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Abstract 

Beta-lactam antibiotics comprise one of the earliest known classes of antibiotic 
therapies.  These molecules covalently inhibit enzymes from the family of penicillin-binding 
proteins, which are essential to the construction of the bacterial cell wall.  As a result, beta-
lactams have long been known to cause striking changes to cellular morphology.  The exact 
nature of the changes tend to vary by the precise PBPs engaged in the cell since beta-lactams 
exhibit a range of PBP enzyme specificity.  The traditional method for exploring beta-lactam 
polyspecificity is a gel-based binding assay which is low-throughput and typically run ex situ in 
cell extracts.  Here, we describe a medium-throughput, image-based assay combined with 
machine learning methods to automatically profile the activity of beta-lactams in E. coli cells.  By 
testing for morphological change across a panel of strains with perturbations to individual PBP 
enzymes, our approach automatically and quantifiably relates different beta-lactam antibiotics 
according to their preferences for individual PBPs in cells. We show the potential of our 
approach for guiding the design of novel inhibitors towards different PBP-binding profiles by 
recapitulating the activity of two recently-reported PBP inhibitors. 

Introduction 

Beta-lactam antibiotics are a crucial part of the therapeutic arsenal.  These molecules inhibit 
bacterial cell wall biosynthesis, and are efficacious against a broad spectrum of bacterial 
pathogens.  Over the last few decades, researchers have systematically modified the beta-
lactam scaffold, seeking to evade recognition by beta-lactamase enzymes which bacteria use to 
inactivate these drugs.  Spread of the genes encoding beta-lactamases limits the clinical utility 
of beta-lactam antibiotics. The development of this family of molecules and the resulting 
evolutionary selection of beta-lactamases exemplifies the chemical arms race between bacteria 
and mankind.1   

Beta-lactams have also served as critical tools in the study of bacterial cell wall biosynthesis.  
These molecules stably acylate a family of enzymes which were named penicillin-binding 
proteins (PBPs).  These enzymes coordinate cell-wall biosynthesis in an intricate process 
involving multiple multi-protein complexes (recently reviewed by Dorr and colleagues).2  
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Numerous PBP enzymes have been identified in bacteria, and they can be generally classified 
according to their enzymatic function.  In E. coli, class A PBP’s, such as PBP1a and PBP1b, are 
bifunctional enzymes that catalyze both transglycosylation (polymerization) of the peptidoglycan 
and transpeptidation (cross-linking) of the glycan strands.  Class B enzymes such as PBP2 and 
PBP3 are monofunctional transpeptidases.  Class C enzymes, which include PBP4, PBP4b, 
PBP5, PBP6, PBP6b, and AmpH carry out various peptidase reactions that facilitate maturation, 
remodeling, and metabolism of peptidoglycan.3,4 These activities are critical in cell elongation 
and division. 

Beta-lactam molecules range in specificity, and our understanding of this polyspecificity 
primarily owes to gel-based competition-binding assays using labeled beta-lactam analogues.5–

10  These assays are powerful because they provide simultaneous measurements on all 
penicillin-binding proteins in the extract. However, they are low-throughput and sensitive to 
many experimental variables such as extraction conditions, binding kinetics and dose, and as a 
result published values for binding affinities vary.  Binding assays are also blind to cellular 
variables such as permeability and efflux, though some recent work has suggested the gel-
based competition method can be applied to intact cells.6   

Inhibition of PBP enzymes has also been shown to induce a diverse array of cellular 
morphologies, reflecting the roles they play in coordinating division and elongation.11–13  
Inhibition of PBP2 and PBP3, which are essential for E. coli growth, result in filamentous and 
ovoid morphologies, respectively.14–17  PBP1a and PBP1b, which are not individually essential,  
form a synthetic lethal pair; loss of both induces cell lysis.18  Class C PBPs, though also not 
essential, have been linked to more subtle morphological effects.19–22  Recent work by Kishony 
and colleagues has also established the time-dependence of beta-lactam-induced 
morphological change, illustrating that different beta-lactams can cause chronologically distinct 
morphological changes.23  And though technologies such as flow cytometry and electron 
microscopy have been successfully used to study morphology24 the most common approach 
relies on light microscopy using high-magnification oil objectives and samples immobilized on a 
substrate such as agarose.25  Consequently, these methods have limited throughput.  

To improve our ability to study beta-lactam activity in cells, we sought to develop a method that 
was both quantitative and amenable to medium- or high-throughput applications.  Recent 
advances in automated microscopy have led to the field of high-content imaging (HCI),26,27 
whereby high-throughput image acquisition is paired with automated image analysis methods to 
support cell-based screening. Though this approach is widely used in mammalian cellular 
assays,28,29 it has recently been explored for microbiological applications.30–38  However, 
difficulties immobilizing bacterial samples and image analysis challenges, such as clearly 
segmenting bacterial cell objects, have limited this approach. 

