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Abstract. This paper concerns morphological stability of a similarity solution to the
Stefan problem with surface tension and initial supercooling. The linear stability analysis
shows that for a nonzero surface tension each perturbation mode with a nonzero wave
number is stable. However, the solution is unstable with respect to perturbations with a
zero wave number limit point in their Fourier spectrum.

0. Introduction. In this paper we address the morphological stability of a similarity
solution to the Stefan problem with surface tension and initial supercooling.

The study of shape instabilities in solidification with supercooling is important, in
particular, because these instabilities initiate the appearance of dendrites.

Following the review by Langer [1], let us recall two well-known examples of morpho-
logical instabilities. The first concerns the quasi-steady-state growth of a spherical germ
into a supercooled melt [2] (Mullins and Sekerka, 1963). The respective model problem
reads:

2
urr H—ur = 0 Vr R, (0.1)

r
27

u\r=R = —-5-, 7-surface tension, (0.2)R
dR

D[ur]\r=R = ~ (0.3)

(here [ ] denotes the jump across the solid/liquid interface (from solid to liquid)),

tt(oo) = —8. (0.4)

(Hereon equal heat-diifusivities of the liquid and solid are assumed for the sake of sim-
plicity.) There is a simple solution to this radial problem according to which a germ with
an initial radius bigger than some critical value Rq goes on growing monotonically. The
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342 I. RUBINSTEIN and B. ZALTZMAN

linear stability analysis of this solution yields the existence of another critical value of
the germ radius Rcr > Ro, uniquely determined by 7 and 6, above which the solution is
unstable.

The next example we would like to recall concerns the travelling wave solution to the
one-dimensional Stefan problem which, upon the transformation to a coordinate system
moving with the wave speed v, reads

uzz + vuz = 0 Vz ^ zo, (0.5)

u\z=zo = 0, (0.6)

[««o = v, (0-7)
■u(oo) = Uoo, u(—00) = 0. (0.8a,b)

A one-parameter family of solutions (with arbitrary v) to this problem exists for only
one critical value of undercooling: = —1. For different undercoolings no planar
travelling-wave solutions exist. The linear stability analysis of this solution yields a
critical wave-length of perturbation, above which the solution is unstable. This critical
wave-length depends on the wave speed, unspecified by undercooling. This sets the
ground for the "selection" problem, resulting here from particularity of the basic solution
concerned. In this sense, the aforementioned sphere growing into the undercooled melt
represents a fairly exceptional example of an analytic solution to be subject to a stability
analysis and completely determined by the data of the problem (undercooling).

Another explicit solution of the Stefan problem, specified completely by the under-
cooling, is the famous planar similarity solution of the two-phase problem. An additional
importance of this solution lies in the fact that it represents the long-time asymptotics of
the solutions to the one-dimensional Cauchy-Stefan problems with constant temperatures
at infinities, whenever supercooling is below the critical value. In this solution the speed
of the free boundary varies and tends to zero as time goes on. Stability of the planar
similarity solution with respect to multidimensional perturbations of finite wave-length
has been proved by L. Rubinstein [3] for the normal (non-supercooled) Stefan problem
without surface tension. Chadam and Ortoleva [4] addressed stability of the respective
solutions for the Stefan problem with surface tension and initial supercooling. They
found that a similarity solution is unstable without surface tension and asymptotically
stable when surface tension, however small, is present. More precisely, they proved that,
with a nonvanishing surface tension, every perturbation mode with a finite nonzero wave
number asymptotically decays in time.

We wish, however, to reexamine here the conclusion of the overall asymptotic stability
of the planar similarity solution with supercooling in the presence of surface tension. Our
ultimate claim is that a proper handling of the long-wave components of the perturbation
results in instability for any given surface tension.

Notation. Hereon we will denote by C with a respective subscript positive constants.
We will also use the common notations O(-) and o(-), occasionally with subscripts de-
noting the respective infinitesimal variables.
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1. Formulation of the problem. Main results. The formulation of the problem
is as follows. We consider a two-dimensional Stefan problem with surface tension:

ut = Au, S(x,t)/0, t>t0, (1-1)
u = -7K, [VuV5] = St, for S(x,t) = 0, t > t0, (1.2)

u(x, T) = Uo(x), 5(x, T) = 50(x), (1.3)

tio(x) —> Uqo 6 (—1,0) as x —* oo, ito(x) —» 0 as x —> — oo. (1.4)

Here 5(x, t) = 0 defines the position of the solid/liquid interface and A'(x, t) its average
curvature, K = (|V5|2A5 - ±V(|VS|2) • VS)/(2|VSf).

