range from 430
to 860 nm and 2.5 mpp. It comprises 9 urban land-cover

classes.

• The IEEE Geoscience and Remote Sensing Society pub-

lished the University of Houston (UH) dataset –collected

by the Compact Airborne Spectrographic Imager (CASI)– in

2013 [34], as part of its Data Fusion Contest. It is composed

of 340 × 1905 pixels with 144 spectral bands. The spatial

resolution of this dataset is 2.5 mpp with a wavelength

ranging from 0.38to 1.05 µm. Finally, the ground truth

comprises 15 different land-cover classes

• The Salinas Valley (SV) dataset was acquired using AVIRIS

sensor over an agricultural area on Salinas Valley, California.

It contains 512 × 217 pixels with 224 spectral bands. For

classification purpose, 20 absorption and noise bands were

removed (108th - 112th, 154th - 167th and 224th). The

spatial resolution is 3.7 mpp, and the ground-truth considers

16 different land-cover classes.

• The Botswana (BW) dataset was collected using the Hy-

(a) Disjoint Train (b) Disjoint Test

Fig. 8. Spatially disjoint training and test samples for the IP dataset (DIP
dataset).

perion instrument aboard the NASA EO-1 satellite, which

captured the scene on the Okavango Delta, Botswana. The

spatial resolution of this dataset is 30 mpp, with 1497×256
pixels. It contains 145 spectral bands with a wavelength

range between 400-2500 nm. Before the classification task,

97 uncalibrated and water-corrupted bands were removed.

The ground-truth contains 14 land-cover classes.

In addition, several experiments have been conducted using

the Disjoint Indian Pines (DIP) scene and the Disjoint Uni-

versity of Pavia (DUP) image. This addresses an important

drawback associated with 2D/3D kernel-based models and

the spatially overlapping data. Indeed, CNNs are based on

neighbourhood windows, which must be extracted as cropped

windows from the HSI scene. In a clear contrast to other

remote sensing applications, this represents a serious limitation

within HSI processing, as the same HSI scene is used for

extracting both training and test samples. As a result, when

extracting neighbourhood windows for the training samples,

these windows may overlap the test information, including it in

the training stage. This may unfairly benefit the model, which

will provide overrated classification results. To overcome this

drawback, recent HSI classification work encourages the use

of both disjoint and random sampling strategies, providing a

trade-off between these different approaches. Inspired by these

works, DIP, DUP and DUH have been taken into account

from the IEEE GRSS Data and Algorithm Standard Evalu-

ation (DASE) website. These disjoint datasets have mutually

exclusive training and test samples (as the ground-truth for

the UH dataset), i.e., there is no spatial overlapping between

the training and test data. These spatial disjoint. Figs. 8 and

9 show the disjoint splits given for the IP and UP datasets,

respectively. Moreover, Table II details the number of pixels

per class. It is noteworthy that disjoint train-test sets can be

even more challenging compared to randomly selected training

and test samples, as they do not ensure class balance. In fact

DIP and DUP have highly class imbalanced issues, which is

very interesting to test the robustness of the proposed model.

The disjoint training and test splits for the UH dataset are

given in Fig. 7.

Finally, to better illustrate the performance of the proposed

model on random train-test splits, the BW and SV datasets are

used only when labeled samples are available. Here, sample

patches are extracted from the raw HSI data and random
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(a) Disjoint Train (b) Disjoint Test

Fig. 9. Spatially disjoint training and test samples for the UP dataset (DUP
dataset).

TABLE II
NUMBER OF TRAINING SAMPLES (TRS) AND TEST SAMPLES (TES)
OBTAINED FROM THE DISJOINT TRAIN-TEST IP AND UP DATASETS

Class
Disjoint IP Disjoint UP

TRS TES TRS TES

1 29 25 548 6304
2 762 675 540 18146
3 435 404 392 1815
4 146 99 524 2912
5 232 274 265 1113
6 394 354 532 4572
7 16 2 375 981
8 235 250 514 3364
9 10 10 231 795
10 470 503
11 1424 1065
12 328 282
13 132 80
14 728 545
15 291 99
16 57 44

sampling is conducted to select the training samples, while

the remaining labeled samples are used for testing.

B. Experimental settings

In order to validate the effectiveness of the proposed

MorphConvHyperNet, a detailed comparison have been

conducted between several state-of-the art models, which

include classical machine learning and representative deep

learning methods. These methods are available on [5]2. In

particular, the methods considered include: multinomial lo-

gistic regression (MLR) [35], SVM with radial basis func-

tion [25], gated recurrent unit (GRU) [36], long short term

memory (LSTM) [37], CNN-1D [38], CNN-2D [5] and CNN-

3D [39], [40]. Moreover, to feed spatial-based models, a spatial

neighborhood of size 11×11 has been considered to create

patches for all the HSI datasets. The network parameters are

randomly initialized and trained with the Adam optimizer [41],

using a learning rate of 0.001 while minimizing the widely

used cross-entropy loss.