In this work, we present an approach that combines medium-throughput imaging of E. coli cells 
at high-magnification with machine learning-based automated image analysis.  We use this 
approach to quantitatively characterize the PBP-binding preferences of beta-lactam antibiotics 
based on the morphological variations they induce.  Using methods based on deep neural 
networks39,40 and Hidden Markov models,41,42 we classify cellular morphologies and capture the 
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progression of morphology over dose into compound-specific profiles. By comparing these 
profiles of morphological change across a panel of cell lines with single perturbations to PBP 
enzymes, we demonstrate how morphological profiles of beta-lactam antibiotics reflect their 
affinities for individual PBPs in cells.  We show that this analysis compares favorably to both 
internal and published gel-based competition data and provides additional insights into the 
physiological effects of PBP inhibition. By applying the approach to historical and recent PBP 
inhibitors, we show the potential usefulness of the approach for guiding optimization of novel 
beta-lactams or PBP inhibitors.   

Results 

Building morphology profiles of reference b-lactams from bacterial HCS images via deep 
neural networks  

PBP enzymes build PG in a highly interdependent fashion, and the process—which includes 
synthesis, cross-linking, cleavage and recycling roles—involves enzymes which may be at least 
partially redundant.  Young and colleagues explored this concept explicitly by making every 
combination of non-essential PBPs.  Strikingly, cells lacking PBPs 4, 5, 6, 7 and 8 are viable.43  
To emphasize the individual roles of PBP enzymes, we assembled a panel of E. coli strains with 
perturbations to PBP function, hypothesizing that surveying such a panel would facilitate 
discrimination between promiscuous and specific beta-lactams. This panel was comprised of 
deletion strains for PBP1a, PBP1b, PBP4 and PBP5.  Because PBP2 is essential, we studied 
the importance of this enzyme by including a strain of E. coli expressing a PBP2 mutant 
(PBP2R)44,45 less susceptible to some PBP2 inhibitors (Supplementary Table 1).  E. coli-

ΔPBP5 was included because of its reported role in contributing to cellular morphology.21,46–48 E. 

coli-ΔPBP4 was included as it has not been shown to have a strong role in defining cell 
morphology.20,22  To understand the range of beta-lactam PBP preferences, we assembled a 
collection of 12 beta-lactams spanning the major chemical classes (Table 1).   We also included 
D-cycloserine, a dual inhibitor of D-ala-D-ala ligase and alanine racemase, which inhibits cell-
wall biosynthesis upstream of the PBP enzymes.     

Each cell line in the panel was treated with the collection of beta-lactams at 8 concentrations, 
standardized relative to the MIC of each compound in each cell line (Supplementary Table 1).  
Samples were prepared for imaging by treating exponential-phase cells with compounds for two 
hours, followed by simultaneous fixation and staining with fluorescent markers for cell 
membrane (FM4-64FX, Invitrogen), nucleic acids (Syto9, Invitrogen), and a DNA-specific stain 
(Hoechst 34580, Life Technologies).  Cells were imaged in 96-well plates at 100X magnification.   

Treatment led to four cellular morphologies precedented in the PBP literature: ovoid, filament, 
spindle, and lysed.49,50 In addition, we considered the untreated morphology and an enlarged 
morphology that commonly appeared in treatments with low compounds concentrations (Fig. 1). 
We reasoned that this phenotype may be a transitional morphology between untreated and the 
more canonical morphologies caused by PBP inhibitor treatment.   

To automatically classify images displaying multiple bacteria into these six categories, we used 
a supervised machine learning39 approach based on a multi-scale convolutional neural network 
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(M-CNN) architecture40 that takes as input a full-resolution three-channel fluorescence 
microscopy image and yields as output a probability score for each of the six morphologies. We 
took the morphology category with the largest score as the morphology prediction for the input 
image (see workflow in Fig. 2a). All model parameters were optimized automatically using 129 
images (and variations thereof obtained through data augmentation strategies) annotated  

Compound Structure 
Chemical 

Class 
Primary 
Target* Compound Structure 

Chemical 
Class 

Primary 
Target* 

ampicillin 

 

penicillin PBP3 D-
cycloserine 

 

Serine 
analogue 

DADAL/ 
AR** 

mecillinam 

 

penicillin PBP2 faropenem 

 

penem PBP2 

piperacillin 

 

penicillin PBP36 doripenem 

 

carbapenem PBP26,51 

cephalexin 

 

1st gen. 
cephalosporin PBP36 meropenem 

 

carbapenem PBP2 

cefoxitin 

 

2nd gen. 
cephalosporin 

PBP 
1A/1B6,52 aztreonam 

 

monobactam PBP3 

cefsulodin 

 

3rd gen. 
cephalosporin 

PBP 
1A/1B6,52 carumonam 

 

monobactam PBP353 

moxalactam 

 

3rd gen. 
cephalosporin PBP354 BAL30072 

 

sulfactam PBP355 

    NXL105 

 

Diazabicycloo
ctane PBP2 

Table 1.  Compounds used in this study.   *Primary target denoted by internal gel-based binding 
assays. Citations indicate primary target in reference literature.  **DADAL/AR = D-ala D-ala 
ligase / Alanine racemase. 

