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Morphological Operators on the Unit Circle
Allan G. Hanbury and Jean Serra

Abstract—Images encoding angular information are common in
image analysis. Examples include the hue band of color images, or
images encoding directional texture information. Applying math-
ematical morphology to image data distributed on the unit circle
is not immediately possible, as the unit circle is not a lattice. Three
approaches to solving this problem are presented. First, difference-
based operators are studied (e.g., gradient, top-hat). Second, a defi-
nition of grouped circular data is suggested, and “pseudo” morpho-
logical operators, which operate only on grouped data, are intro-
duced. Finally, processing using pixel labeling is presented, leading
to the development of a cyclic opening operator. Applications for
treating the hue band of color images and for finding perturba-
tions in wood texture are given.

Index Terms—Angular data, color image analysis, morpholog-
ical operation, oriented texture analysis, rotational invariance.

I. INTRODUCTION

I N IMAGE analysis, one often has to treat data distributed on
the unit circle. The two studies which motivated the devel-

opment of the theoretical elements presented in this paper illus-
trate some situations which are often encountered. The first one
involves the description of directional textures; the second one
involves the filtration of the hue component of color images.

The application of morphological operators to the hue band
of color images is related to another subject which has received
much attention, namely, morphology for vector images, specif-
ically color images. A number of possible orders for color vec-
tors in the RGB color space have been proposed [1]–[4]. Work
using an angular representation of hue, and hence more closely
related to the approach presented in this paper, is presented
by Peters [5], who develops morphological operators on the
hue circle which require the choice of an origin; Demarty and
Beucher [6] who treat image segmentation in the HLS color
space; and Zhang and Wang [7] who present definitions of two
distances on the hue circle in the context of color image seg-
mentation.

The unit circle, like the round table of King Arthur’s knights,
has no order of importance, and no dominant position. In math-
ematical terms, this signifies that we cannot construct a lattice
on the unit circle unless we assign it an arbitrary origin. This is a
severe verdict against morphological treatments (i.e., operators
relying on lattices) when we use them on the unit circle.

However, is it really impossible to bypass this interdiction? If
we consider the standard morphological operators, three paths
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seem possible. First, there is the class of operators which bring
into play a difference, such as gradients, top-hats, medians, etc.
Does this difference not introduce a local origin, obviously vari-
able at each point, but sufficient to transfer to the circular case?
Section II treats these operators.

The second approach, covered in Section III, considers the
grouping of circular data. Deciding on the number of groups in a
dataset is not straightforward, so we introduce a simple criterion
for grouped data, and define the basic morphological operators
so that they act only if a structuring element contains grouped
data.

The third approach, developed in Section IV, involves a dif-
ferent way of viewing the situation. A sequence of labels with
index defined on the unit circle can serve to index the
angles. On the hue circle, there could be a royal blue class, an
apple green class, etc., with the condition that the labels with
numbers are identical to those numbered. If every pixel
in the image is assigned a label, then we have an indexed par-
tition of the image. With two labels, one is in a situation anal-
ogous to that of a binary image. For this case, the alternating
filters of type (i.e., the result of a composition of an opening
by a closing) can also be viewed as the product of two openings
operating successively on the two labeled regions “foreground”
and “background.” If, instead of two labels, we have, and if
we perform a cycle of openings successively on each of the
labeled regions, what is the result?

II. CIRCULAR CENTEREDOPERATORS

We fix an origin on the unit circle with center by, for
example, choosing the topmost point, and indicate the points
on the circle by their curvilinear coordinate in the trigonometric
sense between 0 and 2from . Given two points and , we
use the notation to indicate the value of the acute angle

, i.e.

if

if .
(1)

If the are digital values between 0 and 255 (for example), the
expression “ ” becomes “ 127,” and “ ” becomes “255.”
However, we continue using the notation in terms of, as it is
more enlightening. In [5], (1) appears applied to the treatment
of the hue band of color images.

A. Gradient

In the Euclidean space , to determine the modulus of the
gradient at point of a numerical differentiable function, one
considers a small sphere centered on with radius .
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Then, one takes the supremum minus the infimum of the incre-
ments , where describes the small sphere ,
i.e.

(2)

Finally, one determines the limit of the function as
tends to zero. This limit exists as the functionis differentiable
in . In the two-dimensional (2-D) digital case, it is sufficient
to apply (2), taking for the unit circle centered on
(square or hexagon). This is the classic Beucher algorithm [8]
for the gradient.

