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ABSTRACT Mathematical morphology provides a large set of powerful non-linear image operators, widely
used for feature extraction, noise removal or image enhancement. Although morphological filters might be
used to remove artifacts produced by image manipulations, both on binary and graylevel documents, little
effort has been spent towards their forensic identification. In this paper we propose a non-trivial extension of
a deterministic approach originally detecting erosion and dilation of binary images. The proposed approach
operates on grayscale images and is robust to image compression and other typical attacks. When the image
is attacked the method looses its deterministic nature and uses a properly trained SVM classifier, using the
original detector as a feature extractor. Extensive tests demonstrate that the proposed method guarantees very
high accuracy in filtering detection, providing 100% accuracy in discriminating the presence and the type of
morphological filter in raw images of three different datasets. The achieved accuracy is also good after JPEG
compression, equal or above 76.8% on all datasets for quality factors above 80. The proposed approach is
also able to determine the adopted structuring element for moderate compression factors. Finally, it is robust

against noise addition and it can distinguish morphological filter from other filters.

INDEX TERMS Digital Image Forensics, media authentication, morphological filter detection.

I. INTRODUCTION

In the last decade, researchers and practitioners in multimedia
forensics have been developing a substantial body of knowl-
edge and techniques targeted to the authentication of multi-
media objects and their processing history recovery [1]-[5].
A recent trend tries to define universal detectors able to
reveal manipulations independently from the type of pro-
cessing applied, which could leverage media authentication
in applications like journalism or social media analysis [6].
On the other hand, many methods have been proposed to
detect different types of forgeries, which is very relevant for
diverse applications. In particular, first it is crucial in digital
investigations, given that images, audio tracks and video
sequences now play a crucial role where they often represent
digital evidences to the court [7]. Secondly in multimedia
data phylogeny, which aims at recovering and tracing back
the life-cycle of an image or a video [8]-[11].
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This broad class of specific manipulation detectors
includes the identification of pasted regions [12]-[16], resiz-
ing [17], [18], re-compression [19], image enhancing [20],
inconsistencies in the geometry and illumination of the image
due to possible manipulations [21]-[23], and various types of
non-linear filtering (especially median) [24]-[35].

In the context of non-linear filtering detection very lit-
tle attention was given to morphological filters [36] often
used in image processing for artifacts removal and image
enhancement [37], [38]. The detection of this kind of filtering
is of interest in the context of both image phylogeny and
specific tampering identification in legal scenarios, but could
be very useful also to detect possible counter forensic attacks
based on morphology, where such filters, very powerful in the
removal of local noise, could be exploited at the end of the
image manipulation process to cover other types of traces.

In this paper we present a non trivial extension of a recent
work [39] which introduced a deterministic detector of ero-
sion and dilation in binary images. The proposed extension
works on grayscale images by detecting morphological filters
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application in an accurate way both in uncompressed and
compressed images. The method also allows for erosion ver-
sus dilation discrimination and in many cases also for the
adopted structural element identification. Robustness against
JPEG compression, noise addition and confusion with other
types of filters is also tested on various datasets.

The rest of the paper is organized as follows: Section II pro-
vides the theoretical background for the problem formulation;
Section III describes the proposed methodology for morpho-
logical filtering detection in uncompressed and compressed
images; Section IV describes the experimental setup, datasets
and scenarios adopted for testing and validation; Section V
details the experimental analysis and obtained results; finally,
Section VI reports some concluding remarks.

Il. THEORETICAL FORMULATION

In this section we introduce the mathematical formulation of
the problem, and we derive the proposed methodology for
morphological filter detection.

A. MATHEMATICAL FORMULATION AND PROPERTIES
Mathematical morphology defines a set of nonlinear filters
commonly employed in digital image processing to modify
the local structural content of images. All the morphological
filters are derived from the various combinations of two basic
operators, erosion and dilation, and a kernel mask (or shortly,
akernel) called structuring element, characterized by a shape,
a size, and a reference point. The shape and the size of the
kernel are responsible for the behavior of the operator on
the image, while the reference point just defines the shift
of the filtered image with respect to the original. The inven-
tion of such mathematical tools dates back to 1964 [36],
and was meant to the filtering of binary images for mineral
studies. Later studies [40] led to the generalization of the
theory to the case of grayscale images.

According to this theory, given a grayscale image f(x, y)
and a binary structuring element B, the two fundamental mor-
phological operators, erosion and dilation, are respectively
defined as:

f ©B = ming(f(x,y) N Byy) (D
S ® B = maxp(f(x,y) N Byy) )

where B,, represents the structuring element (kernel) B with
the reference point centered at the coordinates x,y of the
image plane, while the intersection operations returns the
subset of the image pixels overlapped with the 1s of B. In this
respect, the basic grayscale operators are particular cases
of rank-order filters, and behave very similarly to min-max
(see examples in Figure 1) and median operators, except for
the shape of the mask.