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted February 8, 2019. ; https://doi.org/10.1101/545335doi: bioRxiv preprint 

https://doi.org/10.1101/545335


  

Figure 1. Representative images of each morphological class.  Membranes stained with FM4-
64FX.  DNA was stained with Hoechst 34580.  Nucleic acids were stained with Syto9. Images 
were acquired at 100X magnification. 

manually with one of the six available morphologies (see Materials and Methods). 

To validate the classification accuracy of the method, we applied a repeated random holdout 
cross-validation approach where we randomly selected 90% of the manually annotated images 
of each morphology category to optimize the model parameters (training set). Once optimized, 
we applied the network model to the remaining 10% of the images of each morphology category 
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Figure 2. From pixels to morphologies with deep learning. (a) Taking as input a multi-channel 
multi-cellular image, the trained multi-scale convolutional neural network (M-CNN) model yields 
a probability score for each of the six morphologies included in the model. The morphology with 
the largest score is taken as the morphology prediction for the entire image. (b) Classification 
accuracy given in percentage terms [%] for the M-CNN model evaluated through cross-
validation. Each row of the displayed confusion matrix shows the true morphology annotation 
while the columns show the predictions from the M-CNN architecture. Entry values are 
normalized so that the sum of each row over the columns add up to a value of 100%. Entries 
are shaded in red and the shading intensity correlates with the relative magnitude of the values. 
Entries without numbers indicate values of 0. Example three-channel images (cell membrane, 
red; DNA, green; nucleic acid, blue) from each class are shown below the table. 

(test set), and recorded the network’s morphology predictions for those images. We repeated 
this process 50 times, and compared the network’s predictions with the true morphology labels. 
The confusion matrix in Fig. 2b shows the results of this comparison. The diagonal entries of 
the matrix show the fraction of images correctly classified for each morphology category. The 
off-diagonal entries show the fraction of images that were misclassified. A perfect model would 
yield 100% on all diagonal entries and 0% on all off-diagonal entries. Our model yields values 
above 90% on all diagonal entries. The highest (100%) accuracy is obtained on images from the 
filament category, while the lowest accuracy (91%) is obtained on images from the spindle 
category, which are occasionally confused with the ovoid category. Over all morphologies, the 
classification accuracy is 95 ± 2.57% (mean ± 95% confidence interval). 
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Once we had ascertained the validity of the M-CNN approach for identifying PBP morphologies, 
we applied an M-CNN model optimized on all available annotated images to 14822 full-
resolution images displaying the morphological outcomes induced by compounds at eight 
multiples of the minimal inhibitory concentration (MIC) across all six cell lines (predictions for all 
images are provided in Supplementary Data). The morphology predictions of images belonging 
to a certain experimental combination of compound, fold MIC, and cell line were collapsed onto 
a single morphology prediction (see Materials and Methods). For each compound, we 
arranged the morphology predictions onto a color-coded 2D matrix over increasing MIC folds (x-
axis) and cell lines (y-axis). Color-coded morphology profiles of reference beta-lactams are 
shown in Fig. 3. These visualizations, which we colloquially refer to as ‘Tetris’ plots, serve as 
simple approximations of the model’s output.   

Morphology profiles are consistent with genetic and microbiological literature.   

To build confidence in our morphological classifications, we compared our results to literature 
precedent, where some beta-lactams have been documented with relative specificity for a 
particular PBP through combined genetic and binding assays.  Monobactams such as 
aztreonam and carumonam reproducibly exhibit strong affinity for PBP353,56 in published gel 
competition data,  and treatment with aztreonam causes a morphology similar to that caused by 
partial loss of function  of PBP3.16  Our own gel-binding experiments also reproduced this 
observation (Supplementary Figure 1, Supplementary Table 2).  Furthermore, cells lacking 
PBP1b  are known to lyse when treated with aztreonam.43,57 Consistent with these results, our 
classifier indicated that treatment with carumonam and aztreonam caused filamentation in all 
cell lines, with the exception of E. coli-∆pbp1b, where it described lysis. Mecillinam has been 
previously documented as a specific PBP2 inhibitor and is known to cause wild-type cells to 
adopt an ovoid morphology, identical to that caused by loss of PBP2 activity.58  Our classifier 
made similar predictions, though at low concentrations cells were classified with an enlarged 
phenotype, which we hypothesize to be a transitory morphology as cells round into the more 
recognizable ovoid shape.  Cells lacking PBP1b were disposed to lysis instead of rounding, 
which is consistent with past studies of PBP2 and mecillinam.43,57 A third molecule, cefsulodin, 
has been previously demonstrated to bi-specifically inhibit PBP1a and PBP1b, causing lysis in 
WT cells.18,52,59–62  The model recognized similar morphologies in our images.  We also 
measured the effects of D-cycloserine treatment, which inhibits an earlier step in cell wall 
biosynthesis than beta-lactams.  Here, we also observed lysis under all conditions, consistent 
with previous reports.63–65  