The classification performance of the proposed model has

been evaluated considering four widely used quantitative

2https://github.com/mhaut/hyperspectral deeplearning review

metrics: per-class accuracy, overall accuracy (OA), average

accuracy (AA), and kappa coefficient (κ) [42], respectively.

In this sense, the ratio of correctly classified samples among

the total test samples is determined by the OA, while the mean

of class-wise accuracy is determined by the AA. Finally, the κ
represents a strong mutual agreement between the generated

classification maps of one network model and the provided

ground truth. All the considered models have been run 5 times,

using 200 epochs per iteration, and we collect and report the

average results.

The hardware environment used for experiments is com-

posed by an Intel i9-9940X processor with 128GB of DDR4

RAM, NVidia Titan RTX with 24GB of DDR4 RAM. The

source code of our framework was implemented by using the

Keras library with TensorFlow as the backend.

C. Classification Results over Disjoint Datasets

To illustrate the generalization ability of our newly proposed

method in comparison with other traditional approaches, the

DIP (Fig. 8), DUP (Fig. 9) and DUH (Fig. 7) datasets have

been considered. As pointed out before, these datasets prevent

spatial overlapping between training and test, and introduce

certain challenges, as the different land cover classes are

unbalanced in terms of number of samples (such as DIP and

DUP).

In this regard, DIP is first considered. It contains class-

specific imbalanced training samples. As shown in Fig. 5,

class-wise data variation is particularly observed in two

classes: “Oats” and “Soybean-mintill”. These classes respec-

tively contain 20 and 2455 samples. According to the ex-

perimental settings discussed in Section III-B, the quantita-

tive results in terms of OA, AA, κ and per-class accuracy

for the DIP dataset (using all the considered classification

models) are reported in Table III, where we display in bold

typeface the highest achieved results across all the compared

classification methods. On the one hand, Table III reveals

that the proposed MorphConvHyperNet model achieves

superior performance in terms of OA, and κ. On the other

hand, the highest AA is achieved by the SVM. It can also

be seen that the CNN2D can provide better classification

performance than CNN1D and CNN3D, achieving better class-

specific accuracy for a few of the classes. Overall, the proposed

MorphConvHyperNet framework consistently outperforms

the traditional CNN1D, CNN2D and CNN3D by a large mar-

gin (particularly in comparison with CNN1D and CNN3D).

The other classification models (i.e., MLP, LSTM, and GRU)

achieve similar accuracy, whilst RNN and MLR provide the

lowest OA values.

In a similar way, Table IV reports the results obtained for

the disjoint UH dataset. As pointed before, the total number

of class-wise training and test samples for the UH dataset are

shown in Fig. 7. The results presented in Table IV reveal that

the proposed network exhibits constant performance gains in

all the considered measurements i.e., OA, AA, and κ with

respect to CNN1D, CNN2D and all the other considered

methods. It can also be observed that the OA achieved by

the CNN1D is significantly better than that achieved by the

https://github.com/mhaut/hyperspectral_deeplearning_review
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TABLE III
CLASSIFICATION RESULTS OBTAINED BY MLR, SVM, RNN, LSTM, GRU, CNN1D, CNN2D, CNN3D, AND MORPHCONVHYPERNET ON THE DISJOINT

TRAIN-TEST DATASET FOR THE IP SCENE (DIP).