As in binary morphology, the composition of erosion and
dilation allows defining more complex filters, among which
the most common are the open and close operators, respec-
tively defined as follows:

(feB)=(fOB DB 3
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FIGURE 1. Example of grayscale erosion (bottom left) and dilation
(bottom right) of an image detail (top left), using a cross-shaped
structuring element (top right). The resulting patches show the effect of
min and max operations: erosion produces a darker version of the
original image eliminating small cross-shaped details, while dilation
produces the opposite effect.

(f-B)=(f®B)SB (4)

Also the mathematical properties of morphological
grayscale operators match the ones of the corresponding
binary operators. Consequently, the theoretical background
of [39] remains valid also for in the grayscale domain.
In particular, the following properties are exploited in the
construction of the proposed detector:

(i) Translation invariance: the position of the reference
point only affects the translation of the filtered image
(ii) Dilation commutativity: A@ B =B ® A
(iii) Associativity: a cascade of erosions (dilations) is equal
to the erosion (dilation) with a mask generated by dilat-
ing each other the original masks (A, B and C are binary
structuring elements)

ASBoC=AcBaC) ©)
APBOC =ABBC) (6)

(iv) Open and close idempotence: iterating open and close
with the same structural element does not produce addi-
tional changes in the image

AoBoB=AoB @)
A-B-B=A-B 8)

Additionally, it is easy to see that the two theorems intro-
duced in [39] remain valid, since their demonstrations do not
depend on Eq. 1 and Eq. 2, but only on the properties (i)-(iv),
which hold also for grayscale images.

Theorem 1: Letl’ = 16K, thenl’-K = I'. Respectively,
ifl'’=I®K,thenl’ oK =1".

VOLUME 8, 2020



G. Boato et al.: Morphological Filter Detector for Image Forensics Applications

IEEE Access

o, o ol N T e

il DD-DD o il

n|

15

E

[IT]

o . :#: :#:

E%j o LI ﬁﬁ@ﬂ -

L1 [ m i L] [

26 27

31 32 33 34 35 36

FIGURE 2. Set of structuring elements (kernels) used for simulations. In dark, structural element’s reference point.
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FIGURE 3. Proposed detection scheme for raw grayscale images. After opening/closing with a kernel K,

if the image does not change, this means that it was previously dilated/eroded with that kernel (details in
Section IL.A). By applying the procedure for a set of possible masks, the detector is thus able to reveal a
perfect match between the input eroded/dilated image and the corresponding opened/closed version.

Theorem 2: Letl' = I & K, then YM such that IE|M &
E = K, wehave thatI’-M = I'. Respectively, if ' = I ® K,
thenl’ oM =1'.

Theorem 1 can be equivalently formulated in terms of
series of erosion and dilation operators, according to the
definition of open and close operators. Theorem 2 extends the
equality of Theorem 1 to any kernel mask M that can produce
K by dilation with an appropriate kernel E.

As an immediate consequence of the above theorems,
an image dilated (eroded) with a given kernel K, will remain
unchanged after applying an open (close) operator with the
same element. This provides a simple test to detect a filtered
image: apply an open (close) operator with a kernel K, if the
image does not change, this means that it was previously
dilated (eroded) with that kernel, otherwise it was not. The
detection consists then in subsequently checking with the
above procedure a set of possible masks. In [39], a set of
common kernels were proposed, characterized by some level
of symmetry (see Figure 2).

ill. PROPOSED APPROACH

In this section we introduce the proposed detector, distin-
guishing two cases: the detection of morphological filter-
ing on raw images, and the detection in the presence of
post-processing (e.g. compression, noise addition, filtering).
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We will see that the former is a trivial extension of the
binary case but has very limited applicability, while the latter
requires further attention.

A. FILTER DETECTION ON RAW IMAGES
According to the theory stated in Section II, in the absence
of post-processing grayscale morphological operators can be
easily and deterministically detected by applying the schema
proposed in [39] and reported in Figure 3.

However, it is worth mentioning that this scenario is rarely
verified in grayscale images, which are typically stored in
compressed format after filtering. The compression (as well
as most other image processing operations) modifies the
image, thus hindering the applicability of Theorem 1 and
thus the applicability of the deterministic method depicted
in Figure 3. Indeed, the detector will never report a perfect
match between the input eroded (dilated) image and the
corresponding opened (closed) version.

In the next section, we propose an extension of the above
approach that is able to deal with such scenario. The new
algorithm will exploit the traces left by the morphological
filters even after post-processing, and will rely on a statistical
analysis, thus loosing its deterministic nature. We will see
however that it is sufficiently robust to many attacks, and in
particular to the JPEG compression.
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B. FILTER DETECTION ON POST-PROCESSED IMAGES

As mentioned in the previous section, any further process-
ing on the filtered image will modify the pixel values, pos-
sibly re-introducing structures that were eliminated by the
morphological operator. A further morphological filtering
will then produce a non-null effect on the image, which
will be revealed by the detector. It is therefore necessary
to verify if some traces of the original filter survive the
post-processing.