Having established that our classifier’s morphological predictions were consistent with historical 
studies, we studied the morphological effects of treatments with more promiscuous classes of 
beta-lactam antibiotics. The carbapenem and penam classes of beta-lactam have previously 
been shown to bind to multiple PBPs in binding experiments.6,8 Furthermore, molecules such as 
doripenem and meropenem induce a distinctive phenotype in WT E. coli exemplified by 
becoming 
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Figure 3. ”Tetris plot” visualization of classifications for each dose/strain combination.  
Morphology scores were averaged over multiple fields of view obtained from at least two 
independent experiments. 

more ovular and adopting a spindle morphology.51,66  Because this phenotype resembles co-
treatment of mecillinam and aztreonam, others have hypothesized that this phenotype is caused 
by simultaneous inhibition of PBP2 and PBP3 (Supplementary Figure 2).50  Gel-binding data 
also suggests that this class of compounds has some affinity for PBP1a/b (Supplementary 
Figure 1).  Accordingly, we observe lysis in cells lacking PBP1a.  We also observed that in E. 

coli-PBP2R, carbapenem treatment at low concentrations induced the spindle phenotype but at 
higher concentrations induced lysis.  This behavior was unique to the carbapenems we tested.  
Faropenem, a member of the related penem class, has also been observed to induce the 
spindle morphology,67,68 and we observed spindle formation at low concentrations.  However, 
with increasing concentration we observed lysis across all strains.  This observation is 
consistent with the increased affinity faropenem displays for PBP1a/b in the gel-binding assay 
(Supplementary Figure 1, Supplementary Table 2).  The other agents we tested, 
corresponding to the penicillin and cephalosporin classes, induced some degree of 
filamentation, consistent with PBP3 inhibition, but also a tendency to lyse at low concentrations.  
This suggests that these molecules also inhibit PBP1a/b in cells.  Notably, we also observed 
some unexpected predictions; for instance: filament classifications for low doses of cefsulodin in 
cells lacking PBP1b.  After examining these images, we observed that these predictions may be 
resulting from ambiguous predictions from the model. 

Having classified all the images in the data set, we also compared the cell lines themselves for 
morphological differences. Interestingly, untreated cells from the E. coli-PBP2R strain exhibited a 
higher tendency to be classified as “enlarged,” suggesting that this allele itself has an effect on 
cell morphology, even in the absence of compound (Supplementary Figure 3).  Manual 
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examination of the images supported this conclusion; we observed unusually-shaped cells at a 
higher rate than normal, though they still represent a minority of all objects in these images.  
Other cell lines, such as E. coli-ΔPBP5, appeared no different from WT cells, consistent with 
previous reports suggesting that its role in morphology is minimal when other Class C enzymes 
are present (Supplementary Figure 3).21 

Inferring PBP-binding spectrum of b-lactams via Hidden Markov Models 

To facilitate quantitative comparisons between compounds, we sought to devise a dissimilarity 
function to compare compound morphology profiles. While pairwise comparisons could be 
carried out by correlating the morphologies observed at each condition, we reasoned that the 
morphology dynamics observed across concentrations would provide additional information that 
differentiated compound activity. Additionally, for each condition, instead of considering only the 
morphology with the largest score, we aimed to carry over all morphology scores into the 
analysis (cf. workflow Fig 4a). The morphology scores encode the uncertainty of the 
morphology prediction and may be used to account for borderline predictions. To describe such 
sequential data with uncertain measurements, we used the hidden Markov model (HMM) 
formalism41, which supports the calculation of dissimilarity measures between sequences69. 

More specifically, for each compound, and for each cell line, we describe the sequence of 
morphologies observed over increasing MIC folds through an HMM. Within each HMM, we 
assume that, at a given MIC fold, the bacteria exhibit a certain (hidden) morphology, which is 
manifested through the corresponding image data and captured through the morphology 
prediction computed by the neural network. To generate a prediction for a given concentration, 
the model only takes into consideration the morphology at the immediately prior concentration, 
that is, we assume that the progression of morphologies over concentration is described by a 
(first-order) Markov chain. Each HMM is parametrized by the probabilities of transitioning 
between morphologies, the probabilities of observing a certain morphology while assuming a 
certain morphology to be the true one, as well as the initial probabilities for each morphology. All 
parameters are automatically learned from the sequence of morphologies of the corresponding 
cell line (Supplementary Methods). Per compound, we learned the parameters of six HMMs 
corresponding to the six cell lines in our assay. 