We are about to analyze the perturbation of the following planar similarity solution
to the aforementioned problem:

S(x,t) = {x = Rs{t) = 2aVt}, (1.5a)

us = f^oo +2aexp(a2)(l -erf(^=)), x>2 oty/t,

\o, x <

Here a is the root of the transcendental equation
poo

2aexp(a2) / exp(-y2)dy = -u^. (1.6)
J a

Let us consider a non-planar two-dimensional perturbation of the similarity solution
of the form:

u£(x,y,t) = us(x,t) + eu(x,y,t) + 0(s2), (1.7a)

S(x,t) = {(x,y,t): x = RE(y,t)}, Rs(y,t) = Rs(t) + eR(y,t) + 0(e2) (1.7b)

with Rs(t) = 2a\Jt.
The linearized initial-boundary value problem for the perturbation reads:

ut = Au, x > Rs(t) = 2ay/t, t > T, (1.8)

duS d 7 D „ d2 s
U = + ^Rvv> u* - - ~q^2~R' °n x = 2aVt, t > T, (1.9a,b)

u(x, y, T) = y), for x > 2aVf, <f>(x, y) -> 0 as x -► oo, R(y, T) = r(y).
(1.10a,b)

Following Lev Rubinstein's idea [3] we make the change of the dependent variable

QUS <"yv — u + ~~ ~^Ryy (1-11)

followed by the Fourier transform in y:

/OO
v(x, y, t) exp(-ily)dy, (1.12)

-oo
W

f /oo R(y,t)exp{-ily)dy. (1.13)
-OO
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This yields the following one-dimensional time-dependent initial-boundary value prob-
lem for wl and /':

wlt = wlxx + fuf + ~ j (/' + l2fl) exp{l2t), x > 2aVt, t > T, (1.14)

wl = 0, wlx = exp(l2t), for x = 2aVt, t > T, (1.15a,b)

w\x,T) = <t>\x), f\T)=F(l). (1.16a,b)

Here 4>l(x) = Jxoo(4>{x,y)+ufr(y)-lryy(y))exp(-ily)dy, F(l) = f^riy) exp(-ily)dy.
It may be shown (see Refs. [3], [4]), using the respective Green's function of the heat

equation, that the solution satisfies the following integro-differential equation:

j'(t) = -I(t)exp(-l2t) - J (fl{t) + l2fl(t)) exp(—/2(f - t))(P(£,t) 4- l2V(t,T))dT.

(1.17)

Here I(t) = Uix(2a\ft, t) and U\ is a solution of the following problem:

U\t = U\xx, x > 2a\ft, t > T, (1-18)

Ux{2aVt,t) =0, t>T, (1.19)
Ui(x,T) = 4>'{x), x>2 aVf. (1.20)

Furthermore, P{t,r) = U2xi^oi\/i, t) and U2 is a solution of the problem

U2t = U2xx, x > 2aVt, t > t, (1-21)

U2(2aVt,t) =0, t > r, (1.22)
U2(x,t) = Ux{x,t), x>2 ol\[t. (1-23)

r(£,r) is defined by replacing ux(x,t) by ^ in the definition of P(t,r).
Let us recall the following results of Refs. [3, 4], summarized below in Lemmas 1-3.

Lemma 1. If <pl(x) = 0(1) as x —* 00, then

I(t) < Cxt'1'2. (1.24)

Here the constant C\ depends only on the bound on <t>1 at infinity.

LEMMA 2. The following estimate holds:

0<C^<-P(t'r)< W?' (L25)

For large t, P(t, r) satisfies the asymptotic equality

P<i'" = -OTT + ̂ +°(^ (1.26)

as t — t —> 0+.

Lemma 3. The following estimate holds:

0 <^r<n^)<J^r (1.27)



MORPHOLOGICAL INSTABILITY OF SIMILARITY SOLUTION TO STEFAN PROBLEM 345

For large satisfies the asymptotic equality

7 017r|t'r) = i^frf + 5vl+0(VFri:) (L28)
as t — t —» 0+.