Recalling that the grayscale morphology operates as a
local min-max filter, we can expect that it will produce
larger variations in the presence of high-contrast structures
that match the structural element geometry. On the contrary,
unless the post-processing is meant to be extremely visible,
it will introduce small gray level variations on the image.
Consequently, although we will not have a null difference
image at the detector output, we can expect that the local
differences will be much smaller for a filtered image than
for an original one. An experimental evidence of this fact is
provided in Figure 4. Here we plot the log-scale histograms
of the absolute differences before and after the application
of an open operator to a JPEG compressed unfiltered image,
and to the relevant JPEG compressed dilated image (the two
right most columns). Both open and dilation operators have
been applied using the kernel mask 35 in Figure 2, and the
JPEG quality factor has been set to QF = 95. It is possible
to observe that the histogram referred to the dilated image
decreases steeply, with significant bins only for low values of
the difference, while the histogram referred to the unfiltered
image shows a long tail with significant values also above 50.
This means on one side that the compression does not affect
the high-contrast structures present in the original image
(which are then removed by the following open operator), and
on the other side that it does not re-introduce in the filtered
image any high-contrast structure sensitive to the filter itself.
Similar results on the eroded version and the close operator
are shown on the two left most columns.

On this basis, we propose to modify the detection scheme
as shown in Figure 5. The core of the procedure still involves
the application of grayscale opening/closing. In this case,
however, we take into consideration the statistical properties
of the differences between the input and output images, to see
how such residual is distributed. Therefore, we calculate the
histogram of the difference image (processing block HIST
in Figure 5) and feed it into a statistical classifier to perform
the decision. As far as the classifier is concerned, we adopted
a properly trained classifier.

Finally, we should notice that not all the areas of an image
are equally affected by a morphological filter. In particular,
the filter has a negligible effect on flat areas, thus possibly
jeopardizing the results of the detector. To avoid this prob-
lem we decided to limit the analysis to the image regions
that contain significant textures or edges. To this purpose,
we calculate the block-wise normalized local variance «,
i.e., for each block, we normalise all the pixel values to [0, 1]
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and then compute the standard variance, and we restrict the
computation of the histogram to the blocks with ¢ > ayp,
where oy, has been empirically set to 0.15. This task is
performed by the first processing block in Figure 5.

IV. EXPERIMENTAL SETUP

In order to assess the performance of the proposed detector,
we tested it in various scenarios and we evaluated it in terms
of accuracy. In this section we describe such scenarios and the
relevant experiments. Furthermore, we introduce the datasets
used for the testing, and we provide additional details the
relevant training procedure.

A. DATASETS
Three publicly available datasets have been used in the
experiments:

o The Uncompressed Colour Image Database (UCID) [41],
built with the purpose of providing a standard set for
performance assessments in image retrieval and com-
pression. The dataset consists of 1,338 uncompressed
color images, with fixed sizes of 512 x 384 or 384 x 512
pixels in uncompressed TIFF format.

o The Dresden Image Database (DRESDEN) [42], orig-
inally created for evaluation of forensic techniques
related to camera-based information. From their public
web-interface, we selected the complete set of RAW
images (1,189 uncompressed images, all with fixed size
of 3008 x 2000 pixels).

o The Raw Images Dataset (RAISE) [43], consisting
of 8156 raw images with resolutions ranging from
3,008x2,000to4, 928 x 3, 264 pixels. Authors provide
also smaller subsets, among which we selected the one
containing 1,000 images (RAISE-1k).

The three datasets were selected to diversify the range of
resolutions in the experimental tests. In order to evaluate our
proposed schema, all the images were converted to grayscale
with a depth of 8 bits.

B. TESTING SCENARIOS
The proposed detector has been tested in various practical
scenarios:

o The first set of tests were performed in order to under-
stand the impact of the parameters as well as to select a
proper classifier. Based on the setups found on this set of
tests, we kept the best setups (in terms of performance)
for the next tests.

o The second set of tests refers to the detection of mor-
phological filtering. In this case, we want to establish
the accuracy of the detector in discriminating filtered
vs. pristine (unfiltered) images, in classifying the type of
operator (erosion vs. dilation), and finally in determining
the exact structuring element used for filtering, both
in uncompressed and JPEG compressed images with
various quality factors (from QF = 100 indicating
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FIGURE 4. Histograms of differences before and after application of the close and open operators to an
unprocessed image (grayscale version of ‘r3ba1827ft.TIF' from RAISE-1k) and its eroded and dilated versions,
respectively. Both images have been JPEG compressed with QF = 95. Kernel mask 35 and the analysed windows
size of 1000 x 1000 are used. The chart shows the first 50 bins in logarithmic scale.
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FIGURE 5. Proposed detection scheme for attacked grayscale images. After opening/closing, we select
image regions that contain significant textures or edges and there we calculate the histogram of the
differences between the input and output images. Such histograms are fed into a statistical classifier to

perform the decision (details in Section I11.B).