Once we determined the parameters of each HMM, we are able to evaluate the probability of 
observing a sequence of morphologies given the model parameters. To compare two 
compounds based on their morphological profiles, we interrogate the six HMMs of each 
compound with the corresponding six sequences of morphologies of the other compound, 
record the log-probability of observing each sequence, and aggregate these log values into a 
dissimilarity value (see Supplementary Methods for details). Using this strategy, we compare 
all possible compound pairs, record their dissimilarity values, and store these values into a 
dissimilarity matrix (Supplementary Figure 4). From this dissimilarity matrix, we are able to 
both group and map compounds onto four clusters in a 2-D space (Fig. 4c) that capture the 
distinct morphological activities of different compounds (Supplementary Methods). This 
morphology chart confirms many of the observations made in the beta-lactam literature. In this 
chart we observe that the reference compounds cefsulodin, aztreonam, and mecillinam, with 
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known distinct PBP preferences, are well separated from one another and are grouped onto 
different clusters. Cefsulodin is most closely related to D-cycloserine and cefoxitin, which agrees 
with their propensity to induce lysis.  Cefsulodin and cefoxitin both appear to have a high affinity 
for PBP1a/1b, though cefoxitin appears to have also have affinity for PBP3,52,70 which is also 
reflected by the proximity of this compound to the PBP3 cluster in the chart.  Likewise, 
aztreonam clusters with carumonam, a close structural analogue. Mecillinam, which induces 
predominantly enlarged and ovoid morphologies across most cell lines, is positioned in an 
opposite sector in the chart. Similar to mecillinam, the carbapenems also exhibit a prevalent 
enlarged morphology across most cell lines at lower concentrations. The HMM-based approach 
however captures the transition between the spindle and lysis morphologies that is unique to 
these compounds, and thus manages to separate them onto a different neighboring cluster. In 
this fashion, we see that the dose-dependent morphological dynamics across this panel of 
strains recapitulates the expected relationships of these molecules based on their historical 
study using genetic and binding assays. Furthermore, incorporation of all morphology scores 
into the HMMs suggests relationships that are more accurate than those derived from simple 
observation of the morphology predictions as depicted in Figure 3; for instance, moxalactam 
and cephalexin share a similar propensity for filamentation at low doses, followed by lysis at 
higher concentrations.  This is evident from the topology, but not from Figure 3, where lysis is 
overemphasized in the case of cephalexin.  

Application of the method to recent beta-lactam and diazabicyclooctane analogues.  

To better understand the prospective value of our method, we profiled two recently described 
molecules, NXL105 and BAL30072 (Table 1, Supplementary Table 1, Supplementary Figure 
1).  NXL105 is a member of a novel class of beta-lactam mimetic of the diazabicyclooctane 
class known to inhibit beta-lactamases as well as PBP2 function71.  BAL30072 is a monocyclic 
sulfactam bearing a siderophore moiety72.  These molecules were not part of the training set 
data.  Upon profiling, we observed that NXL105 mapped near mecillinam, consistent with PBP2 
inhibition.  Accordingly, upon manual observation we observed that the morphology was quite 
similar to that caused by mecillinam treatment (Fig. 4c).  This was confirmed internally using the 
gel-based competition format, and is consistent with the reported behavior of other members of 
this class (Supplementary Figure 1).73  Interestingly, upon close examination of the 
corresponding Tetris plots (Supplementary Figure 5), we observed some tendency to classify 
NXL105-induced morphologies as spindle; however, these appear to be ambiguous predictions 
that do not substantially affect its placement on the morphology chart. BAL30072, which is 
structurally related to aztreonam and carumonam, causes morphological changes similar to 
moxalactam and cephalexin. Our approach accordingly maps BAL30072 in the vicinity of all 
these compounds. While at low concentrations BAL30072 induces filament formation, higher 
concentrations resulted in lysis across the cell line panel. This profile, suggestive of PBP1a/b 
inhibition, is consistent with previous reports on BAL3007255 as well as with results obtained 
from the gel-based binding assay (Supplementary Figure 1).  

