
MORPHOLOGICAL EDGE DETECTION AND
CORNER DETECTION ALGORITHM USING

CHAIN-ENCODING

Neeta Nain, Vijay Laxmi, Ankur Kumar Jain & Rakesh Agarwal

Department of Computer Engineering
Malaviya National Institute of Technology, Jaipur-302017Rajasthan, India

neetanain@yahoo.com, vlgaur@yahoo.co.in, ankur10sep@yahoo.com , raj_mnit222@yahoo.co.in
Telephone No: +91-141-2529078(O), +91-141-2529140(R) Fax: +91-141-2529029

Submitted to: IPCV'06

Abstract - Edges and corners are regions of
interest where there is a sudden change in intensity.
These features play an important role in object
identification methods used in machine vision and
image processing systems. This paper presents a
novel method for edge and corner detection in
images. The approach used here is extracting Edges
of the input image using morphological operator and
then sending it for Chain Encoding. We are
proposing a new morphological edge detector which
returns a one pixel thick m-connected binary
boundary image. This is followed by our chain
encoding method to detect corners on the extracted
edges. The algorithm works on all types of images
(i.e. binary, gray level and color images). Since the
proposed methods are based on morphological
operations, these are very simple, efficient and fast.
Experimental results on a variety of images identified
all the prominent edges and significant corners
efficiently.

Index Terms—Morphological operations, edge
detection, corner detection, thresholding,
neighborhoods etc. [1]

1. Introduction
EDGE detection [1-4] and CORNER detection [7-9,
11] are essential tasks in various computer vision and
image-understanding systems. Applications include
motion tracking, object recognition, and stereo
matching. The requirements of edge detector are that
it should identify strong as well as weak edges. All
the prominent intensity variations must be taken care
of. Similarly corner detection should satisfy a number
of important criteria:

1. All "true corners" should be detected.
2. No "false corners" should be detected.

3. Corner points should be well localized.
4. Detector should have a high repeatability

rate (good stability).
5. Detector should be robust with respect to

noise.
6. Detector should be computationally

efficient.

This paper proposes a new Morphological Edge
Detection Method and Corner Detection Algorithm
using Chain-Encoding. The task of finding corners is
formulated as a two step process. In the very first step
one pixel thick noiseless boundary is extracted by
various morphological edge extraction methods. For
this, first of all image boundary is extracted by using
erosion followed by thresholding, hitmiss
transformation and thinning operations. And finally
pruning is done to remove extra pixels which may be
encountered as side effects. These extracted edges are
m-connected. In the second step chain encoding
procedures are applied on these extracted edges.
Encoding is done using 8-way connectivity. Then
abrupt changes are identified in encoding to detect
potential corners. Finally optimization of corners to
remove false positives by suppressing regular
intensity changes is done.
The proposed method has been qualitatively
evaluated over a number of images with different
intensity gradation with excellent results. It identifies
significant corners with minimal false positive rate.

2. Morphological Edge Detector in

detail
In order to detect corner we need very fine image
boundary. For that purpose we propose our own
Morphological edge detector whose output is edge
extracted one pixel thick binary image where each
image segment is m-connected. The input of this

mailto:neetanain@yahoo.com
mailto:vlgaur@yahoo.co.in
mailto:ankur10sep@yahoo.com
mailto:raj_mnit222@yahoo.co.in

edge detector is a binary or gray level image. If the
input is a colored image it is converted into a gray
level image. To extract edges of an image the
following method is applied.

Step1. Boundary Extraction
Boundary of an image is extracted by the formula

"img = img - erode (img)"
The following set of masks are applied to erode the
image.

1 1 1 0 1 0
1 1 1 1 1 1

Mask 1

1 1 1

Mask 2

0 1 0

 If the input image is a gray level image then the
boundary extracted image is in gray level. The image
is required to be threshold. For thresholding the
threshold value is calculated as
 "Threshold_Value = Average + k * Standard
Deviation"
Where k >= 0. This threshold value helps in
identifying pixel locations with high intensity
variations, also called edges [1, 10, 11, 12]. The
quality of extracted edges can further be improved by
adjusting the Threshold_Value. The result of this is a
boundary extracted image which is two or more pixel
thick image.

Step2. To Make Image One Pixel Thick
In Horizontal and Vertical Direction
To change two or more pixel thick edge extracted
image as in Figure1, into one pixel thick image in
Figure2 the following set of 3 x 3 masks are used for
horizontal direction. By rotating these masks by 90
degree the masks for vertical direction are obtained
too.

 1 1 1 1 1 1
 0 1 1 1 1 0

Mask 1

 0 -1 0

Mask 2

 0 -1 0

Using these masks Hitmiss Transform [4] of the
image is computed and the pixels searched by these
masks are removed.