The following Theorem 1 is a straightforward modification of the main Theorem 4.1
of Ref. [4], proved there by using the asymptotic properties (1.24), (1.26), (1.28) of the
kernels P(t,r), r(it,r) and the function I(t).

Theorem 1. For each fixed I > 0, the following equality holds:

fl(t) = C^{l)gl{t) exp(-62£)(l + o(l)), as l2t —> oo. (1-29)

Here

g\t) '£ f-vW/eIp IVt\ (1.30)

is the solution of the following asymptotic equation:

and

I 2 Q \ ol\J12 — b2 ,

g' + 27F^W7t)= ui " (L31>

b2« + fiwu+w (132)

Hereon, for the sake of simplicity, we limit ourselves to odd perturbations and thus to
a sine Fourier transform with I nonnegative. The limitation may be trivially lifted by
replacing in what follows I by |Z|.

Remark. For large t and small I the following approximate equality holds:

gl = exp(alVt)(l2t)a2 (1 + o(l)) as I —> 0, (1.33a)

fl = C4exp(alVt)exp(-^fl3t)(l2t)a2(1 + oi(l) + oi2t(l)) as I —► 0, l2t —> oo. (1.33b)

Using these equalities Chadam and Ortoleva [4] concluded that for every 7 > 0 the
similarity solution is stable, since / —► 0 when t —> 00 for every I > 0. One may, however,
distinguish two time scales as defined by this equality: for t such that I3t -C 1, /' grows
exponentially in y/t, whereas for t such that l4t 1 it decays exponentially. Thus, for I
sufficiently small the stabilization time is very large.

This motivates the following hypothesis: the neighborhood of zero of the perturbation
Fourier spectrum may have an effect upon the solution stability. To analyze this effect,
we have to study not a fixed mode of perturbation, but rather investigate all modes of
perturbation, especially the long-wave part of the Fourier spectrum, uniformly in time.

For this purpose one should look for a suitable scaling of the time and space variables.
Let us define the scaled variables as

r = tl2, z = xl, Wl = ~. (1.34a-c)
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The function Wl satisfies the following initial-boundary value problem:

wr = WL + ut (/' + f) exp(r) + y (/' + /') exp(r), 2 > 2 oty/f, t > l2T, (1.35)

Wl=0, Wlz = — fl(r) exp(r), for 2 = 2a^r, r > l2T, (1.36a,b)

Wl(z, l2T) = f(l2T) = F(l). (1.37a,b)

I enters crucially this scaled formulation through:
1. the initial moment dependence l2T,

1 ' 1 1
2. the inhomogeneous term ■%-(/ + / ) exp(r) in the equation (1.35).

The function /' satisfies the following integro-differential equation with respect to the
new time variable r:

f(T) = —I(t) exp(-r) - [ (fl(r) + f(r)) exp(-(t - t))(P(t, s) + IF(t, s))ds.
J l2T

(1.38)

Here I(t) is defined by replacing <f>l{x) by ^ ^ in the definition of I(t).
The possibility to approximate, for r y, the solution of the problem (1.35)-(1.37a,b)

by that of the limiting problem for I —» 0 is asserted by the following Theorem.

Theorem 2. If <f>l(z) = 0(12) and <t>lz(z) — 0(1) uniformly in z as I —> 0 then for
Vr e [0, £ > 0,

/' = F(i)/o(r)(l = 0(le)) as I -» 0. (1.39)

Here /o and Wq are the solutions of the following limiting initial-boundary problem
independent of I:

Wot = W0zz + uf(f° + /°)exp(r), z > 2avr, r > 0, (1-40)

W0 = 0, W0z = —/o(r) exp(r), 2 = 2a\/r, r > 0, (1.41a,b)

Wo(*,0) = O, /o(0) = 1. (1.42a,b)

Proof of Theorem 2. The proof is based on the repeated use of the monotonicity prop-
erty of the integro-differential operator (1.38) expressed by the following Lemma:

Lemma 4. a) -P(t,r) > lT(t,r) for Vr e [T0,f], Vt € [0,C5^p].
b) Let I(t) < 0, /(T0) > 0, /(T0) > 0. Then f(t), f(t) > 0 V* G [T0,

Proof of Lemma 4- Since

U2(x,t,r) = ~U2(-^=,^,lj , U2x(x,t,r) = ^U2x ^,lj , (1.43a,b)

then

P(f,T) = It/2j2aA 1) =;P(;I- (114)
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Applying the same change of variables to the function r(i, r), we find that

rM = >3.(2<V^, i) = ̂ F(C)' (145)

Therefore, we have to compare the functions -±=P(£) and Zf(£) for £ > 1. Making use of
the estimates (1.25), (1.27), we obtain that the inequality

-^tm > mo > o (i.46)
holds for all £ > 1 such that

Returning to the variables t and r, we obtain

0<t< TyT )C2^T- (l48)
7(1 +a) Z

Choosing C5 = C*2 we complete the proof of the statement a) of Lemma 4.

