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ABSTRACT Mathematical morphology provides a large set of powerful non-linear image operators, widely

used for feature extraction, noise removal or image enhancement. Although morphological filters might be

used to remove artifacts produced by image manipulations, both on binary and graylevel documents, little

effort has been spent towards their forensic identification. In this paper we propose a non-trivial extension of

a deterministic approach originally detecting erosion and dilation of binary images. The proposed approach

operates on grayscale images and is robust to image compression and other typical attacks. When the image

is attacked the method looses its deterministic nature and uses a properly trained SVM classifier, using the

original detector as a feature extractor. Extensive tests demonstrate that the proposed method guarantees very

high accuracy in filtering detection, providing 100% accuracy in discriminating the presence and the type of

morphological filter in raw images of three different datasets. The achieved accuracy is also good after JPEG

compression, equal or above 76.8% on all datasets for quality factors above 80. The proposed approach is

also able to determine the adopted structuring element for moderate compression factors. Finally, it is robust

against noise addition and it can distinguish morphological filter from other filters.

INDEX TERMS Digital Image Forensics, media authentication, morphological filter detection.

I. INTRODUCTION

In the last decade, researchers and practitioners in multimedia

forensics have been developing a substantial body of knowl-

edge and techniques targeted to the authentication of multi-

media objects and their processing history recovery [1]–[5].

A recent trend tries to define universal detectors able to

reveal manipulations independently from the type of pro-

cessing applied, which could leverage media authentication

in applications like journalism or social media analysis [6].

On the other hand, many methods have been proposed to

detect different types of forgeries, which is very relevant for

diverse applications. In particular, first it is crucial in digital

investigations, given that images, audio tracks and video

sequences now play a crucial role where they often represent

digital evidences to the court [7]. Secondly in multimedia

data phylogeny, which aims at recovering and tracing back

the life-cycle of an image or a video [8]–[11].

The associate editor coordinating the review of this manuscript and
approving it for publication was Wei Zhang.

This broad class of specific manipulation detectors

includes the identification of pasted regions [12]–[16], resiz-

ing [17], [18], re-compression [19], image enhancing [20],

inconsistencies in the geometry and illumination of the image

due to possible manipulations [21]–[23], and various types of

non-linear filtering (especially median) [24]–[35].

In the context of non-linear filtering detection very lit-

tle attention was given to morphological filters [36] often

used in image processing for artifacts removal and image

enhancement [37], [38]. The detection of this kind of filtering

is of interest in the context of both image phylogeny and

specific tampering identification in legal scenarios, but could

be very useful also to detect possible counter forensic attacks

based onmorphology, where such filters, very powerful in the

removal of local noise, could be exploited at the end of the

image manipulation process to cover other types of traces.

In this paper we present a non trivial extension of a recent

work [39] which introduced a deterministic detector of ero-

sion and dilation in binary images. The proposed extension

works on grayscale images by detecting morphological filters
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application in an accurate way both in uncompressed and

compressed images. The method also allows for erosion ver-

sus dilation discrimination and in many cases also for the

adopted structural element identification. Robustness against

JPEG compression, noise addition and confusion with other

types of filters is also tested on various datasets.

The rest of the paper is organized as follows: Section II pro-

vides the theoretical background for the problem formulation;

Section III describes the proposed methodology for morpho-

logical filtering detection in uncompressed and compressed

images; Section IV describes the experimental setup, datasets

and scenarios adopted for testing and validation; Section V

details the experimental analysis and obtained results; finally,

Section VI reports some concluding remarks.

II. THEORETICAL FORMULATION

In this section we introduce the mathematical formulation of

the problem, and we derive the proposed methodology for

morphological filter detection.

A. MATHEMATICAL FORMULATION AND PROPERTIES

Mathematical morphology defines a set of nonlinear filters

commonly employed in digital image processing to modify

the local structural content of images. All the morphological

filters are derived from the various combinations of two basic

operators, erosion and dilation, and a kernel mask (or shortly,

a kernel) called structuring element, characterized by a shape,

a size, and a reference point. The shape and the size of the

kernel are responsible for the behavior of the operator on

the image, while the reference point just defines the shift

of the filtered image with respect to the original. The inven-

tion of such mathematical tools dates back to 1964 [36],

and was meant to the filtering of binary images for mineral

studies. Later studies [40] led to the generalization of the

theory to the case of grayscale images.