Class MLR SVM MLP RNN LSTM GRU CNN1D CNN2D CNN3D MorphConvHyperNet

1 80.0±0.0 88.0±0.0 73.6±7.42 58.4±4.8 89.6±1.96 77.6±9.33 80.8±12.75 73.64±14.77 48.18±22.84 92.27±3.55
2 81.48±0.0 80.0±0.0 81.45±1.07 75.5±1.48 82.22±1.26 81.1±2.77 79.38±4.16 83.12±6.12 85.12±7.88 84.05±8.03
3 54.11±0.12 69.55±0.0 64.55±2.85 63.37±1.93 64.16±5.44 70.35±1.36 74.26±6.12 81.98±3.89 77.22±13.04 79.34±3.45
4 38.38±0.0 48.48±0.0 47.07±10.41 29.49±5.4 55.35±10.62 53.33±11.15 31.92±11.55 45.39±6.36 50.11±10.04 52.14±6.24
5 91.97±0.0 87.23±0.0 86.94±1.07 87.59±1.5 89.27±0.68 88.4±0.85 90.73±1.07 89.11±5.55 80.28±6.52 91.66±1.69
6 94.63±0.0 96.33±0.0 95.93±0.97 95.31±0.83 96.39±0.87 96.38±1.14 96.39±0.9 95.02±5.68 89.81±4.03 95.74±2.28
7 0.0±0.0 50.0±0.0 10.0±20.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
8 100.0±0.0 100.0±0.0 99.84±0.2 99.52±0.3 99.2±0.91 99.12±0.64 99.84±0.32 99.96±0.13 95.96±6.78 100.0±0.0
9 0.0±0.0 50.0±0.0 80.0±15.49 56.0±10.2 76.0±8.0 66.0±4.9 50.0±8.94 26.66±15.87 77.78±21.66 44.44±19.88
10 66.76±0.08 76.54±0.0 75.35±5.02 71.13±5.93 81.51±2.76 78.53±4.64 81.83±4.69 77.44±8.99 77.9±6.2 80.77±3.77
11 84.13±0.0 87.7±0.0 83.19±1.51 78.86±1.45 80.4±2.43 82.29±1.82 80.39±3.65 89.4±5.47 82.73±3.81 88.54±5.03
12 66.31±0.0 77.3±0.0 78.58±2.95 71.91±5.07 76.31±1.39 83.19±1.16 84.75±7.5 87.72±3.06 82.64±14.49 88.46±4.26
13 95.0±0.0 97.5±0.0 98.0±0.61 97.0±1.7 97.25±0.94 97.75±0.94 97.75±0.5 95.28±4.74 89.72±6.89 87.64±3.43
14 90.64±0.0 91.38±0.0 92.92±1.48 90.28±1.09 94.13±1.18 92.88±1.79 93.32±2.34 98.94±0.55 98.31±1.41 98.82±1.01
15 89.9±0.0 80.81±0.0 87.88±3.78 75.56±6.43 90.71±2.34 93.54±1.64 89.9±4.78 82.02±14.83 55.17±27.57 69.44±15.86
16 97.73±0.0 97.73±0.0 87.27±4.45 88.64±4.31 94.09±2.32 95.45±2.49 96.82±2.32 82.0±6.69 82.5±12.5 84.0±4.21

OA 80.33±0.02 84.12±0.0 82.95±0.23 79.07±0.33 83.55±0.39 84.2±0.21 84.0±0.28 87.25±1.03 83.6±1.41 87.45±1.01
AA 70.69±0.01 79.91±0.0 77.66±1.98 71.16±0.87 79.16±0.75 78.49±0.36 76.76±0.75 75.48±2.12 73.34±3.46 77.33±1.56

k(x100) 77.47±0.02 81.87±0.0 80.56±0.26 76.12±0.4 81.27±0.44 82.01±0.26 81.81±0.35 85.48±1.15 81.36±1.62 85.75±1.14

TABLE IV
CLASSIFICATION RESULTS OBTAINED BY MLR, SVM, RNN, LSTM, GRU, CNN1D, CNN2D, CNN3D, AND MORPHCONVHYPERNET ON THE DISJOINT

TRAIN-TEST DATASET FOR THE UH SCENE.

Class MLR SVM MLP RNN LSTM GRU CNN1D CNN2D CNN3D MorphConvHyperNet

1 82.24±0.06 82.34±0.0 81.23±0.28 82.22±0.28 82.76±0.36 82.58±0.35 82.28±0.98 82.25±0.65 82.1±0.39 82.43±0.33
2 82.5±0.07 83.36±0.0 82.29±0.55 82.87±0.33 80.19±1.36 81.64±0.71 91.78±6.46 84.15±0.28 84.14±0.45 84.42±0.19
3 99.8±0.0 99.8±0.0 99.72±0.1 99.72±0.2 99.68±0.16 99.88±0.1 99.92±0.16 90.31±4.41 77.85±4.8 97.21±1.23
4 98.3±0.0 98.96±0.0 87.58±1.28 93.5±2.02 91.23±1.29 93.22±2.84 94.36±3.12 87.24±3.21 89.24±1.1 92.37±0.33
5 97.44±0.0 98.77±0.0 97.35±0.49 97.76±0.29 97.65±0.31 97.37±0.16 98.77±0.13 99.51±0.48 98.97±0.59 99.77±0.53
6 94.41±0.0 97.9±0.0 94.55±0.28 95.1±0.0 97.06±1.79 98.32±1.63 95.8±1.88 96.43±2.14 98.91±1.44 99.46±1.15
7 73.37±0.07 77.43±0.0 75.24±2.27 81.4±0.43 78.88±1.0 77.03±2.18 82.78±2.23 86.44±2.18 85.48±1.98 88.07±1.78
8 63.82±0.0 60.3±0.0 57.0±6.97 40.06±1.07 40.11±1.92 53.62±2.97 75.5±6.71 70.03±3.96 62.06±3.01 73.09±3.5
9 70.23±0.04 76.77±0.0 75.58±2.86 76.54±2.96 81.55±4.12 79.06±1.61 81.44±2.0 79.53±6.38 80.81±4.32 84.09±2.73
10 55.6±0.0 61.29±0.0 48.78±2.27 47.44±1.44 47.37±2.29 49.54±2.61 68.71±14.55 60.22±4.2 54.75±4.63 62.86±3.08
11 74.21±0.04 80.55±0.0 76.25±0.46 76.24±0.81 76.38±1.09 80.82±0.71 85.24±2.83 82.93±7.68 66.78±3.34 89.15±6.86
12 70.41±0.0 79.92±0.0 75.31±3.75 76.33±3.09 79.98±3.32 84.15±3.13 89.93±4.29 92.87±3.31 93.83±1.92 93.02±3.32
13 67.72±0.0 70.88±0.0 73.19±2.15 69.12±1.61 71.37±3.54 72.63±3.68 74.88±5.14 86.21±2.65 82.34±2.49 89.61±1.34
14 98.79±0.0 100.0±0.0 99.84±0.32 100.0±0.0 99.11±0.47 99.92±0.16 99.68±0.16 98.92±1.8 96.31±3.67 99.19±1.3
15 95.56±0.0 96.41±0.0 97.8±0.51 97.59±0.47 98.14±0.31 98.22±0.59 98.48±0.24 77.63±2.91 75.85±2.69 97.04±4.47