Let us prove the statement b). Since /(7b) > 0, t* — inft>r0(/(f) < 0) > T0. Making
use of the statement a) we obtain the inequality t* > C^y/Ta/l, thus completing the proof
of Lemma 4. □

The proof of Theorem 2 proceeds by considering three overlapping time intervals: short
time (Z2T < r < T*), intermediate time (^- < r < 4a2), and long time (2a2 < t j).
The appearance of these time intervals is motivated by the presence of two singular points
in the equation (1.35), r = 0 and r = 00. We will prove Theorem 2 by constructing
the respective barrier functions in, generally speaking, nonoverlapping neighborhoods of
these singular points. Therefore, in order to complete the estimate (1.39) for all times
we will also have to consider the intermediate time.

Lemma 5 (Short time estimates l2T < r < T*). If the conditions of Theorem 2 hold,
then for Vt 6 [Z2T, T*]

Wl = F(l)W0(l + O(l)), fl = F(l)f0(r)(l + O(l)) as I - 0, (1.49a,b)

where T* is a positive constant independent of I.

Proof of Lemma 5. Returning to Lemma 4 we observe that the integro-differential
operator (1.38) is monotonic for r G [12T,CsVT], Thus we base the proof of Lemma 5
upon the construction of the respective barrier functions. Let us define the lower barrier
function V as a solution of the following boundary value problem:

usH
VT = Vzz + —, z > 2otyfr, t > 0, (1.50)

V = 0, Vz = —f3H, for 2 = 2aty/r, r > 0. (1.51a,b)

Here 0 < (3 < 1 is a constant defined below. We define the upper barrier function as — V.
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We look for V in the family of self-similar solutions:

V = V(Z) = v(-j=\, H — Ce\fr. (1.52a,b)

Since uf = a exp(a2—£2)/i/r, the function V satisfies the following differential equation:

2 cv
V" + 2£V' = exp(a2 — £2), £ > a. (1.53)

Integration of this equation yields

9<-v
V = C6-g-(£ - a) exp(a2 - £2) - C7 exp(-£2)- (1.54)

Through another integration, making use of the boundary conditions, we obtain

V = C6^ exp (a2) (erf(£) - erf (a)) + exp(-a2) - exp(-£2)^ .

(1.55)

Let us prove that for Va > 0 there exists (5 E (0,1) such that V(f) <0 for V£ > a.
Since V(a) = 0, V'(£) < 0 for £ e (a, a + V'(f) > 0 for £ > a + ^ it is enough to
prove the aforementioned statement for £ = +oo:

V(+oo) = C6^exp(a2) ^exp(-a2) - y/n + aj (1 - erf(a))^ . (1.56)

Since

(see Ref. [5], p. 298),

^exp(a2)(l -erf(a)) > /2\ — t1-57)
I \faz + 2 + a

K(+oo) < -C6-(1.58)
P ya +2 + a

The latter estimate yields

V(+oo) < 0 forV/3e(-^|L^,l). (1.59)

In order to show that V(z,r) and —V(z, r) indeed represent the lower and upper
barriers, respectively, for W1(z,t) we use the following construction. Let us begin with
evaluating W0, f0 at the initial moment r = l2T0. To this end, let us define the functions
W(z,t) =f —Wo{z,t) + IV(z,t) and H d= -(/o(t) - 1) + IH(t), satisfying the equation

W?T = Wzz + usz(H + H) exp(r) + Jx (z, r) (1.60)

where

Ji — usz (lH ^ - exp(-r)^ - IH exp(-r) - exp(r)^ . (1-61)
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For the function IV to be lower barrier for Wo on the time interval (0, l2T). W has
to be negative and for this it suffices for Ji to be negative for r € (0, l2T). The latter is
guaranteed, taking into account that ztf is negative, by the inequality

Ji < itf (C6^- ^ - exp(Z2T)^ - l2Vf exp(r) - exp(Z2T)^ <0 for r 6 (0 ,l2T).