According to this theory, given a grayscale image f (x, y)

and a binary structuring element B, the two fundamental mor-

phological operators, erosion and dilation, are respectively

defined as:

f ⊖ B = minB(f (x, y) ∩ Bxy) (1)

f ⊕ B = maxB(f (x, y) ∩ Bxy) (2)

where Bxy represents the structuring element (kernel) B with

the reference point centered at the coordinates x, y of the

image plane, while the intersection operations returns the

subset of the image pixels overlapped with the 1s of B. In this

respect, the basic grayscale operators are particular cases

of rank-order filters, and behave very similarly to min-max

(see examples in Figure 1) and median operators, except for

the shape of the mask.

As in binary morphology, the composition of erosion and

dilation allows defining more complex filters, among which

the most common are the open and close operators, respec-

tively defined as follows:

(f ◦ B) = (f ⊖ B) ⊕ B (3)

FIGURE 1. Example of grayscale erosion (bottom left) and dilation
(bottom right) of an image detail (top left), using a cross-shaped
structuring element (top right). The resulting patches show the effect of
min and max operations: erosion produces a darker version of the
original image eliminating small cross-shaped details, while dilation
produces the opposite effect.

(f · B) = (f ⊕ B) ⊖ B (4)

Also the mathematical properties of morphological

grayscale operators match the ones of the corresponding

binary operators. Consequently, the theoretical background

of [39] remains valid also for in the grayscale domain.

In particular, the following properties are exploited in the

construction of the proposed detector:

(i) Translation invariance: the position of the reference

point only affects the translation of the filtered image

(ii) Dilation commutativity: A⊕ B = B⊕ A

(iii) Associativity: a cascade of erosions (dilations) is equal

to the erosion (dilation) with a mask generated by dilat-

ing each other the original masks (A, B and C are binary

structuring elements)

A⊖ B⊖ C = A⊖ (B⊕ C) (5)

A⊕ B⊕ C = A⊕ (B⊕ C) (6)

(iv) Open and close idempotence: iterating open and close

with the same structural element does not produce addi-

tional changes in the image

A ◦ B ◦ B = A ◦ B (7)

A · B · B = A · B (8)

Additionally, it is easy to see that the two theorems intro-

duced in [39] remain valid, since their demonstrations do not

depend on Eq. 1 and Eq. 2, but only on the properties (i)-(iv),

which hold also for grayscale images.

Theorem 1: Let I ′ = I ⊖K , then I ′ ·K = I ′. Respectively,

if I ′ = I ⊕ K , then I ′ ◦ K = I ′.
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FIGURE 2. Set of structuring elements (kernels) used for simulations. In dark, structural element’s reference point.

FIGURE 3. Proposed detection scheme for raw grayscale images. After opening/closing with a kernel K,
if the image does not change, this means that it was previously dilated/eroded with that kernel (details in
Section II.A). By applying the procedure for a set of possible masks, the detector is thus able to reveal a
perfect match between the input eroded/dilated image and the corresponding opened/closed version.

Theorem 2: Let I ′ = I ⊖ K , then ∀M such that ∃E|M ⊕

E = K , we have that I ′ ·M = I ′. Respectively, if I ′ = I ⊕K ,

then I ′ ◦M = I ′.

Theorem 1 can be equivalently formulated in terms of

series of erosion and dilation operators, according to the

definition of open and close operators. Theorem 2 extends the

equality of Theorem 1 to any kernel maskM that can produce

K by dilation with an appropriate kernel E .

As an immediate consequence of the above theorems,

an image dilated (eroded) with a given kernel K , will remain

unchanged after applying an open (close) operator with the

same element. This provides a simple test to detect a filtered

image: apply an open (close) operator with a kernel K , if the

image does not change, this means that it was previously

dilated (eroded) with that kernel, otherwise it was not. The

detection consists then in subsequently checking with the

above procedure a set of possible masks. In [39], a set of

common kernels were proposed, characterized by some level

of symmetry (see Figure 2).

III. PROPOSED APPROACH

In this section we introduce the proposed detector, distin-

guishing two cases: the detection of morphological filter-

ing on raw images, and the detection in the presence of

post-processing (e.g. compression, noise addition, filtering).

We will see that the former is a trivial extension of the

binary case but has very limited applicability, while the latter

requires further attention.