OA 78.97±0.01 81.86±0.0 78.22±0.36 77.95±0.68 78.16±0.28 80.21±0.27 86.42±1.64 83.27±0.8 80.24±0.55 86.51±0.71
AA 81.63±0.01 84.31±0.0 81.45±0.37 81.06±0.55 81.43±0.32 83.2±0.27 87.97±1.38 84.98±0.74 81.96±0.75 88.78±0.68

k(x100) 77.3±0.01 80.43±0.0 76.55±0.39 76.23±0.71 76.52±0.3 78.66±0.29 85.27±1.77 81.89±0.86 78.62±0.59 85.4±0.76

TABLE V
CLASSIFICATION RESULTS OBTAINED BY MLR, SVM, RNN, LSTM, GRU, CNN1D, CNN2D, CNN3D, AND MORPHCONVHYPERNET ON THE DISJOINT

TRAIN-TEST DATASET FOR THE UP SCENE (DUP).

Class MLR SVM MLP RNN LSTM GRU CNN1D CNN2D CNN3D MorphConvHyperNet

1 77.68±0.0 82.23±0.0 84.53±1.89 83.08±3.3 82.63±2.39 77.25±6.92 87.18±2.11 93.4±1.89 85.66±4.0 94.52±1.9
2 58.79±0.01 65.81±0.0 75.13±2.4 67.9±2.92 78.74±1.99 80.1±5.12 89.64±2.53 96.84±1.93 95.88±1.71 97.12±1.08
3 67.21±0.02 66.72±0.0 68.37±5.17 65.17±7.99 60.73±11.0 54.79±14.82 71.1±5.98 65.48±13.94 68.11±6.47 85.08±4.53
4 74.27±0.05 97.77±0.0 93.5±2.32 90.72±2.56 97.1±1.22 92.05±2.31 95.32±1.49 95.55±2.14 97.02±0.83 97.0±1.03
5 98.88±0.04 99.37±0.0 99.37±0.08 99.23±0.09 99.28±0.08 99.51±0.12 99.48±0.26 98.03±0.92 98.9±0.56 99.25±0.22
6 93.53±0.02 91.62±0.0 89.94±4.14 85.07±3.14 65.94±5.92 74.86±11.38 88.28±2.33 80.52±9.39 68.85±11.29 93.92±3.88
7 85.08±0.05 87.36±0.0 87.2±3.05 82.94±3.79 84.95±4.02 90.17±3.9 86.77±3.38 89.29±9.48 73.09±9.53 84.98±10.74
8 87.58±0.01 90.46±0.0 90.37±1.24 85.85±4.97 88.89±7.83 90.42±4.39 90.43±3.34 94.5±5.44 95.21±1.69 96.62±2.21
9 99.22±0.05 93.71±0.0 98.44±1.17 94.52±4.79 98.29±1.47 93.51±7.93 97.33±3.31 95.8±0.76 93.54±1.76 97.05±0.46

OA 72.23±0.0 77.8±0.0 82.05±0.88 77.07±0.95 80.38±0.52 80.7±0.56 89.09±0.97 92.55±1.02 89.43±1.37 95.51±0.66
AA 82.47±0.01 86.12±0.0 87.43±1.03 83.83±0.72 84.06±0.74 83.63±2.03 89.5±1.03 89.94±1.37 86.25±1.98 93.95±0.96

k(x100) 65.44±0.0 72.06±0.0 76.89±1.07 70.84±1.04 74.32±0.68 74.76±1.02 85.5±1.22 89.9±1.42 85.61±1.94 93.95±0.88

CNN2D and CNN3D. Focusing on recurrent models, GRU

outperforms the classification results obtained by the standard

RNN and LSTM. MLP and MLR seem to perform very

similarly, achieving the lowest accuracy results.