TABLE 1. Parameters selection.

Parameter/ Classifier Meaning

Range

Empirical Value/Selection

Image resolution The size of the analyzed region of interest

384 x 512 to 4928 x 3264

Good results for resolution from 1000 X
1000.

Block Selection Threshold
ayp, and Block Size s

Erosion and dilation have a negligible effect
on flat areas, thus these two parameters allow
the method to effectively work on non-flat
blocks only.

ayp, > 0, a = 0 means all pixels
in the block has the same values.
s€{3x3,5x5,..}

ayp = 0.15and s = 3 X 3.

Number of bins of the analyzed histograms.

0<n <256

Even if for n > 30 we already achieve 90%
accuracy, we set n at the highest value, i.e.,
considering all bins.

The classifiers

SVM, KNN, Linear Regression,
and others

SVM with RBF kernel and grid search pro-
vides the best performance.

highest quality images, down to QF = 70 which still
corresponds to compressed images of high quality).
The third set of tests concerns robustness against noise.
The test image is contaminated with random noise and
then compressed, and we evaluate the accuracy of the
detector in determining the presence and type of filtering
and the structuring element used.

Finally, we want to determine the capability of our
approach in distinguishing between morphological fil-
ters and other filters that produce similar results.
In particular, we considered Gaussian lowpass and
median filtering. In both cases, the filtered images are
compressed and passed to the detector to reveal possible
false alarms.

It is worth noting that, due to the properties analysed in
Section II, in the presence of a cascade of different basic oper-
ators (erosion and dilation), the detector will reveal the last
operator applied. Accordingly, when processing an opened
or a closed image, the detector will reveal the last dilation
or erosion, respectively. Furthermore, in the presence of a
cascade of the same basic operator, the detector will reveal
a single erosion or dilation with the composed structuring
element. Therefore, in the experimental section we will just
consider erosion and dilation detection, even if the image
may have been potentially processed with more complex
combinations of filters.
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V. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, all experimental tests carried out are described.
All tests are performed using Python 3.6 and 1ibSVM on a
standard machine (Macbook Pro 2016 2,3GHz 4-kernel Intel
Core i5, 8GB ram).

A. THE SENSIBILITY AND THE
CHOICE OF THE CLASSIFIERS
In order to understand the impact of the parameters as well
as to select a proper classifier, we ran some experiments on
a subset of images. After that, we empirically determined
the values for these parameters. Table 1 summarizes these
parameters, their meaning and how their values were decided.
The classifier receives in input the histogram of the
differences between the input image and the relevant
opened (closed) image and returns a binary decision.
An important aspect is the training of the classifier. In fact,
there is a clear dependency of the image statistics on the level
of compression applied, which is reflected on the character-
istics of the histogram. As an example, Figure 6 (a) shows
the same situation of Figure 4 at a lower quality factor. It can
be observed that the two distributions are still well separable,
but the histogram related to the filtered image shows a longer
tail, due to the larger artifacts introduced by the compression.
Accordingly, we decided to train a set of classifiers for
varying JPEG quality factors, from 100 to 70. During the
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FIGURE 6. Analysis of different cases in erosion detection. (a) Histograms resulting from original image and its dilated
version, after compression with QF = 80; (b) Histograms resulting from dilated and eroded images produced with the
same kernel, after compression at QF = 95; (c) Histograms resulting from eroded images produced with unrelated kernels,
after compression at QF = 95; and (d) Histograms resulting from eroded images produced with kernel K and its dilated

version K*, after compression at QF = 95.

TABLE 2. Morphological filtering detection results on all three datasets using SVM with RBF kernel, 10-fold cross validation. The numbers are in
percentage and each of them is the average performance (for distinguishing between pristine versus filtered images) over all 36 kernels. Detailed results

are reported in Table 3.

Dataset Operator | QF =100 95 90 85 80 75 70
UCID Erosion 100 90.86 82.62 79.63 7745 6741 64.42
Dilation 100 90.16 82.86 79.95 7680 68.77 64.94
Dresden | Erosion 100 9756 9694 9520 88.73 79.85 7834
Dilation 100 9793 96.82 96.11 88.74 81.08 75.08
Raise Erosion 100 98.66 96.25 94.82 89.00 80.42 78.55
Dilation 100 9798 9743 9372 91.02 8049 78.53

test phase, we tested with different classifiers: k-NN, deci-
sion trees, naive Bayes classifier, and SVM, and empirically
decided to use SVM with the radial basis function (RBF)
kernel.
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We also note that given the appropriate quality factor,
the histograms of differences show a peculiar behavior only if
the detector parameters match the input filter in both the oper-
ator (erosion or dilation) and the structural element (kernel),
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TABLE 3. Detailed results on erosion and dilation detection on UCID, Dresden and RAISE-1k datasets. K indicates the kernel mask used (from 1 to 36).
Average results are summarised in Table 2.