A. FILTER DETECTION ON RAW IMAGES

According to the theory stated in Section II, in the absence

of post-processing grayscale morphological operators can be

easily and deterministically detected by applying the schema

proposed in [39] and reported in Figure 3.

However, it is worth mentioning that this scenario is rarely

verified in grayscale images, which are typically stored in

compressed format after filtering. The compression (as well

as most other image processing operations) modifies the

image, thus hindering the applicability of Theorem 1 and

thus the applicability of the deterministic method depicted

in Figure 3. Indeed, the detector will never report a perfect

match between the input eroded (dilated) image and the

corresponding opened (closed) version.

In the next section, we propose an extension of the above

approach that is able to deal with such scenario. The new

algorithm will exploit the traces left by the morphological

filters even after post-processing, and will rely on a statistical

analysis, thus loosing its deterministic nature. We will see

however that it is sufficiently robust to many attacks, and in

particular to the JPEG compression.
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B. FILTER DETECTION ON POST-PROCESSED IMAGES

As mentioned in the previous section, any further process-

ing on the filtered image will modify the pixel values, pos-

sibly re-introducing structures that were eliminated by the

morphological operator. A further morphological filtering

will then produce a non-null effect on the image, which

will be revealed by the detector. It is therefore necessary

to verify if some traces of the original filter survive the

post-processing.

Recalling that the grayscale morphology operates as a

local min-max filter, we can expect that it will produce

larger variations in the presence of high-contrast structures

that match the structural element geometry. On the contrary,

unless the post-processing is meant to be extremely visible,

it will introduce small gray level variations on the image.

Consequently, although we will not have a null difference

image at the detector output, we can expect that the local

differences will be much smaller for a filtered image than

for an original one. An experimental evidence of this fact is

provided in Figure 4. Here we plot the log-scale histograms

of the absolute differences before and after the application

of an open operator to a JPEG compressed unfiltered image,

and to the relevant JPEG compressed dilated image (the two

right most columns). Both open and dilation operators have

been applied using the kernel mask 35 in Figure 2, and the

JPEG quality factor has been set to QF = 95. It is possible

to observe that the histogram referred to the dilated image

decreases steeply, with significant bins only for low values of

the difference, while the histogram referred to the unfiltered

image shows a long tail with significant values also above 50.

This means on one side that the compression does not affect

the high-contrast structures present in the original image

(which are then removed by the following open operator), and

on the other side that it does not re-introduce in the filtered

image any high-contrast structure sensitive to the filter itself.

Similar results on the eroded version and the close operator

are shown on the two left most columns.

On this basis, we propose to modify the detection scheme

as shown in Figure 5. The core of the procedure still involves

the application of grayscale opening/closing. In this case,

however, we take into consideration the statistical properties

of the differences between the input and output images, to see

how such residual is distributed. Therefore, we calculate the

histogram of the difference image (processing block HIST

in Figure 5) and feed it into a statistical classifier to perform

the decision. As far as the classifier is concerned, we adopted

a properly trained classifier.

Finally, we should notice that not all the areas of an image

are equally affected by a morphological filter. In particular,

the filter has a negligible effect on flat areas, thus possibly

jeopardizing the results of the detector. To avoid this prob-

lem we decided to limit the analysis to the image regions

that contain significant textures or edges. To this purpose,

we calculate the block-wise normalized local variance α,

i.e., for each block, we normalise all the pixel values to [0, 1]

and then compute the standard variance, and we restrict the

computation of the histogram to the blocks with α > αth,

where αth has been empirically set to 0.15. This task is

performed by the first processing block in Figure 5.

IV. EXPERIMENTAL SETUP

In order to assess the performance of the proposed detector,

we tested it in various scenarios and we evaluated it in terms

of accuracy. In this section we describe such scenarios and the

relevant experiments. Furthermore, we introduce the datasets

used for the testing, and we provide additional details the

relevant training procedure.

A. DATASETS

Three publicly available datasets have been used in the

experiments:

• TheUncompressedColour ImageDatabase (UCID) [41],

built with the purpose of providing a standard set for

performance assessments in image retrieval and com-

pression. The dataset consists of 1,338 uncompressed

color images, with fixed sizes of 512×384 or 384×512

pixels in uncompressed TIFF format.