Finally, to determine the generalization power of the pro-

posed MorphConvHyperNet model in highly imbalanced

scenarios, the DUP dataset (Fig. 9) has been considered too.

As we can observe, Fig. 6 provides the class-wise number of

samples. Among all the classes, the “Shadows” is the minority

class which contains the minimum number of samples (947),

while the “Meadows” class contains the maximum number of

samples (18649). From Table V, it can be observed that the

proposed MorphConvHyperNet framework achieves OA,

AA, and κ values that consistently outperform those obtained

by the other traditional classification models. In particular, the

proposed model exhibits better scores than the convoutional-

based models, i.e. CNN1D, CNN2D and CNN3D. This is

due to the presence of similar textures over most spectral
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a) IP b) UP c) SV d) BW

Fig. 10. Overall accuracy (OA) obtained by different classification methods with different training percentages over (a) IP dataset, (b) UP dataset, (c) SV
dataset, and (d) BW dataset.

bands on three classes, namely: “Asphalt,” “Self-blocking

bricks,” and “Shadows,” where the morphological layers help

to better capture the shape information and distinguish these

classes, whilst its simplicity avoids overfitting problems. As

compared to the CNN1D and CNN3D, the CNN2D provides

significantly better OA due to the poor generalization ability

exhibited by the CNN1D and the overfitting and complexity

problems raised by the CNN3D. The CNN2D also improves

the performance obtained by the other traditional classification

models. Focusing on recurrent models, the LSTM and the

GRU exhibit similar OA performances, whereas the RNN

achieves the worst results. Comparing MLR, SVM and MLP,

the MLP and SVM perform very similarly.

D. Performance on random sampling with different Training

Percentages

To evaluate the generalization ability of the proposed

MorphConvHyperNet network, it is important to analyze

the performance improvements obtained using randomly se-

lected and varying training sets. Fig. 10(a)-(d) respectively

show the overall accuracy (OA) –obtained by different classi-

fication methods, using different training percentages– for the

IP, UP, SV, and BW datasets. Specifically, we randomly select

3%, 5%, 10% and 15% of the available labeled samples from

the IP and BW datasets for training, whilst the 1%, 3%, 5%

and 10% of the available labeled samples have been randomly

selected from the UP, and SV datasets to train the models (the

remaining samples are used for testing).

It can be observed from Fig. 10(a) that the proposed

MorphConvHyperNet model utterly outperforms all the

standard machine learning methods, i.e., SVM, MLR and

MLP. Also, recurrent networks (RNN, GRU and LSTM)

reaches lower OA results in comparison with the proposed

network. In this sense, the proposed MorphConvHyperNet

takes advantage of the spatial information provided by the

input neighbourhood windows in a natural way, which can

significantly reduce the uncertainty introduced by spectrally

complex images, such as IP. These results are corroborated by

the CNN1D, the OA of which is considerably lower than that

obtained by spatial and spectral-spatial models (i.e. CNN2D

and CNN3D) and the proposal. In fact, purely spectral models

(SVM, MLR, MLP, RNN, GRU, LSTM and CNN1D) have

the worst accuracy, and are also the most affected by the lack

of training samples in IP scene. On the contrary, CNN2D,

CNN3D and MorphConvHyperNet achieve the best OAs,

in particular the proposed network far exceeds the results

obtained by the CNN3D, performing more accurately when

few training samples are available. This may be due to the high

complexity introduced by the kernels of the CNN3D model,

which introduce a large number of parameters that must be

carefully trained and adjusted to extract the most discrimina-

tive features in order to improve classification. However, these

kernels consume a great amount of training samples, therefore

the model quickly tends to stagnate and overfit its parameters.

On the other hand, the CNN2D is far less complex than the

CNN3D, performing similarly to the proposed model when

there are few training samples. Nevertheless, its OA results

drop in comparison to the proposed model, in particular in

the last two cases. This is due to the behaviour of the kernels

themselves, which work as black boxes. Indeed, there is no

control of the features that the CNN2D is obtaining, so redun-

dant and irrelevant information may be being extracted by the

model, which in the end produces worse classification results.

In sharp contrast, the proposed model extracts better features,

producing abstract and discriminative data representations that

greatly help the model to improve classification results.