(1.62)
Obviously, (1.62) holds for Cq > 0 sufficiently large. Making use of boundary conditions
(1.41b) (1.51b) and inequality (1.62) we obtain

H(t) > — II\(t) exp(—t) - f (H(s) + H(s))exp(-(s - r))P(T,s)ds, (1.63)
Jo

where /i(r) is defined by replacing <pl{x) by = limz_>00 V(z, r) < 0 in the definition

of I(t). Similarly to the proof of statement b) of Lemma 4, we find that H > 0, which
implies through integration, using the definition of H,

/o(t) - 1 < C6l2Vr for Vr € [0, l2T], (1.64)

Applying the maximum principle to Eq. (1.60) and accounting for the Dirichlet boundary
data and estimates (1.62), (1.64), we obtain

W(z,t) < 0 => Wo(z, r) > VooI for Vz > 2a\fr, r € [0, l2T}. (1.65)

Similarly, we may consider the sums W0{z,t) + IV(z,t) and (/o(t) — 1) + IH(t) and
obtain the following estimate:

|/o(r) - 1| < C6l2Vf, \W0(z,t)\ < -Vvol for Vz > 2a^, r € [0,l2T], (1.66a,b)

The estimates (1.66a,b) allow us to consider the differences Wl — F(l)Wo *== W\{z, r),
/' - F(l)f0 d= /i(r) for r > l2T. The conditions of Lemma 5 and estimates (1.66a,b)
yield

|Wi(z,Z2T)| < CglV(z,l2T) for 2 > l2T, |/i(/2T)| < C8lH(l2T) (1.67)

for some Cg > 0. Let us consider the differences C$IV(z,t) — W\(z,t) =f W2(z, r),

Cg,lH(r) — /i(t) '=f J2{t). These functions satisfy the following equations:

W2t = W2zz + uf (/2 + /2) exp(r) + y (/2 + /2) exp(r) + J2{z, r), (1.68)

where

,S I ir I 1  /_n\ rr \ 7* ,J2{z,T) = C8 yH -exp(r)J - H exp(r)J - — (H + H) exp(r;

+ y(/o + /o)exp(T).
(1.69)

Once again, it is observed by comparing (1.35) and (1.68) that for the function C%IV to
be a lower barrier for W\, it suffices for J2 to be negative. Since it may be easily shown,
similarly to (1.64) that for Cs sufficiently large

Cs(H + H)-(fo + fo) >0 for t6(!2T,^), (1.70)
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the negativity of J2 is guaranteed, taking into account that uf is negative, by the in-
equality

H — exp(r)^ — H exp(r) > 0. (1-71)

Obviously, (1.71) holds for 0 < r < Cg for some Cg E {0,Cz/VT). Hereon, the rest of
the proof of Lemma 5 is identical to the proof of estimates (1.66a,b); that is, omitting the
unneccessary technicalities, the respective integro-differential inequality for the function
/2 is written and the monotonicity properties of Lemma 4 are used; upon obtaining the
estimate (1.49b), we use the maximum principle to estimate the function W2. □

Lemma 6 (Intermediate time estimates T*/2 < r < 4a2). If the conditions of Theorem
2 hold, then for Vr € [^-,4a2]

Wl =F(l)W0(l + O(l)), fl =F(l)f0(r)(l + O(l)) as I - 0. (1.72a,b)

Proof of Lemma 6. With the help of Lemma 5, we can neglect the dependence of the
initial moment on I and consider the problem (1.34)-(1.36) with the initial moment T* /2
and the following estimates on the initial data:

w< [z, ^ = F(l)Wo (z, y) + °(0). /' (y) = Fm (y) ^ + °W
as I —> 0.