• The Dresden Image Database (DRESDEN) [42], orig-

inally created for evaluation of forensic techniques

related to camera-based information. From their public

web-interface, we selected the complete set of RAW

images (1,189 uncompressed images, all with fixed size

of 3008 × 2000 pixels).

• The Raw Images Dataset (RAISE) [43], consisting

of 8156 raw images with resolutions ranging from

3, 008×2, 000 to 4, 928×3, 264 pixels. Authors provide

also smaller subsets, among which we selected the one

containing 1,000 images (RAISE-1k).

The three datasets were selected to diversify the range of

resolutions in the experimental tests. In order to evaluate our

proposed schema, all the images were converted to grayscale

with a depth of 8 bits.

B. TESTING SCENARIOS

The proposed detector has been tested in various practical

scenarios:

• The first set of tests were performed in order to under-

stand the impact of the parameters as well as to select a

proper classifier. Based on the setups found on this set of

tests, we kept the best setups (in terms of performance)

for the next tests.

• The second set of tests refers to the detection of mor-

phological filtering. In this case, we want to establish

the accuracy of the detector in discriminating filtered

vs. pristine (unfiltered) images, in classifying the type of

operator (erosion vs. dilation), and finally in determining

the exact structuring element used for filtering, both

in uncompressed and JPEG compressed images with

various quality factors (from QF = 100 indicating
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FIGURE 4. Histograms of differences before and after application of the close and open operators to an
unprocessed image (grayscale version of ‘r3ba1827ft.TIF’ from RAISE-1k) and its eroded and dilated versions,
respectively. Both images have been JPEG compressed with QF = 95. Kernel mask 35 and the analysed windows
size of 1000 × 1000 are used. The chart shows the first 50 bins in logarithmic scale.
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FIGURE 5. Proposed detection scheme for attacked grayscale images. After opening/closing, we select
image regions that contain significant textures or edges and there we calculate the histogram of the
differences between the input and output images. Such histograms are fed into a statistical classifier to
perform the decision (details in Section III.B).

TABLE 1. Parameters selection.

highest quality images, down to QF = 70 which still

corresponds to compressed images of high quality).

• The third set of tests concerns robustness against noise.

The test image is contaminated with random noise and

then compressed, and we evaluate the accuracy of the

detector in determining the presence and type of filtering

and the structuring element used.

• Finally, we want to determine the capability of our

approach in distinguishing between morphological fil-

ters and other filters that produce similar results.

In particular, we considered Gaussian lowpass and

median filtering. In both cases, the filtered images are

compressed and passed to the detector to reveal possible

false alarms.

It is worth noting that, due to the properties analysed in

Section II, in the presence of a cascade of different basic oper-

ators (erosion and dilation), the detector will reveal the last

operator applied. Accordingly, when processing an opened

or a closed image, the detector will reveal the last dilation

or erosion, respectively. Furthermore, in the presence of a

cascade of the same basic operator, the detector will reveal

a single erosion or dilation with the composed structuring

element. Therefore, in the experimental section we will just

consider erosion and dilation detection, even if the image

may have been potentially processed with more complex

combinations of filters.

V. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, all experimental tests carried out are described.

All tests are performed using Python 3.6 and libSVM on a

standard machine (Macbook Pro 2016 2,3GHz 4-kernel Intel

Core i5, 8GB ram).

A. THE SENSIBILITY AND THE

CHOICE OF THE CLASSIFIERS

In order to understand the impact of the parameters as well

as to select a proper classifier, we ran some experiments on

a subset of images. After that, we empirically determined

the values for these parameters. Table 1 summarizes these

parameters, their meaning and how their values were decided.

The classifier receives in input the histogram of the

differences between the input image and the relevant

opened (closed) image and returns a binary decision.

An important aspect is the training of the classifier. In fact,

there is a clear dependency of the image statistics on the level

of compression applied, which is reflected on the character-

istics of the histogram. As an example, Figure 6 (a) shows

the same situation of Figure 4 at a lower quality factor. It can

be observed that the two distributions are still well separable,

but the histogram related to the filtered image shows a longer

tail, due to the larger artifacts introduced by the compression.