In a similar way, Fig. 10(b) provides the OA results ob-

tained by the considered models on UP scene using train-

ing set sizes comprising 1%, 3%, 5% of and 10% of ran-

domly selected samples from the available labelled samples.

Once more, the spatial and spectral-spatial networks greatly

outperform the classification results obtained by the purely

spectral models. Moreover, Fig. 10(b) demonstrates the sig-

nificant OA performance gains achieved by the proposed

MorphConvHyperNet network compared with CNN2D and

CNN3D. Whilst the complexity of kernels produces a fast

degradation of the CNN3D model, the CNN2D does not

extract the full potential of the data. In this sense, the proposed

model is much simpler and takes advantage of the rich

spectral-spatial information extracted from the morphological

operations, achieving better OA results even when there are

few training samples available.

Fig. 10(c) illustrates the obtained results in terms of OA with

1%, 3%, 5% and 10% of randomly selected training samples

from the available labeled ones in the SV dataset. The image of

SV is characterised by its regular patches of different crops and

the spectral complexity of several lettuce crops, which differ

in the stage of ripening. In this regard, spectral models show
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very similar results, where the MLR is the worst of all, whilst

the GRU is the only one able to outperform the 94% of OA.

Focusing on the spatial and spectral-spatial models, CNN3D

is really affected by spectral mixing, in particular when the

training data is small to cover the full variability of the

samples. Thus, its kernels are incapable of being adjusted to

extract the most representative information. Although CNN2D

is less affected than CNN3D by spectral similarity, it does not

achieve the best results either. Finally, the proposed model

achieves the best classification result, outperforming all the

compared methods when the number of training samples is

small (i.e., with 1% and 3%), although its standard deviation

is higher than spectral models.

Finally, Fig. 10(d) provides the obtained results using 3%,

5%, 10% and 15% of randomly selected samples from the BW

scene to train the classification models considered. Similarly

to IP scene, this dataset is characterized by its low spatial reso-

lution (even lower than IP, as BW has 30 mpp and IP 20 mpp)

and its high spectral mixing, which makes it a very challenging

image for HSI classification algorithms, which have to devote

a higher effort to properly exploit the information contained

on low spatial resolution HSI satellite images such as this

one. As a result, it is not uncommon to note that many related

papers in the literature have not reported accuracies in the BW

datasets precisely because of their difficulty. In this regard,

the OA of spectral models remain between 80% and 94% of

accuracy, where the CNN1D stands out as the best classifier.

On the contrary, spatial and spectral-spatial models are highly

affected by both the low spatial resolution and the high spectral

mixing. It is notable that in this scene, the proposed model

suffers a great degradation and does not outperform either

CNN2D or CNN3D until it has at least 15% of training data,

whilst with 5% of training data it performs quite similar to

CNN2D. In this sense, erosion and dilation operations are

affected by the spectro-spatial characteristics of the data. One

way to overcome this drawback is to try different window sizes

or different numbers of morphological operations, in order to

better focus the operations and match them to the type of data,

although the aim of this paper has been from the beginning

to provide a general architecture that works accurately with

a large number of different scenes. For instance with images

of low spatial resolution and high spectral mixture such as IP,

scenes with better spectrally-separated classes and rich spatial

information like UP, or with samples with a lot of spectral

similarity as SV. Indeed, focusing on BW dataset, the results

of the proposed network are utterly better than those obtained

by the spectral models from the 5% of training samples with

a significant margin, performing similarly to the CNN2D and

the CNN3D at the end of the experiment.

Overall, the plots in Fig. 10 reveal that the features

extracted by the proposed MorphConvHyperNet exhibit

better generalization ability, leading to superior classification

performance for training sets with different sizes and different

spectral-spatial characteristics. It should also be mentioned

that the proposed model achieves excellent performance with

the considered HSI datasets. Morphological operations are

highly non-linear. For example, dilation and erosion operations

are composed of simple maximum and minimum operations.

This removes a significant amount of complexity from the

model. In particular, our work implements spatial and spectral

dilation/erosion operations, which selectively ignore noise and

redundancies in the feature maps. In fact, this improves feature

extraction and representation. Whilst CNN takes spatial linear

combinations, including redundancies and noises, the proposed

network applies its morphological operations to remove irrele-

vant information. As a result, when the network is trained with

few examples, the standard CNN wastes too many resources

on modelling irrelevant data and is not able to find the noise

pattern, while the morphological operations completely ignore

the noise. Therefore, noise- and redundancy-free feature maps

always play an important role in achieving high accuracy, even

on a small number of training samples. The fact that CNN1D

under performs when compared to other strategies is expected,

as it only relies on spectral information, whilst the other tested

methods include also spatial-contextual information.