QF K=1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
95 90.42  90.89 90.34 89.61 90.15 90.56 912 922 9269 9289 93.09 9348 9447 9359 944 8841 8849 8878
UCID 90 8342 8273 8257 83.06 83.14 8249 8267 8262 8359 84.08 8341 83.63 8362 8432 8402 8222 83.18 8372
Erosion 85 79.06 79.7  80.69 80.74 8091 8142 81.03 80.17 80 80.65 79.88 80.87 80.73 80.25 793 8045 81.17 8199
80 75.83 7623  77.19 7699 77.62 7842 78.66 78.19  79.1 79.67 80.26 80.08 79.93 7959 8032 7624 764  76.76
75 64.25 652 6606 6531 6509 6555 6622 6524 659 6578 6559 6486 6435 6449 6507 69.13 69.07 69.08
70 63.34 6423 6491 6392 6295 63.56 64.53 6545 6487 645 6528 6541 64.61 65.6 6472 628 63.66 63.69

100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
95 89.24 88.4 88.1 88.11 89.09 8999 8928 899 9046 91.03 90.76 9128 9144 9049 9133 90.05 90.66  90.5
UCID 90 83.18 8229 81.66 8234 8267 82.85 8235 83.04 8342 8255 83.13 8321 83.85 83.33 8422 8222 8224 8221
Dilation 85 80.05 81.01 81.54 8151 8235 8243 8315 829 823 81.76 809  81.69 81.01 81.7 8261 81.15 8136 81.39
80 75.29 76.16 7577 7533 7489 7542 7581 75.06 75.99 75 75 75.84 76.02 76,56 7565 7125 7796 7831

75 65.35 6508 6549 6517 6595 6594 6553 66.12 66.64 6759 67.69 679 68.6  68.58 69.13 7023 70.63 70.22
70 6334 6393 6477 654 6636 6735 67.89 68.67 6795 6891 683 6733 6694 6635 66.05 628 6247 6329
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
95 99.03 99.04 9832 9741 97.12 97.74 9866 98.18 97.72 96.76 959 9628  96.15 97 96.34 9895 982  97.58
Dresden 90 98.85 9791 9783 9741 9692 9728 97.74 97.22 96.58 9645 959 9593 96.15 96.73 9634 9793 97.8 9691
Erosion 85 97.01 9724 97.67 9741 9675 9578 9515 94.63 9476 9376 9461 9517 9433 9524 958 96.52 97.01 96.81
80 87.43 88.17 89.16 8831 8829 8749 8741 8722 87.66 8788 8845 8811 8741 86.53 86.72 8932 8985 90.15
75 78.63 783 7864 7959 7884 79.73  79.33 7857 7942 7893 78.02 78.05 7876 7835 7928 80.03 79.32 79.56
70 76.19 767 7622 762 763 7666 7739 77.18 7673 773 7802 779 7835 7835 79.02 8223 8179 8278
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
95 9832 97.86 9841 9759 969 9726 9635 959 9647 9734 9693 977 9737 9835 9795 9883 99.81 99.26
Dresden 90 9832  97.86 98.16 9759 969 9726 9635 959  96.18 97.14 9693 9652 9636 9599 9526 97.58 98 98.06
Dilation 85 96.74  96.67 97.06 96.72 965 96.03 9635 95.87 96.18 96.73 9675 9639 9562 9599 9526 9686 97.47 98.06
80 87.78 8829 8927 8879 88.14 8885 83.18 88.43 87.66 87.65 872 8723 8753 8679 87.78 90.24 89.36 88.43
75 79.34 792 7979  80.75 809  80.69 79.84 79.66 80.51 7995 80.72 81.69 81.27 8045 79.62 8021 80.72 81.13
70 73.81 74.7 749 7398 73.64 7433 7431 7423 743 734 72,66 7222 7215 72.65 7227 7501 7482 7474
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
95 98.78 98.97 99.03 98.65 99.08 98.16 98.17 97.99 9797 9796 9727 9742 97.82 96.87 9597 9855 98.8 99.74
RAISE-1k | 90 9734 9753 97.16 9634 96.15 9542 9596 9547 964 9568 9643 9729 9746 96.87 9597 98.04 98.03 98.96
Erosion 85 94.23 94.54 9524 9441 9482 9405 9378 94.61 9526 9433 9335 9421 9498 9576 9597 9694 97.65 96.69
80 88.17 88.53 8796 87.19 8643 86.89 8598 86.4 86.05 86.19 8598 8516 84.73 8448 8526 91.52 9163 90.8
75 7826 7857 776 7856  78.8 779 7718 7176 7821 7835 7816 78.02 7767 7195 7711 8299 83.14 8275
70 77 77.63 7694 7642 76,53 7645 77.18 76.68 7742 7825 78.16 7802 77.67 7795 77.11 8222 81.96 81
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
95 9822  98.07 9825 99.04 99.04 99.12 99.75 99.25 99.02 9894 9848 9759 96.83 96.17 9526 9936 9949  99.92
RAISE-1k | 90 97.81 98.07 9733 9833 99.04 99.12 99.72 99.25 9836 97.53 9741 9759 96.83 96.17 9526 97.12 9796 98.49
Dilation 85 9474 9379 9383 9455 9513 9424 9473 93.81 9458 9542 9456 9425 9524 9495 9462 96.13 9571 96.06
80 8846 8897 89.76 90.07 90.22 91.18 91.09 91.07 91.61 91.52 90.57 89.65 90.63 91.07 9053 9252 9343 9255
75 7785 76.87 7698 7683 7634 7563 7531 7431 73.89 7445 7417 7383 7453 7461 7411 8268 8258 83.06
70 7746 7673  76.14 7566 7474 7542 7531 7431 73.89 7445 7417 7383 73.67 132 723 8193 81.13 8091