Systematic comparison to binding data.  
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To more fully understand the correspondence between the HMM-derived beta-lactam 
relationships and the binding data relationships, we systematically examined both sets of data.  
In the binding data set, the most potent measured IC50 always suggested the dominant 
morphology observed by imaging. However, for compounds with broader PBP affinity, the  

Figure 4. Hidden Markov modelling of bacterial morphology over concentration. (a) 
Images over increasing concentration and corresponding morphology scores, shown as color-
coded histograms, derived automatically with a deep neural network. The morphologies with the 
largest scores at each concentration entail a sequence of morphologies over concentration. (b) 
A graph with nodes representing morphologies and edges representing all possible transitions 
between morphologies as encapsulated by a hidden Markov model. The width of the edge 
represents the transition probability between two morphologies. All transition probabilities are 
derived automatically from the morphology predictions computed by the neural network. The 
learning process yields transitions with increased probabilitity (wider edges). (c) Morphology 
chart derived from the distances calculated using HMMs that reflects the relationships among 
different beta-lactam inhibitors. Data points are colored according to the results of a hierarchical 
clustering algorithm.  (d) Images corresponding to treatment of WT E. coli cells with NXL105 
and BAL30072, two recently described PBP inhibitors. 

secondary activities measured in the gel-based assay were difficult to interpret. In fact, 
clustering the compounds based on binding data groups faropenem and meropenem with 
ampicillin (Supplementary Figure 6), and places NXL105 equidistant to aztreonam and 
mecillinam, which have different mechanisms.  In comparison, the morphology-derived 
relationships are more nuanced, separately grouping specific inhibitors, PBP3+1a/b inhibitors 
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and PBP2+3 inhibitors.  Other discrepancies were also observed.  For instance, aztreonam and 
ampicillin exhibited measureable affinity for PBP1A/B and PBP2 respectively.  However, 
imaging offer no evidence of morphologies consistent with these mechanisms. 

Discussion 

The PBP family of enzymes is among the oldest of pharmaceutical targets.  Despite the wealth 
of knowledge collected regarding their function and therapeutic relevance, the tools available to 
study these proteins at high throughput are limited. Here, we describe a high-content imaging 
approach for studying the cellular effects of PBP inhibition. This approach can be carried out 
using plate-based, automated microscopes; we profiled compounds in dose-response titrations 
in six different cell lines.  This represents a substantial increase in throughput from what can 
typically be achieved using gel-based methods.  Furthermore, generation of image data 
provides critical information that supports the elucidation of the mechanism of action of 
antibiotics.38,74,75 

To extract morphological information from the data generated by our imaging method, we 
employ a supervised machine-learning method based on a deep convolutional neural network to 
rapidly classify full-resolution images into bacterial morphologies. The approach requires no 
prior object segmentation, which can be difficult for filamentous cells, which frequently overlap, 
or lysed cells, which lack a uniform shape. To build confidence in our image analysis approach, 
we compared the identified morphologies with data collected from literature. We confirmed key 
observations regarding the PBP interaction network, including the synthetic lytic activity of 
PBP1a and 1b and the tendency for loss of PBP1b to sensitize cells to PBP2- or PBP3-
mediated lysis.   

One limitation of our supervised machine learning approach is that we have limited our 
consideration to only six pre-selected phenotypes.  Morphologies dissimilar to these six would 
score poorly in all classes and may be difficult to identify from this analysis.  Nonetheless, given 
the extensive PBP literature, we believe there is justification for prioritizing these morphologies, 
which are critical to the understanding of PBP function.  Another limitation is that compounds 
inducing similar morphologies through fundamentally different mechanisms—for instance, 
lysis—would be impossible to separate from PBP inhibitors. We observe this in the case of D-
cycloserine and cefsulodin, which both inhibit cell wall biosynthesis, but only cefsulodin is known 
to inhibit PBPs. 

In analyzing the large volume of data resulting from these experiments, we observed that the 
morphological dynamics across doses and cell lines were meaningful.  To capture these data in 
a single quantitative framework we introduced an approach whereby the sequence of 
morphological classifications observed across doses could be used as inputs to an HMM—
derived entirely from morphological data without any user interaction—with one HMM per 
compound/cell-line pairing. While others have proposed methods for incorporating dose-
response information into morphological analysis75–77, our approach, to our knowledge, is the 
first to utilize the HMM formalism.  These HMMs, which capture the context afforded by dose 
progression, can be quantitatively interrogated to illustrate relationships between different 
compounds and cell lines. Additionally, they are able to incorporate the prediction strengths of 
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the neural network, which are also key to contextualizing the predictions of the model. 
Comparisons among compounds, as underpinned by the corresponding HMMs, result in 
relationships that can be visualized in a 2-dimensional space where the positioning of different 
beta-lactams correlate with their morphology outcomes. Ultimately, this positioning captures the 
PBP binding preferences of each compound in all tested doses and cell lines. We compared 
these predicted preferences to the PBP-binding profile determined using gel-based binding 
experiment sand found that imaging nearly always agreed with the primary target measured in 
binding studies, but that discrepancies could be observed when considering secondary target 
affinities. These secondary binding interactions, such as strong binding affinities for PBP4, have 
several possible explanations, including: interactions that do not happen in the cell, or manifest 
outside the 2 hour time period we have captured here, or are ultimately irrelevant to compound 
mechanism.  