Accordingly, we decided to train a set of classifiers for

varying JPEG quality factors, from 100 to 70. During the
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FIGURE 6. Analysis of different cases in erosion detection. (a) Histograms resulting from original image and its dilated
version, after compression with QF = 80; (b) Histograms resulting from dilated and eroded images produced with the
same kernel, after compression at QF = 95; (c) Histograms resulting from eroded images produced with unrelated kernels,
after compression at QF = 95; and (d) Histograms resulting from eroded images produced with kernel K and its dilated
version K∗, after compression at QF = 95.

TABLE 2. Morphological filtering detection results on all three datasets using SVM with RBF kernel, 10-fold cross validation. The numbers are in
percentage and each of them is the average performance (for distinguishing between pristine versus filtered images) over all 36 kernels. Detailed results
are reported in Table 3.

test phase, we tested with different classifiers: k-NN, deci-

sion trees, naive Bayes classifier, and SVM, and empirically

decided to use SVM with the radial basis function (RBF)

kernel.

We also note that given the appropriate quality factor,

the histograms of differences show a peculiar behavior only if

the detector parameters match the input filter in both the oper-

ator (erosion or dilation) and the structural element (kernel),
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TABLE 3. Detailed results on erosion and dilation detection on UCID, Dresden and RAISE-1k datasets. K indicates the kernel mask used (from 1 to 36).
Average results are summarised in Table 2.
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whereas such behavior is never found in all the other com-

binations. It is important to notice that the application of the

detector to an unfiltered image or to an image filtered with

a different combination of operator and/or kernel produces

similar results, i.e., only the matching detector responds to

the filtered image. As an example, in Figure 6 (b) we show

the histograms deriving from the application of an erosion

detector to an eroded and a dilated image, both with the same

kernel. It can be observed that the dilated image responds

similarly to the uncompressed image in Figure 6 (a). Anal-

ogously, in Figure 6 (c), we compare the histograms deriving

from the erosion detector applied to two eroded images, one

with the same kernel and the other with a different one. Also

in this case, the image filtered with a different kernel responds

as unfiltered. Finally, in Figure 6 (d) we show the case of

application of the erosion detector to two images filtered with

kernels belonging to the same group (i.e., one can be obtained

from the other by dilation). As expected from Theorem 2,

the two histograms are almost overlapped, since both show

the statistical properties of a filtered image.

For some other choices, for example the block size or

αth, all values are empirically selected and are reported

in Table 1.

B. DISTINGUISHING BETWEEN PRISTINE VERSUS

MORPHOLOGICAL FILTERED IMAGES

1) EXPERIMENTAL RESULTS ON RAW IMAGES

We ran a test on uncompressed images in order to confirm

the deterministic nature of the proposed approach on raw

images. Since the detection strategy in this case is the very

same proposed in [39], we followed their general approach

for deriving results relative to raw grayscale images. Each

image has been processed with erosion and dilation operators

considering all the 36 kernels. All images, along with their

unprocessed versions, were fed to both dilation and erosion

detectors. For each image, all 36 kernels are tested, returning

either the largest kernel with perfect match between input and

output or no detection if all kernels fail. All three datasets

result in 100% accuracy in discriminating the presence and

the type of morphological filter.

2) EXPERIMENTAL RESULTS ON JPEG COMPRESSED IMAGES

In order to test the approach on JPEG compressed images,

we considered a set of seven different quality factors

with QF ∈ {100, 95, 90, 85, 80, 75, 70}, with 14 (7 × 2)

binary classifiers, respectively, using a Gaussian kernel with

grid-search for the parameters. We apply k-Fold validation

with k = 10. Shown in Table 2 are the average results (over all

kernels) of the proposed method on three datasets at the seven

quality factors. The detailed results for all kernels and both

morphological operators on the three datasets are reported

in Table 3. According to the results, we can observe that the

proposed method can provide high detection performance on

low compression level (i.e., quality factor QF ≥ 80) with

accuracy equal or above 76.8% on all datasets. At stronger

FIGURE 7. Precision (computed as percentage) on erosion detection
under different resolutions. Dataset: Raise, QF = 90. All 36 kernels are
used, results are shown in the error bars.

FIGURE 8. Confusion matrix on erosion detection for multiple kernels.
Dataset: Raise, QF = 90, full resolution. Values are normalized and are in
percentage.

compression levels, the performance reduces significantly.