K=19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
95 89.09 89.07 88.87 89.13 89.99 9035 90.19 89.87 90.83 90.44 9033 89.98 90.61 90.67 9131 91.03 9134 9226
UCID 90 83.29 83.67 83.86 84.17 8482 8495 8452 8042 81.14 8134 8088 80.55 802 80.56 80.39 80.48 8029 80.36
Erosion 85 82.21 8296 83.18 8386 834 8355 8419 7424 7492 7537 76.1 7574 7541 76.02 7564 7641 77.04 715
80 76.7 7701 76.62 76.12 7652 7734 78.11 7544 7564 7518 7588 7571 7634 76.72 77.12 7192 7178 78.46
75 68.8 6923 6986 69.63 703  70.59 7092 68.14 68.08 67.81 6861 6824 67.99 6844 68 6824 6829  69.2
70 63.53 64.52 6471 6569 6567 6573 6593 6258 62.74 625 62.69 62.64 63.05 63.03 6358 6361 6404 64.03
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
95 90.14  89.72 89.68 89.94 90.06 89.97 90.89 89.91 89.73 89.99 89.58 89.76 90.08 90.73 9041 9127 91.62 92.09
UCID 90 82.77 83.18 8339 8358 8357 83.96 84.61 81 80.83 80.75 8146 82.18 8247 8292 82.88 833 8422 8522
Dilation 85 81.87 81.64 81.82 8217 8245 8334 83.67 73.87 7419 7478 75 747 7524 7612 7596 7642 7126 76.96
80 78.69 7859 7839 78.19 7788 7836 77.88 7578 7659 762 7621 7652 7692 77.72 7803 78.67 78.44 7857
75 70.71 7046 702 7005 69.65 70.41 70.18 69.02 69.83 70.08 70.63 70.24 70.01 69.69 6994 7055 70.67 71.66
70 63.16 6326 6325 6396 6452 6491 6491 6227 6322 6366 6338 63.19 6377 6346 642 6498 6463 65.01
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
95 97.84  98.17 9873 98.09 98.17 98.03 97.07 98.03 9722 9795 9784 98.19 9797 97.16 96.67 96.15 96.68 95.76
Dresden 90 97.59 98.17 9778 9798 97.66 96.72 97.07 96.65 9572 96.57 96.58 96.44 96.06 96.71 96.27 96.15 9625  95.69
Erosion 85 96.51 9721 9696 96.56 95.69 9569 9562 93.89 94.15 94.19 93.67 9408 9395 935 9316 929 9203 91.64
80 90.05 8945 8925 8397 8855 89 88.3 89.3 889  89.56 8971 9029 90.16 89.64 88.65 89.32 89.67 89.83
75 79.4 80.18 7999 7943 79.61 7899 78.83 8144 8237 8233 81.64 8111 81.26 8141 80.83 81.14 8131 81.89
70 83.08 83.64 8346 8422 8465 84.18 8458 73.26 73.62 7398 74.6 754 7512 7553 7587 7629 76.6 76.76
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
95 99.05 99.96 9953 99.12 9832 975 98.05 97.84 9845 98.65 98 97.64 97.06 9775 9767 9833 9744 96.55
Dresden 90 97.06 97.5 9717 9752 96.7 9583 96.75 97.51 97.07 9695 9653 97.21 9636 9598 9595 9531 96.01 95.67
Dilation 85 97.06 9721 97.17 9752 967 9583 9538 9481 9471 9565 96.16 9528 9541 9535 9521 9461 9476 938
80 89.2 88.78 8351 8351 88.83 89.82 89.64 89.69 9024 90.14 89.31 90.04 89.09 89.21 88.83 88.82 89.09 89.14
75 8146 8136 81.68 81.56 81.32 81.12 8021 8231 81.63 81.76 81.92 8278 8269 8252 823 81.63 8255 81.79
70 75.02 7573 76.2 757 7599 7695 77.03 7412 7483 7504 75779 7583 7652 77.19 7755 7779 7831 79.17
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
95 98.83 98.58 98.88 9885 99.06 99.47 99.94 9932 9955 99.84 9931 99.09 99.22 99.76 98.82 9821 982  99.12
RAISE-1k | 90 98.83 98.58 9766 96.8 9735 9672  96.1 95.18 95.64 94.67 9448 9348 9321 93.58 9435 9494 9498 9593
Erosion 85 96.37 964  97.19 96.8 9613 9533 9521 95.18 9486 94.67 9448 9348 9321 9295 92.19 9248 93 92.68
80 90.57 90.51 9098 9039 9051 90.19 90.71 91.67 9237 9168 9166 9l.1 90.75 90.37 9034 903  90.04 90.56
75 8332 8236 8142 809 80.11 80.86 79.97 80.78 81.04 81.96 8247 83.07 83.6 83.68 8325 8273 82.23 82.54
70 81.53 8139 81.13 809 80.04 793 78.6 7827 7924 80.19 7948 7872 7183 7171 7679 713 7745 7742
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
95 99.92  98.15 9756 9797 9749 98.19 98.14 97.62 969 9695 9687 96.87 963 9697 97.66 9725 9773 96.86
RAISE-1k | 90 98.23 98.15 9756 9676  97.09 96.81 97.07 97.62 969 9695 96.02 9687 963 9639 97.08 9644 9694 96.86
Dilation 85 96.35 96.87 96.04 9507 9421 9328 9232 91.68 90.72 9025 9094 91.06 90.89 90.12 91.1 91.9 9224  92.68
80 91.65 9221 9254 9203 9203 9136 907 91.52 90.72 9025 90.86 90.65 9044 90.12  9l.1 91.9 9136 90.48
75 83.39 832 8323 84.19 8486 8409 84.6 83.68 8292 8339 843 83.8 8472 8497 8553 86.06 8591 86.87
70 80.53 804 8029 80.78 81.53 81.77 8203 8125 8097 81.19 80.67 804 81.05 82.03 81.23 81.1 82.08 82.59
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whereas such behavior is never found in all the other com-
binations. It is important to notice that the application of the
detector to an unfiltered image or to an image filtered with
a different combination of operator and/or kernel produces
similar results, i.e., only the matching detector responds to
the filtered image. As an example, in Figure 6 (b) we show
the histograms deriving from the application of an erosion
detector to an eroded and a dilated image, both with the same
kernel. It can be observed that the dilated image responds
similarly to the uncompressed image in Figure 6 (a). Anal-
ogously, in Figure 6 (c), we compare the histograms deriving
from the erosion detector applied to two eroded images, one
with the same kernel and the other with a different one. Also
in this case, the image filtered with a different kernel responds
as unfiltered. Finally, in Figure 6 (d) we show the case of
application of the erosion detector to two images filtered with
kernels belonging to the same group (i.e., one can be obtained
from the other by dilation). As expected from Theorem 2,
the two histograms are almost overlapped, since both show
the statistical properties of a filtered image.