The use of HMMs to interpret the dose-dependence of morphological change relies on a 
predefined morphology universe; consideration of novel morphologies—or a sequence of 
morphologies—would cause changes in the projected space.  Furthermore, this method, like all 
dose-response experiments, is highly dependent on the choice of concentrations tested.  We 
have chosen to standardize our choice of concentrations relative to the MIC, which provides 
suitable dynamic range for the conditions tested here, though cells lacking PBP1B are 
exceedingly sensitive to lysis when treated with PBP2 and PBP3 inhibitors.  However, MIC data 
may not be available for all morphologically active compounds and may be a less useful as a 
reference point for other mechanisms of antibiotic activity.  

Thorough inspection of the morphological changes resulting from treatments with more 
promiscuous beta-lactams revealed unexpected observations.  For example, meropenem and 
doripenem become prone to lysis in some cell lines.  Whereas it should be expected that 
significant PBP3 inhibition should result in cell lysis in E. coli-Δpbp1b cells, it is surprising that 
lysis was also observed in E. coli-PBP2R.  We hypothesize that this morphological outcome 
could result from a specific combination of PBP inhibition in the cell, perhaps in combination 
with changes in the free concentration of PBP inhibitors stemming from changes in target 
concentration or affinities.   

To further test the performance of our model, we evaluated how recent PBP inhibitors related to 
the older beta-lactams. NXL105 has been described as a specific inhibitor of PBP2, and indeed, 
occupies a space in the projection very near mecillinam.  BAL30072, a monobactam which was 
hypothesized to inhibit PBP3 in addition to PBP1a/b, is close to cephalexin and moxalactam, 
which exhibit similar morphological patterns.  It is intriguing to consider what chemical features 
of BAL30072 allow it to achieve this activity, since it shares the same scaffold with aztreonam 
and carumonam.  Careful study of the binding mechanisms of these compounds could yield 
insights into the chemical features that govern PBP1a/b binding. 

In conclusion, we believe this work serves as a proof-of-concept that high-content imaging and 
large-scale morphological profiling based on machine learning provides a useful addition to the 
suite of tools available to study PBP biology.  In order to encourage subsequent work, we have 
made all images and models available for download.  We believe that this type of representation 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted February 8, 2019. ; https://doi.org/10.1101/545335doi: bioRxiv preprint 

https://doi.org/10.1101/545335


of beta-lactam activities could be of use for evaluating the effects of chemical modification to the 
beta-lactam scaffold. Continued optimization of the scaffold is likely to continue, and this method 
could be used to simultaneously optimize features such as beta-lactamase recognition with 
propensities towards certain mechanisms of action; the observation of both PBP3 and PBP2 
target mutations in the clinic suggests that targeting multiple PBPs may be useful.  
Carbapenems and penicillins appear to be the most promiscuous, but beta-lactamase sensitivity 
has largely compromised the latter group.  The ramifications of other blends of PBP inhibition 
may have additional in vivo implications; perhaps PBP1b inhibition, though not affecting 
efficacy, may be correlated to molecular pharmacodynamics that could also be explored through 
a systematic study of the time-dependence of morphological change.  Our method allows for 
these types of features to be easily assessed and incorporated into guiding the optimization of 
future therapeutics. 

Materials and Methods 

Strains and antibiotics used 

E. coli strains BW25133, ΔPBP1a, ΔPBP1b, ΔPBP4,and ΔPBP5 were obtained as part of the 
Keio strain collection78 and are available from the Coli Genetic Stock Center 
(http://cgsc2.biology.yale.edu/). For the PBP2R strain, the T1718A mutation in mdrA was 
introduced into E. coli strain NB27079 by recombination79,45.  See Supplemental Methods for 
more details. 

Gel-based assay  
Membrane fractions (1.3mg/mL) were prepared as described elsewhere.7 12 μg  of membrane 
fraction were combined with 1 μL of each compound (1% DMSO final). The reactions were then 
pre-incubated for 40 min at 37°C, to allow for compound-PBP binding. Following this incubation, 
1 µL of 200 μM BOCILLIN was added to each sample and the samples were further incubated 
at 37°C for 30 min, to allow for BOCILLIN-PBP binding. Each sample was then denatured by the 
addition of 3 μL 4x NuPAGE LDS Sample Buffer and incubating for 10 min at 70°C. Ten μL of 
each sample were loaded and separated by SDS-PAGE using 4-12% Tris-Glycine gels (1.0 mm 
X 12 well), at a constant power of 20 mA for 2 hours. Gels were imaged using a Typhoon 9400 
(GE Healthcare Life Sciences) gel imager.  Gel bands were quantitated using ImageQuant v5.2 
software (Molecular Dynamics).  For each band pixel density was manually measured and 
values were reported as a percentage of bocillin binding. 