Figure1: Input image Figure2: Output of step2

Step3. To Remove the Noisy Pixels from
the Image and Filling the Pixel Break in
Regular Pattern
For making noise less and continuous boundary
thinning masks are designed to handle the following
cases [5] as shown in Figure 3(A-E).

i. Zero neighborhoods: Isolated pixel.
ii. One neighborhood: One pixel breaks in a

straight horizontal or vertical line (one pixel
thick).

iii. Two neighborhoods:
a. Case 1: One pixel breaks in a

straight horizontal line and there is
only one pixel above the break.

b. Case 2: One pixel thick diagonal
line with one extra pixel in 4 -
neighborhood of any of the pixel of
this diagonal.

iv. Three neighborhoods:
a. Case 1: One pixel thick straight line

with one extra pixel above any of
the pixels in the line.

b. Case 2: A “T " made by a set of
pixels.

A B C
D E

Figure3: A. Zero, B. One, C. Two Case1, D. Two
Case2, E. Three Neighborhoods

To Thin [4] and to Fill Gaps in the binary image a set
of masks (with rotation of 90 degree four times on
each mask) are used.

 0 0 0 0 0
-1 -1 -1 0 -1 -1 -1 0
-1 1 -1 1 1 -1 1 1
-1 -1 -1 0 -1 -1 -1 0

Mask1

Mask2

 0 0 0 0 0
For zero neighborhood For one neighborhood

 2

 0 0 0 0 0 0 0 0 0 0
 0 -1 -1 -1 0 1 -1 -1 -1 0
 0 -1 1 -1 0 -1 1 1 -1 0
 1 1 -1 1 1 0 -1 1 -1 0

Mask3

 0 -1 -1 -1 0

Mask4

 0 0 -1 1 -1
Two neighborhood Two neighborhood
case 1 case 2

 0 0 0 0 0 0 0 0 0 0
 0 0 -1 0 0 0 0 -1 0 0
 0 -1 1 -1 0 0 -1 1 -1 0
 0 0 1 1 0 0 1 1 0 0

Mask5

 0 0 0 0 0

Mask6

 0 0 0 0 0
Three neighborhood Three neighborhood
case 1 case 2

The output after applying the above masks to Figure
3(A-E) is shown in Figure 4 (A-E):

 A B C

 D E

Figure4: Output of performing thinning operation
on Figure3 respectively

Now use mask 7 (with four rotations of 90 degree) to
obtain m-connected image from the above one pixel
thick image.

0 1 0
1 1 0

Mask 7

0 0 0

Step4. Pruning
Images obtained from step 2 are having some extra
pixels in edges. So in this step these extra pixels are
removed using pruning [4]. The frequency of the
pruning to remove the different length of extra edges
may be varied. The output of this step is one pixel
thick binary m-connected image without parasitic
components.

Pruning procedure:
 1. "X1 = thin (A, B)"
 2. "X2 = union (hitmiss(X1, B))"
 3. "X3 = intersection (dilation(X2, H), A)"
 4. "X4 = union (X1, X3)"
 Where H is a 3 x 3 mask as shown below

1 1 1
1 1 1

H

1 1 1

 and B is a set of 3x3 masks: Mask 1& Mask 2.

0 -1 -1 1 -1 -1
1 1 -1 -1 1 -1

Mask 1

0 -1 -1

Mask 2

-1 -1 -1

And finally after pruning isolated pixels are removed
using cleaning operation.

3. Experimental Results
Output Figures 5, 6, 7 (B, C) are obtained using our
Edge Extraction method. Compare these with Figure
5, 6, 7(D), which Canny Edge Detector [1] gives with
a lot of noise.

 (A) (B)

 (C) (D)

Figure5: A. Original Image (house.tif), B. Image after
applying our thinning operation, C. Image after our
cleaning isolated pixels and D. Image boundary using
Canny Edge Detector [1].

 3

 (A) (B)

 (C) (D)
Figure6. A. Original Image (Cameraman.tif), B.
Image after applying our thinning operation, C.
Image after our cleaning isolated pixels and D. Image
boundary using canny edge detector(detects straight
edges as uneven edges).

 (A) (B)

 (C) (D)
Figure7. A. Original Image (objects.gif), B. Image
after applying our thinning operation, C. Image after
our cleaning isolated pixels and D. Image boundary
using canny edge detector.

To identify less dominant edges and in image
reconstruction applications step C of cleaning

isolated pixels, can be bypassed to further optimize
the edge extraction algorithm. The week edges as
shown in Figure 5-7(B) can be reconstructed using
Hough transform.

4. Corner Detection Algorithm
In this proposed algorithm chain encoding [4] is
performed on a binary extracted image which is
obtained by the proposed edge extractor (section 2).
On the encoded chain we search abrupt changes. The
encoding could be done rotation invariant by using
first order differences. In principle if we have two
lines that are perpendicular to each other as in Figure
8 then encoded chain will be: 66666000000. So a
change from 6 to 0 indicates that there is a corner at
this point.

Figure8. Chain encoding of a perpendicular line

But in practical problems the search for an abrupt
change is not so easy. Almost every figure has parts
that are non linear. Even if only linear figures are
considered, then also due to side effects of scan-
conversion or aliasing effects from line drawing
algorithms, a straight line in the image form or pixel
form is not drawn as a straight line.