(1.73a,b)

Lemma 4 yields the monotonicity of operator (1.38) in the time interval [T"*/2,4a2].
Let us consider the functions

r) = E{r) = f-mur) (17te_b)

According to (1.35)-(1.36) and (1.40)-(1.41), they are solutions of the following initial-
boundary value problem:

Qt = Q22 + usz(E + E) exp(r) +~(E + E) + JF(0(/o(r) + /0(r)),

t > T*, z> 2aV^,

Q = 0, Qz = -Eexp(r), r > T*, z = 1a.\fr. (1.76a,b)

Since Lemma 5 yields the initial boundedness of the functions Q and E at the instant
T*/2, one may easily prove, using the respective barrier functions, boundedness of the
functions Q and E in the finite time interval t € [^-,4a2]. The upper barrier may be
defined as the solution of the equation (1.75) with I equal to zero and positive initial
data. The proof of Lemma 6 is thus completed. □

Lemma 7 (Long time estimates 4a2 < r < 1 //). If the conditions of Theorem 2 hold,
then for Vr 6 [2a2, Ve £ (0,1),

f =F(/)/0(t)(1 + O(/£)) as Z —► 0. (1.77)
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Proof of Lemma 7. With the help of Lemma 6 we can consider the problem (1.35)-
(1.37) with the initial moment equal to 2a2. Lemma 4 yields the monotonicity of operator
(1.17) in the time interval [2a2,1//1_£],

Let us once more consider the functions Q(z,t), E{t) defined in the proof of Lemma
6. The functions E(t) and /o(r) satisfy the following integro-differential equations:

/o(t) = —/i(t)exp(—t) — f ((/o(s) + /0(s))exp(-(r - s))P{r,s)ds, (1.78)
ha2

E(t) = — /2(T)exp(—r) - [ ({E(s) +E(s))exp{-{T - s))(P{t,s) + IT{t,s))
ho? (1.79)

+ FV)ifo(s) + /0(s))r(r, s))ds.

Here Ji(r) and /2(t) are defined by replacing <j)l(x) by Wo(z,2a2) and {Wl(z, 2a2) -
F(l)Wo(z,2a2))/l, respectively, in the definition of I{t). Making use of Lemmas 1 and 6
we obtain the estimate

\h(r)\ < |/2(r)| < (1.80a,b)

Let us define the functions /1, /2 as solutions of the following asymptotic equations:

A = ^exp(-r) + -^=(A +/i), /i(2a2) = 2/o(2a2), (1.81)Vr VT

h — —7= exp(-r) + —i=(f2 + h) + Cn( 7(1 + + /1) > /2(2a2) = 2|£'(2a2)|,
VT VT

(1.82)

where C\\ = max; F(l).
Equations (1.81), (1-82) and estimates (1.80a,b) yield

/i(t) > |/i(r)|exp(-r) + (/i(r) + /i(r)) / -  = exp(-(r - s))ds, (1.83)
J2c? k^-KTsjT - S

h{r) > |/2(t)| exp(-r) + (/2(r) + /2(r)) [ Qv^ = exp(-(r - s))ds
J2a2 k^TsjT - s

r°° + a) ( • )
+ Cn(/i(r) + /i(r)) / r , exp(-(r-a))ds.

ha"2 2y1T\/T ~ s

It may be shown by differentiation of (1.81), (1.82) that for r large enough, /i,/2 > 0.
Using the monotonic growth of the functions /2,/2,/i,/i in time and the inequalities
(1.25), (1.27) we obtain the following integral inequalities:

h(r) > |/i(r)|exp(-r) - f (A(s) + /i(s)) exp(-(r - s))P{t, s)ds, (1.85)
72q2

Mt) > |/2(r)|exp(-r) - f ((/2(s) + /2(s))P(r,s) + Z(/2(s) + /2(s))r(r,s)
ho? (1.86)

- Cn(fi(s) + /i(s))r(r,s))exp(-(r - s))ds.
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Comparing (1.78) and (1.85) we obtain the following inequality for the difference

fi ~ fo-
il (t) - /o(r) > - [ ((fi (s) - fo(s)) + (/i (s) - fo(s))) exp(—(r - s))P(t, s)ds.

J 2a2
(1.87)

Making use of the statement b) of Lemma 4 and the positivity of the difference f\ — fo
at the instant r = 2a2 we conclude that

fo < fi, fo< fi for r > 2a2. (1.88a,b)
Accounting for the latter inequalities, we may rewrite the inequality (1.86) in the follow-
ing form:

MT) > \I2(t)\exp(—r) - f ((/2(s) + /2(s))P(r, s) + /(/2(s) + /2(s))r(r, s)
Jio? (1.89)

- (/o(s) + /0(s))r(r, s)) exp(—(t - s))ds.