Consider now an image of hues or of directions, i.e., a func-
tion , where is an Euclidean or digital space and

is the unit circle. As the gradient calculation involves only
increments, we can transpose (2) to the circular functionby
replacing all the by . This transpo-
sition then defines the modulus of the gradient of the circular
distribution. For example, in a digital space, indicates
the set of neighbors at distance one from point, hence

grad

(3)

As an illustration, consider the hue component of Fig. 1(a),
shown in Fig. 2(a). This image was chosen as it is mostly red
in color, and in the angular hue encoding, red usually has hue
values around 0. This means that pixels which appear red
could have low hue values (e.g., 0–30 ) and high hue values
(330 –360 ). A large discontinuity is therefore visible in the
hue image, with red pixels appearing at the extremities of the
histogram [Fig. 2(b)]. A classical gradient on this hue band
produces a large number of spurious high-valued pixels, as
shown in Fig. 2(c). These high values are present even though
the neighboring pixels appear very similar in color, and are due
to the discontinuity in the hue encoding. A good illustration
of this is the outer part of the halo, which appears smooth in
Fig. 1(a), but results in very high gradients in Fig. 2(c). The
gradient calculated using (3), shown in Fig. 2(d), overcomes
this problem. Note that for this example, if we rotate the hue
band pixel values by , the classical gradient will be the same
as the circular centered gradient. The circular centered gradient
is, however, invariant to rotations of the pixel values.

B. Top-Hat

The notion of the “top-hat,” in the sense of F. Meyer [8], is the
residue between a numerical function and its transformation by
an opening. It therefore involves only increments, and hence can
be transposed to functions of values in. We explain below the
algorithm for the use of openings by adjunction (i.e., products
by composition of an erosion by the adjunct dilation). We begin
by reminding the reader of the relation which gives the value

of the opening by the structuring element, at point .
If we indicate by the family of structuring elements
which contain point

Fig. 1. Images used in the examples. The original color images are available
on the world wide web at http://cmm.ensmp.fr/~hanbury/morph_unit_circle/.

For the top-hat we therefore write

(4)

in which there are only increments of the functionaround point
. We can therefore transpose to functions of circular values

exactly as we did for the gradient, and give the definition

top-hat

(5)

An example of a top-hat of this type is given in Fig. 3. Fig. 3(a)
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Fig. 2. (a) Hue band of the virgin image in Fig. 1(a) (image size352� 334 pixels). (b) Histogram of the hue band. (c) Classical morphological gradient on the
hue band. (d) Circular centered (angular) gradient on the hue band. The gradients were calculated using a3� 3 structuring element.

is a subsection of the luminance band of Fig. 1(b) which con-
tains some regions (indicated by the white rectangles) in which
the dominant color is red, that is, they fall on the hue disconti-
nuity, as is seen in the corresponding regions in the hue image
[Fig. 3(b)]. A classical white top-hat (4) applied to the hue band
is shown in Fig. 3(c), with its histogram in Fig. 3(e). Once
again, it is evident that even though there is not much visible
change in the color within the indicated regions, there are many
high-valued pixels in the result of the top-hat transformation.
This is further demonstrated by the relatively large number of
pixels near the upper end (360) of the histogram. The result of
applying the circular centered top-hat (5) is shown in Fig. 3(d),
with its histogram in Fig. 3(f). In this image, the spurious high-
valued pixels do not appear.

An alternative formulation of the top-hat is given in Sec-
tion IV.

III. PSEUDO-OPERATORS

The main shortcoming of the unit circle morphological op-
erators proposed in [5] is the requirement to choose an origin,
which in some cases would lead to the user having to make an
arbitrary choice. In this section, we propose an alternative for-
mulation, where one is not required to choose an origin, but in-
stead must provide a definition of grouped circular data. We in-
troduce a possible definition of grouped data in the framework
of the morphological center, and then extend this definition to
the erosion and dilation operators.
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Fig. 3. (a) Subsection of Fig. 1(b) with the red parts indicated (image size311� 227 pixels). (b) Hue band of image a. (c) Classic white top-hat with a3� 3

square of image a. (d) Circular centered top-hat with a3� 3 square of image a. (e) Histogram of image c. (f) Histogram of image d.

A. Morphological Center

The morphological center is a notion which naturally appears
in the self-dual morphological filters [9]. Considernumerical
values and a number which we wish to bring closer to
the . The “morphological center” operatoracts as follows:

if
if
if .

(6)

In particular, for we find the median between three
values: , , and . The identification can be expanded by iter-
ation to . However, we limit ourselves to transposing (6)
to circular data.

Nonetheless, a difficulty is apparent. On the line, we can al-
ways say whether a valueis exterior (superior or inferior) to .

On the circle, we can make sense of this expression in the case of
distributions such as those in Fig. 4(a)–(c), but not in Fig. 4(d),
where the data are too dispersed. We describe two possible ap-
proaches, and develop the second one further.

1) We replace unconditionally by the closest , by ap-
plying

2) Alternatively, we construct conditions similar to those in
(6). It therefore becomes necessary to formally define the
notion of a group of points, of which Fig. 4(a)–(c) give
an intuitive idea. We adopt the notion that the points are
grouped if they are spread over a segment smaller than a
semi-circle, or, stated formally.
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Fig. 4. Four distributions of circular data. (a), (b), and (c) are!-grouped; (d) is not.

Definition: A family of points on a unit circle is
-grouped when there exists an origin such that

(7)

where is an angle less than or equal to.
The condition suppresses the case shown in Fig. 4(d).

The following proposition characterizes the groups of points
using their coordinates.