Figure9. Real world scenario of straight line segment

There are some regular changes in the drawn line
called stair-step effects. For example consider
Figure9, the encoded chain will be some thing like
56556565560777077707. In this chain regular
changes are there which will generate false corners.
We are interested in finding the abrupt changes and
in this case it should identify only one corner placed
at position where first 0 is there in the chain.

 4

Also consider the following figures. In Figure10
there should not be any corner as the change here is
not an abrupt change but this is a regular change
which is a part of a line. Compare it with Figure11
the abrupt change can be seen and that is certainly a
corner.

Figure10. Figure11.

From the above discussion it can be concluded that
the regular changes in any image have to be
suppressed for detecting abrupt changes and hence
significant corners.
To suppress the regular intensity changes we consider
three encodes of the chain at a time (i.e. previous,
current and next encodes). If the previous and the
next encodes are same and the absolute difference
between previous and current encodes on chain wheel
is one then we substitute the current encode by
previous encode. By this rule chain encode of Figure
9 becomes 55555555550777777777. Now abrupt
changes can be detected very easily and hence the
significant corner.
 Isolated line segments of an image can be handled
by considering the two end points of the line as
corners. To handle this we take another parameter
which is checked against the length of the encoded
chain. If length is greater than the specified value of
the parameter then end points of the line are taken as
corners otherwise not.
In order to restrict number of corners it can be
ensured that no two corners are closer than a
predefined value (in neighborhood of 5*5 pixels).

5. Experimental Results
The test results of our corner detection algorithm on
some of the standard images are shown below:

 (A) (B)
Figure12. A. Original image (objects.gif) and B.
After applying corner detection algorithm, corner
points are shown by green squares.

 (A) (B)
Figure13. A. Original image (houses.gif) and B. After
applying corner detection algorithm, corner points are
shown by green squares.

 (A) (B)
Figure14. A. Original image (hexa.gif) and B. After
applying corner detection algorithm, corner points are
shown by green squares.

6. Conclusion
In this paper we proposed a novel simple and
efficient method for detection of edge or boundary
and corner. The method works in two stages: in the
first stage the edges of an image can be derived using
morphological operators (section 2). In the second
stage chain-encoding is performed to derive corners
of an image (section 4). Then number of insignificant
corner is reduced in order to optimize the corner
detection. Compared to the existing Edge detectors
like Prewitt, Sobel, Canny etc.,[1, 4] our algorithm
extracts precise one pixel thick seamless, continuous

 5

(in a segment) image boundary which is very
important to extract prominent and significant
corners in images[2, 6, 10, 11, 12]. This method
works on all types of images. We are further doing
the quantitative analysis and generating detailed
comparative metrics with the existing approaches as a
future extension. This project is implemented using
Matlab 7.0.

7. References
[1] J. Canny. “A ComputationalApproach to Edge
Detection”. PAMI, 8(6):679-698, 1986.
[2] Peter Kovesi, “Phase Congruency Detects
Corners and Edges”. The Australian Pattern
Recognition Society Conference: DICTA 2003.
December 2003. Sydney. pp 309-318.
[3] Rosenfeld and J.S. Weszka. “An Improved
Method of Angle Detection on Digital Curves.” IEEE
Trans. Computers, 24:940-941, 1975.
[4] Rafael C. Gonzalez and Richard E. Woods,
”Digital Image Processing”, 2e, PHI, 2004.
[5] P.Kumar, D. Bhatnagar, and P.S. Umapathi Rao.
“Pseudo One Pass Thinning Algorithm”. Pattern
Recognition Letters. 12:543-555, 1991.
[6] F. Mokhtarian and A.K. Mackworth. “A theory of
Multiscale, Curvature-Based Shape Representation
for Planar Curves”. IEEE Trans. Pattern Analysis
and Machine Intelligence, 14:789-805, 1992.
[7] H. Freeman and L.S. Davis, "A Corner-Finding
Algorithm for Chain-Coded Curves," IEEE Trans.
Computers, vol. 26, pp. 297-303, 1977.
[8] H.-C. Liu and M.D. Srinath. “Corner Detection
from Chain-Code”. Pattern Recognition, 23:51-68,
1990.
[9] Harris, C. and M. Stephens. “A Combined Corner
and Edge Detector”. Fourth Alvey Vision
Conference, pp.147-151, 1988.
[10] X. C. He, N. H. C. Yung. "Curvature Scale
Space Corner Detector with Adaptive Threshold and
Dynamic Region of Support," ICPR, pp. 791-794,
17th International Conference on Pattern Recognition
(ICPR'04) - Volume 2, 2004.
[11] SUSAN – “A New Approach to Low Level
Image Processing”, Technical Report TR95SMS1c.
[12] Moravec, H. “Obstacle Avoidance and
Navigation in the Real World by a Seeing Robot
Rover”. Tech Report CMU-RI-TR-3, Carnegie
Mellon University, Robotics Institute, Sept. 1980.

 6