For some other choices, for example the block size or
o, all values are empirically selected and are reported
in Table 1.

B. DISTINGUISHING BETWEEN PRISTINE VERSUS
MORPHOLOGICAL FILTERED IMAGES

1) EXPERIMENTAL RESULTS ON RAW IMAGES

We ran a test on uncompressed images in order to confirm
the deterministic nature of the proposed approach on raw
images. Since the detection strategy in this case is the very
same proposed in [39], we followed their general approach
for deriving results relative to raw grayscale images. Each
image has been processed with erosion and dilation operators
considering all the 36 kernels. All images, along with their
unprocessed versions, were fed to both dilation and erosion
detectors. For each image, all 36 kernels are tested, returning
either the largest kernel with perfect match between input and
output or no detection if all kernels fail. All three datasets
result in 100% accuracy in discriminating the presence and
the type of morphological filter.

2) EXPERIMENTAL RESULTS ON JPEG COMPRESSED IMAGES
In order to test the approach on JPEG compressed images,
we considered a set of seven different quality factors
with QF e {100, 95, 90, 85, 80, 75, 70}, with 14 (7 x 2)
binary classifiers, respectively, using a Gaussian kernel with
grid-search for the parameters. We apply k-Fold validation
with k = 10. Shown in Table 2 are the average results (over all
kernels) of the proposed method on three datasets at the seven
quality factors. The detailed results for all kernels and both
morphological operators on the three datasets are reported
in Table 3. According to the results, we can observe that the
proposed method can provide high detection performance on
low compression level (i.e., quality factor QF > 80) with
accuracy equal or above 76.8% on all datasets. At stronger
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FIGURE 7. Precision (computed as percentage) on erosion detection
under different resolutions. Dataset: Raise, QF = 90. All 36 kernels are
used, results are shown in the error bars.
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FIGURE 8. Confusion matrix on erosion detection for multiple kernels.
Dataset: Raise, QF = 90, full resolution. Values are normalized and are in
percentage.

compression levels, the performance reduces significantly.
The resolution also plays an important role as it can be
grasped from the results. Indeed, UCID has lower perfor-
mance with respect to Dresden and Raise. It is also interesting
to notice that there is little difference between Dresden and
Raise. To have a deeper understanding of the impact of the
image resolution, we ran another test on different image
resolutions: the proposed method achieves good performance
(over 90%) for resolution from about 1, 000 x 1, 000. Shown
in Figure 7 are results over 36 kernels on erosion detection
for RAISE-1k images.