E. Ablation study

The proposed MorphConvHyperNet network employs

two commonly used morphological operations, i.e., dila-

tion and erosion, within its underlying architecture. To fur-

ther evaluate the effectiveness of the morphological lay-

ers in the proposed framework, an ablation study has

been conducted in order to evaluate the accuracy of the

proposed MorphConvHyperNet and its baseline coun-

terpart, the CNN2D. In this context, the CNN2D model

has been designed upon the same network architecture of

MorphConvHyperNet but without including the morpho-

logical blocks. Whilst conducting the experiments, we kept

the experimental settings unchanged (as discussed in Section

III-B).

The CNN2D and MorphConvHyperNet columns of Ta-

bles III, IV and V provide the results of the ablation studies in

terms of OA, AA, and κ over the DIP, UH, and DUP datasets.

Focusing on the obtained results reported from DIP scene

in Table III (characterized by its low spatial resolution, its

high spectral mixing and great class-imbalance), the CNN2D

and MorphConvHyperNet models achieves similar OA and

Kappa values (slightly higher in the case of the proposed

model and with a lower standard deviation), nevertheless the

AA is almost two percentage points better in the proposed

model, indicating that the classification by class is more accu-

rate than in the CNN2D model. On the other hand, focusing

on Table IV which reports the obtained results on the class-

balanced UH scene, the proposed MorphConvHyperNet far

outperforms the classification results obtained by the baseline,

exhibiting a lower standard deviation, thus its classification

performance is much more stable than CNN2D. Finally,

on Table V, we can evaluate the behaviour of proposed

MorphConvHyperNet and CNN2D in classifying the class-

imbalanced DUP scene. Once more, the proposed model

greatly outperforms the OA, AA and Kappa values achieved

by the CNN2D model, exhibiting higher stability and gener-

alization ability with significantly lower standard deviation.

This is because the proposed model extracts more robust and

effective features through the spectral and spatial morphology



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2021.3088228, IEEE Journal

of Selected Topics in Applied Earth Observations and Remote Sensing

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 11

(a) (b) (c)

Fig. 11. (a) Overall accuracy (OA), (b) Average accuracy (AA), and (c) κ (×100) obtained by the proposed network with various sizes of the dilation and
erosion structuring elements using the DIP (blue bars), DUP (orange bars), and UH (green bars) datasets.

a) 1PC b) GT c) MLR (80.33%) d) SVM (84.12%) e) MLP (82.95%) f ) RNN (79.07%)

g) LSTM (83.55%) h) GRU (84.20%) i) CNN1D (84.00%) j) CNN2D (87.25%) k) CNN3D (83.60%) l) Proposed (87.45%)

Fig. 12. (a) False color representation of the first PC obtained from the IP scene. (b) Ground truth and classification maps obtained for the DIP dataset by:
(c) MLR, (d) SVM, (e) MLP, (f) RNN, (g) LSTM, (h) GRU, (i) CNN1D, (j) CNN2D, (k) CNN3D, and (l) MorphConvHyperNet models.

blocks, which are constructed using a combination of dilation

and erosion layers. Such MM layers extract and learn more

informative feature maps, which emphasize the role of spatial-

contextual information during the training stage of the network

as compared to the baseline CNN2D.

F. Effect of Using Different Structuring Element Sizes for the

Dilation and Erosion Operations

In order to evaluate the effect of using different sizes of

the SEs considered for the dilation and erosion operations

in the proposed MorphConvHyperNet network, several

experiments have been conducted over DIP, DUP and UH

datasets considering SEs of size 1, 3, 5, 7, 9 and 11 in the

SpectralMorph and SpatialMorph blocks of the pro-

posed network, while keeping the other experimental settings

unchanged (as discussed in Section III-B).

The achieved performances are shown in Figs. 11(a)-(c) in

terms of OA, AA and κ, respectively for the DIP, DUP and UH

scenes (differentiated with the colours blue, orange and green).

In general, the accuracy of the model varies with different SE

sizes, reaching the highest peak in terms of OA, AA and κ
when the size of the SE is 3 and decreasing for the remaining

sizes, in particular when using large structuring elements. This

is due to the presence of varying shape information that can

be better captured through an adequate size of the SE used to

implement the morphological operation. It is also clear from

Figs. 11(a)-(c) that the proposed model generally achieves

the best OA, AA and κ scores with SEs of size 3, while

SEs of size of 11 generally provide the lowest scores for the

aforementioned metrics.

G. Visual Analysis of the Obtained Classification Maps

In order to provide a qualitative visual comparison be-

tween the classification maps provided by the proposed

MorphConvHyperNet and the other compared methods

MLR, SVM, MLP, RNN, LSTM, GRU, CNN1D, CNN2D and

CNN3D), Figs. 12, 13, and 14 display the obtained classifica-

tion maps for the IP, UH, and UP datasets, respectively.