The resolution also plays an important role as it can be

grasped from the results. Indeed, UCID has lower perfor-

mance with respect to Dresden and Raise. It is also interesting

to notice that there is little difference between Dresden and

Raise. To have a deeper understanding of the impact of the

image resolution, we ran another test on different image

resolutions: the proposed method achieves good performance

(over 90%) for resolution from about 1, 000×1, 000. Shown

in Figure 7 are results over 36 kernels on erosion detection

for RAISE-1k images.

C. DETECTOR ROBUSTNESS ANALYSIS

The second test in this set is to analyse the impact of dif-

ferent kernels. We applied all kernel masks and then tried

to detect them. Shown in Figure 8 is the confusion matrix
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FIGURE 9. Precision (computed as percentage) on dilation detection
under different attacks. Dataset: RAISE-1k, full resolution, QF = 100,
using SVM with RBF kernel, 10-fold cross validation. All 36 kernels are
computed and the results are shown in the error bars.

TABLE 4. Results on erosion detection on Raise under different attacks,
using SVM with RBF kernel, 10-fold cross validation.

of the erosion detection (similar results were obtained on

dilation detection). According to the results, the detector was

able to recognize small size kernels (kernels from 1 to 14),

or larger kernels in special shape (kernels 20 to 25), but poorly

classified the others. This is understandable as a consequence

of Theorem 2.

The third set of tests concerns analysis of robustness

against noise addition. In the first test, morphological filter-

ing is applied to each image and then this is contaminated

with a noise. Five different attacks - pepper & salt noise,

Gaussian filtering with window size 3 × 3, median filter-

ing with window size 3 × 3, scaling at 1.1x and scaling at

0.9x - were applied and average results (on all kernels) for

dilation detection using SVM with RBF kernel on RAISE1k

are correspondingly: 97.92%, 81.21%, 87.94%, 67.44%, and

67.81% (the results are summarized in Figure 9. According to

the results, we can claim that the proposed method is robust

against noise addition but not against processing involving

interpolation (e.g., resizing).

We applied a further test to understand if the proposed

method can still detect the morphological filter after two level

of processing where the second one is a compression. Thus,

each image after a morphological filter is first contaminated

with a noise, and then is compressed under different qual-

ity factors. The results in Table 4 show that the proposed

method can still detect the morphological filter, however,

its performance is getting worst as the compression level

increases.

FIGURE 10. False Positive (computed as percentage) on 200 images from
RAISE on erosion detection over all 36 filters. Images are in raw format,
full resolution. The classifiers were trained on 800 images (eroded vs.
non-filtered) and tested on the rest 200 images (filtered with pepper &
salt, Gaussian and median).

D. MORPHOLOGICAL FILTERS VERSUS OTHER FILTERS

Finally, we want to determine the capability of our approach

in distinguishing between morphological filters from other

filters that produce similar results. In particular, we con-

sidered three filters: pepper & salt, Gaussian lowpass and

median filtering. In all cases, the filtered images are uncom-

pressed and passed to the detector to reveal possible false

alarms. In this experiment, we trained the erosion versus pris-

tine classifier with 800 uncompressed images from RAISE

in full resolution. The trained classifier is then applied to the

rest of the 200 images, filtered with pepper & salt, Gaussian

lowpass and median filters. The average number of false

positives (over 200 images) for pepper & salt, Gaussian with

window size 3×3, Gaussian with window size 5×5, median

with window size 3× 3, and median with window size 5× 5

are 3.51%, 5.72%, 5.28%, 14.11%, and 13.17%, respectively.

The results are summarized in Figure 10. This confirms that

the proposed method can distinguish between morphological

filter and other filters. Only in the case of median filters the

confusion increases, but this is very reasonable, since in the

case of grayscale images the effect of morphological filters

and median filters is very similar.

VI. CONCLUSION

In this work we propose an effective detection strategy to

assess the use of morphological filtering in a grayscale con-

text. We deal with uncompressed images proposing a deter-

ministic approach, based on mathematical properties enjoyed

by basic morphological operators. We additionally propose

a modified pipeline to detect morphological processing in

compressed images, by exploiting the difference histogram

information as feature for classification. We present a testing

phase in which both uncompressed and compressed scenarios

are taken into consideration. Results show the effectiveness of

our proposed approach in both cases. Moreover, the proposed

approach is able to determine the adopted structuring element
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for moderate compression factors, and is robust against a

number of attacks.
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