C. DETECTOR ROBUSTNESS ANALYSIS

The second test in this set is to analyse the impact of dif-
ferent kernels. We applied all kernel masks and then tried
to detect them. Shown in Figure 8§ is the confusion matrix
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FIGURE 9. Precision (computed as percentage) on dilation detection
under different attacks. Dataset: RAISE-1k, full resolution, QF = 100,
using SVM with RBF kernel, 10-fold cross validation. All 36 kernels are
computed and the results are shown in the error bars.

TABLE 4. Results on erosion detection on Raise under different attacks,
using SVM with RBF kernel, 10-fold cross validation.

QF | Pepper & Salt Gaussian (3x3) Median Filter (3x3)
100 97.92 81.21 87.94
95 95.72 81.14 86.44
90 95.19 81.01 84.27
85 91.79 79.16 80.67
80 86.99 78.76 80.57
75 83.04 75.06 76.42
70 81.23 70.24 71.49

of the erosion detection (similar results were obtained on
dilation detection). According to the results, the detector was
able to recognize small size kernels (kernels from 1 to 14),
or larger kernels in special shape (kernels 20 to 25), but poorly
classified the others. This is understandable as a consequence
of Theorem 2.

The third set of tests concerns analysis of robustness
against noise addition. In the first test, morphological filter-
ing is applied to each image and then this is contaminated
with a noise. Five different attacks - pepper & salt noise,
Gaussian filtering with window size 3 x 3, median filter-
ing with window size 3 x 3, scaling at 1.1x and scaling at
0.9x - were applied and average results (on all kernels) for
dilation detection using SVM with RBF kernel on RAISE1k
are correspondingly: 97.92%, 81.21%, 87.94%, 67.44%, and
67.81% (the results are summarized in Figure 9. According to
the results, we can claim that the proposed method is robust
against noise addition but not against processing involving
interpolation (e.g., resizing).

We applied a further test to understand if the proposed
method can still detect the morphological filter after two level
of processing where the second one is a compression. Thus,
each image after a morphological filter is first contaminated
with a noise, and then is compressed under different qual-
ity factors. The results in Table 4 show that the proposed
method can still detect the morphological filter, however,
its performance is getting worst as the compression level
increases.
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FIGURE 10. False Positive (computed as percentage) on 200 images from
RAISE on erosion detection over all 36 filters. Images are in raw format,
full resolution. The classifiers were trained on 800 images (eroded vs.
non-filtered) and tested on the rest 200 images (filtered with pepper &
salt, Gaussian and median).

D. MORPHOLOGICAL FILTERS VERSUS OTHER FILTERS
Finally, we want to determine the capability of our approach
in distinguishing between morphological filters from other
filters that produce similar results. In particular, we con-
sidered three filters: pepper & salt, Gaussian lowpass and
median filtering. In all cases, the filtered images are uncom-
pressed and passed to the detector to reveal possible false
alarms. In this experiment, we trained the erosion versus pris-
tine classifier with 800 uncompressed images from RAISE
in full resolution. The trained classifier is then applied to the
rest of the 200 images, filtered with pepper & salt, Gaussian
lowpass and median filters. The average number of false
positives (over 200 images) for pepper & salt, Gaussian with
window size 3 x 3, Gaussian with window size 5 x 5, median
with window size 3 x 3, and median with window size 5 x 5
are 3.51%, 5.72%, 5.28%, 14.11%, and 13.17%, respectively.
The results are summarized in Figure 10. This confirms that
the proposed method can distinguish between morphological
filter and other filters. Only in the case of median filters the
confusion increases, but this is very reasonable, since in the
case of grayscale images the effect of morphological filters
and median filters is very similar.

VI. CONCLUSION

In this work we propose an effective detection strategy to
assess the use of morphological filtering in a grayscale con-
text. We deal with uncompressed images proposing a deter-
ministic approach, based on mathematical properties enjoyed
by basic morphological operators. We additionally propose
a modified pipeline to detect morphological processing in
compressed images, by exploiting the difference histogram
information as feature for classification. We present a testing
phase in which both uncompressed and compressed scenarios
are taken into consideration. Results show the effectiveness of
our proposed approach in both cases. Moreover, the proposed
approach is able to determine the adopted structuring element
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for moderate compression factors, and is robust against a
number of attacks.
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