Focusing on DIP scene, Figs. 12 shows that spectral-based

models MLR, SVM, MLP, RNN, GRU, LSTM, and CNN1D

contain “salt and pepper” noise due to the miss-classification

of many land-cover pixels surrounded by spectrally mixed

neighboring pixels. Indeed, although spectral models ulti-

mately differentiate the different areas visually, at their edges

there is an important problem of “salt and pepper” noise,

which produces many pixels of different classes totally isolated

in a completely random mix at the edges between regions.

This also happens in the inner-areas of the different land-cover
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a) 1PC b) GT c) MLR (72.23%) d) SVM (77.80%) e) MLP (82.05%) f ) RNN (77.07%)

g) LSTM (80.38%) h) GRU (80.70%) i) CNN1D (89.09%) j) CNN2D (92.55%) k) CNN3D (89.43%) l) Proposed (95.51%)

Fig. 13. (a) False color representation of the first PC obtained from the UP scene. (b) Ground truth and classification maps obtained for the DUP dataset by:
(c) MLR, (d) SVM, (e) MLP, (f) RNN, (g) LSTM, (h) GRU, (i) CNN1D, (j) CNN2D, (k) CNN3D, and (l) MorphConvHyperNet models.

a) 1PC b) GT c) MLR (80.33%)

d) SVM (84.12%) e) MLP (82.95%) f ) RNN (79.07%)

g) LSTM (83.55%) h) GRU (84.20%) i) CNN1D (84.00%)

j) CNN2D (87.25%) k) ConvHyperNet (83.60%) l) Proposed (87.45%)

Fig. 14. (a) False color representation of the first PC obtained from the UH scene. (b) Ground truth and classification maps obtained for the DUH dataset
by: (c) MLR, (d) SVM, (e) MLP, (f) RNN, (g) LSTM, (h) GRU, (i) CNN1D, (j) CNN2D, (k) CNN3D, and (l) MorphConvHyperNet.

regions. In particular, the bottom left area with the “Corn min”

ground cover is highly affected by the spectral mixture, being

miss-classified mostly as “Soybeans min”. On the contrary,

spatial and spectral-spatial models overcome this drawbacks,

including spatial information to mitigate the effects of spectral

variability and the uncertainty introduced by it during the

classification. In general, spatial and spectral-spatial models

attempt to consistently delimit the different regions in such

a way that they create sharply defined borders between one

region and another. As a result, the frontiers are better defined,

with few samples miss-classified within the areas of different

land cover classes. Of course, there are miss-classified bor-

der areas, as CNN2D shows. In particular, in contrast with

CNN2D and CNN3D, the proposed MorphConvHyperNet

can accurately identify those regions covered by “Alfalfa”,

“Grass/pasture-mowed” and their surrounding areas, without

introducing ‘Soybeans min” areas like CNN2D and following

more the trend of spectral models.

This behaviour is repeated within DUP and UH scenes,

as we can observe in Figs. 13, and 14. On the one hand,
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MLR, SVM, MLP, RNN, GRU, LSTM, and CNN1D generally

contain an important amount of “salt and pepper” noise,

although visually, the different regions are easily discernible.

On the other hand, spatial and spectral-spatial models produce

the characteristic classification maps, with less noise artifacts

and more solid regions in the sense that they attempt to

remove different land-cover pixels from inner regions. It

is also worth noting that the classification maps generated

using CNN2D and CNN3D contain noise artefacts in some

classes, whereas the classification maps of the proposed

MorphConvHyperNet are more accurate, smoother and

with better delineation of borders.

IV. CONCLUSION

This paper introduces MorphConvHyperNet, a new HSI

classification framework based on morphological CNNs. Our

network replaces the traditional linear convolution layer with

basic nonlinear morphological operations that are able to

extract better spectral and spatial-contextual information from

the raw remote sensing data, using a less complex structure.

The morphological convolution layer consists of two widely

used (and easily learnable) morphological filters: dilation and

erosion. This layer extracts highly discriminative features from

the original HSI data using two spectral-spatial morphological

blocks, i.e., SpectralMorph and SpatialMorph. Our

experiments, conducted using five widely used HSI datasets,

indicate that the proposed MorphConvHyperNet outper-

forms the baseline architecture without the morphological

layers (ConvHyperNet) and all the other the compared meth-

ods. The effect of using dilation and erosion operations with

different SE sizes are also thoroughly reported and investigated

in terms of OA, AA and κ metrics. In the future, we will use

more sophisticated morphological operations for the design of

the convolution layer, including opening and closing by re-

construction and directional morphological operations (which

may be particularly useful in urban environments).
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