Antibacterial activity testing  

Antibacterial activity was assessed using a broth microdilution assay following the 
recommended methodology of the Clinical and Laboratory Standards Institute (CLSI).80  In brief, 
fresh bacterial overnight colony growth was resuspended in sterile saline, adjusted to a 0.5 
McFarland turbidity standard and then diluted 1:200 into CAMHB to yield a final target inoculum 
of 5x105 colony-forming units (CFU)/mL. Two-fold serial dilutions of compounds were prepared 
in 100% dimethyl sulfoxide (DMSO) at 100-fold the highest final assay concentration; the 
resulting dilution series of compounds were diluted 1:10 with sterile water.  Assay microtiter 
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plates, which contained 10 µL of 10-fold final concentration of compound per well, were 
inoculated with a volume of 90 µL of bacterial inoculum, sealed in a plastic bag to prevent 
moisture loss and incubated for 20 hours at 35°C in ambient air.  Following incubation, assay 
plates were monitored for bacterial growth with a SPECTRAmax380 microtiter plate reader 
(Molecular Devices, Sunnyvale, CA) at 600 nm, as well as by visual observation with a reading 
mirror.  The MIC is defined as the lowest concentration of antibiotic at which the visible growth 
of the organism is completely inhibited.  Performance of the assay was monitored by testing 
gatifloxacin against laboratory quality control strains in accordance with guidelines of the CLSI81 

Imaging assay 

The evening before the preparation of sample for imaging, an overnight culture of E.coli strains 
were made by inoculating bacteria from a frozen glycerol stock into 5 ml of cation-adjusted 
MHBII medium in a 14ml polypropylene round bottom Falcon tube.  The pre-culture was then 
incubated overnight at 37 °C with orbital shaking at 220 rpm.  The next morning, a subculture 
was prepared by diluting an overnight culture with fresh MHBII medium to an OD600 of 0.05.  
The culture was then outgrown to OD600 of 0.2.  Cells were then diluted to an OD600 of 0.01 
and 99ul/well of cells were plated into compound ready assay (96 well glass bottom plate).  
Cells were incubated at 37°C, 90% humidity for 2 hours.  After 2 hours of incubation, cells were 
washed two times with Hank's Balanced Salt solution.  Cells then were fixed by the addition of 
formaldehyde and glutaraldehyde to 2.5% and 0.04% (final), respectively.  Cells were 
simultaneously stained with 5ug/ml of FM4-64fx, 5ug/ml of Hoechst, and 0.1uM of Syto9 (final).  
Fixation was carried out for 30 min at room temperature in the dark, after which the cells were 
washed two times with Hank's Balanced Salt solution. Plate was sealed with black vinyl film and 
imaged using an ImageXpress XLS wide-field imager with a 100X 0.85 NA air objective.   

Morphology prediction with deep neural networks 

To automatically classify images displaying multiple bacteria into six morphology categories, we 
used a multi-scale convolutional neural network (M-CNN) model40. The parameters of the M-
CNN model were optimized automatically by applying the stochastic gradient descent algorithm 
to 129 morphology-annotated images (Supplementary Data) plus images coming from a data 
augmentation strategy; further learning details are described elsewhere40.  Once trained, the M-
CNN approach takes as input a full-resolution three-channel fluorescence microscopy image 
and computes as output a probability score for each of the six bacterial morphologies.  

The probability scores of images belonging to the same replicate well are collapsed onto a 
single set of probability scores by taking the median of the scores of the same morphology 
across images. Likewise, the resulting probability scores of replicate wells of a given 
experimental condition are summarized onto a single set of probability scores by taking the 
median across replicates followed by normalization so that scores added up to unity (or 100%). 
The morphology with the largest score was taken as the morphology prediction for the 
corresponding experimental condition.  
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Supplementary Material 

Supplementary Figure 1: Bocillin competition data across different classes of PBP inhibitors. 

Supplementary Figure 2: Combination of PBP3 and PBP2 inhibitors produces a morphology 
that resembles meropenem treatment  

Supplementary Figure 3: Comparison of untreated cell morphologies classified using the M-
CNN classifier.   

Supplementary Figure 4: HMM-based dissimilarities among compounds. 

Supplementary Figure 5:  Tetris plot summary of morphological changes caused BAL30072 
and NXL105. 

Supplementary Figure 6: Gel-based clustering. 

 

Supplementary Table 1: MICs of B-lactams across cell lines 

Supplementary Table 2: Percent Bocillin blockage at MIC of each compound. 

 

Supplementary Methods: Description of computational methods and strain generation. 

Supplementary Software: Neural network model as well as HMM code. 

Supplementary Data: Images and network predictions 
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