Let us denote by G{t) the difference /2(t) — E(t). Using the inequality (1.89) we
obtain

G{r) >- fT ((G(s) + G(s))P(t, s) + l(G(s) + G(s))T(t, s)
J (1.90)

— l{G(s) + G(s))r(r, s)) exp(—(r — s))ds.

Once more, making use of the statement b) of Lemma 4 and the positivity of G at the
instant r = 2a2, we conclude that

E{t) < /2(t) for r G ^ (1.91a)

Similarly, we may consider the sum /2(r) + E(t) and obtain the following estimate:

(1.91b)\E(t)\ < /2(r) for r G

Since

0 </2(t)<C12t/1(t), (1.92)

whereas Theorem 1 yields

/o(t) = /i(r)(Ci3 +o(l)) as r —> 0, (1.93)

we conclude that

\f(r)-f0{r)\ =1\E{t)\ < /0(r) as r ^ 0. (1.94)l + o(l)
This completes the proof of Lemma 7. □

By this we have also completed the proof of Theorem 2. □
Making use of the equality (1.29), asymptotically valid for r > 1, and returning to

the original variables we obtain the following main theorem.

Theorem 3. Let F{1) = /^o^(j/,T)exp(-%)dy and F{0) = 0, F(oo) = 0, f(n>(0) ^
0 for some n. Then if = 0(12), 4>lx{x) = 0(12) as I —» 0 uniformly in x, the
perturbation of the free boundary grows unboundedly in time.
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Proof of Theorem 3. The idea of the proof is as follows. The overlap of the two time
intervals r <C } and r 1, which appeared in Theorems 1 and 2, yields the Fourier
transform of the free boundary /'(£) = R(y,t) exp(—ily)dy in the form

f\t) = Ci5F(l) exp(alVt) exp (ft)*2 {I + o(2t(l) + o/(l)) (1.95)

as t — l2t —> oo, I —> 0. Making use of the inverse Fourier transform we shall then prove
the statement of Theorem 3.

Equality (1.95) is obtained by using Theorems 1 and 2 which yield

/z(t) = Ci5F(l)g(T)(l + oT(l))(l + o/(l)) as r —> oo, Z —> 0. (1.96)

Furthermore, Remark 1 to Theorem 1 yields

/'(r) = Ci5F(0exp(QV/r) exp (t)q2(1+ or(l)+ o/(l)) as r -> oo, I-* 0,

(1.97)
which in turn yields, upon returning to the original variables, equality (1.95).

Let us consider next a perturbation of the free boundary antisymmetrical with respect
to y = 0. Its inverse Fourier transform reads

pOO rOC

R(y,t)= / fl(t)sin(ly)dl = Ci5 F(l)g(l2t)(l + oZ2t(l) + 0/(1)) sm(ly)dl
Jo Jo

= Ci5 J F(l) exp(alVt) exp (l2t)a2(l + opt(l) +0/(1)) sin(ly)dl

as l2t —+oo, I —* 0.
(1.98)

Making use of the exponential decay of the function g for fixed I > e we obtain

R{y, t) = Ci5Fn(0)yta' J ln+1+a2 exp(alVt) exp i1 + + oe(l))dl

(1.99)
as e2t —+ oo, e —* 0. Choosing e = l/^f)1/3, we obtain

\R(y,t)\> -\C15Fn(0)y\ta2 ln+1+a" exp(alVt)dl (1.100)

with t sufficiently large for the Oe2t(l) and Oe(1) terms in (1.98) to be negligible. Since
the integral in the right-hand side diverges as t —> oo, the proof of Theorem 3 is completed.

□
Example. Let the initial front displacement be

R(y,T) = yexp (1.101)2 ,
and the initial perturbation of the temperature satisfy the condition

</>l(y,T) = 0. (1.102)

Graphs of R{y,t), obtained from Eq. (1.98), with the constant C15 found numerically,
are presented in Fig. 1 (see p. 354) for t = T = 10, T + 100, T + 1000, T + 5000.
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Fig. 1. Graphs of R{y,t) for different time moments

Conclusions. Planar solidification is morphologically unstable also in the presence
of finite surface tension. The necessary condition for stability is vanishing at the zero
wave number of the Fourier transform of the initial perturbation of the free boundary
together with all its derivatives. The respective sufficient condition is the absence of the
long-wave modes in the initial free-boundary perturbation.
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