Proposition: The family of the points on the unit
circle forms an -group if and only if one has

(8)

for an arbitrary origin , or for the origin .
Proof: If the are -grouped, there exists a partition of

into two semi-circles so that all the are found in one of
the semi-circles. If we take for some point in the opposite
semi-circle, (8) is verified, because does not belong to the
envelope of the group of points (i.e., to the smallest sector of
the circle which contains them all). Conversely, if (8) is satisfied
for an origin , it is sufficient to move this origin to the point

to get (7), the definition of an -group of the .
The algorithm defining the circular morphological center de-

velops directly from the preceding proposition. It is sufficient
to take as the origin the pointthat we wish to compare to the
family . We simply remember that, as we must use positive
coordinates, the differences implicit in a change of origin are
written thus

if

otherwise.

Definition: Given a family and a point on the unit
circle, and hence a grouping angle, the transformation of

by morphological centering is defined as

if
if and

if and

with .
In other words, if there is an -group and is outside the

group ( ), one replaces by the extremity of the group
closest to . If there is no grouping, or if is inside the -group
of the ( for both these cases), one leaves it unchanged.

In the case of Fig. 4, if we take the origin as the point to trans-
form, it does not change for Fig. 4(b) and (d), and becomes the
circled point in Fig. 4(a) and (c). In [10], a similar subject, the
color median filter operating on three-dimensional color vectors
in the RGB space, is treated.

B. Erosion and Dilation

The notion of an -group (7) suggests the introduction of
two operators which approximate a supremum and an infimum.
Consider a finite -group . For all the origins for
which (8) is valid, the number , even
though its numerical value depends on the position of the origin,
always corresponds to the same point of the group. The same
applies to the infimum . These two extremities
therefore have a significance partially independent of the choice
of the origin on the unit circle.

This observation leads naturally to the introduction of a
“pseudo-dilation” operator. Consider a function ,
i.e., for every point in the space , is a value on the unit
circle, and let be a structuring element, i.e., an arbitrary
function , where represents the set of the
subsets of . The pseudo-dilation is defined as

if

forms an -group
otherwise.

The operator certainly depends on the choice of the origin
but, by construction, commutes with the rotations on the unit
circle (i.e., with changes of the origin). It is not a dilation, as
one cannot find an underlying order relation, and not, a fortiori,
a lattice. Nevertheless, for all symmetricwe can define, by
duality, a “pseudo-erosion”

if

forms an -group
otherwise.

It follows that all the classic extensive operators in mathematical
morphology, such as openings, closings, reconstruction, lev-
eling, etc., have a “pseudo” version.

Fig. 5 provides a comparison between the pseudo-erosion and
standard erosion. Fig. 5(a) is the hue band of a subsection of
Fig. 1(b). Fig. 5(b) shows a pseudo-erosion and Fig. 5(c), a
standard erosion of this hue band. The region in which the dif-
ferences are most pronounced is for the red fruit to the left of
the image. The hue values for red straddle the discontinuity at
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Fig. 5. (a) Hue band of a subsection of Fig. 1(a) (image size231� 134 pixels). (b) Pseudo-erosion of image a. (c) Standard erosion of image a. Both erosions
are by a5 � 5 pixel square.

0 /360 , and the standard erosion reduces these to small values
greater than zero. The pseudo-erosion, however, replaces the
pixels with the infimum of the group of values around 0. One
should notice the regions, such as the base of the wine glass,
where this erosion operator does not change the pixel values as
they do not form an -group.

In introducing these pseudo-operators, in order to avoid
the necessity of choosing an origin, one unfortunately loses
a number of desirable properties of standard morpholog-
ical operators. One example is that the pseudo-opening and
pseudo-closing operators are not idempotent (but are usually
idempotent after a few iterations). This lack of idempotence
is due to the pseudo-operators not acting in the same way on
all pixels, but leaving some pixels in their original states. The
decision as to whether to leave a pixel or change it depends on
the distribution of the values of the pixels in the structuring
element, and this distribution changes after each application of
an operator.

IV. L ABELED OPENINGS

Circular data may be treated in another manner, which is more
set oriented, and where there is no obligation to define groups
or work on increments. This third approach is based on the idea
of first labeling the points of the working space according to the
local hue or angle, then processing the obtained sets, and finally
combining the results in an isotropic way.

A. Theory

Denote by the set of those points whose
angular value lies in acute sector

Now let be an opening of size on . The
opening is performed as for a binary opening, with

treated as the foreground, and the rest as the back-
ground. In order to isotropize this operation, we take the union
of all transforms as traces out the unit circle, i.e.,

(9)

The result is a binary image containing as foreground all the
pixels which are not removed by the action of the opening for
one of the angles . The residue (in the sense of the top-hat) of
this opening is obtained by inverting , that is

(10)

The residue consists of the pixels which were eliminated by
the opening for all angles.

When the angle varies from 0 to , it is clear that the
opening is an increasing function of. As usual, this opening
is also a decreasing function of the size parameter. These con-
siderations lead to the following proposition.

Proposition: Let be a function of circular values,
a granulometry on , and the

angular restriction

Then the operator

is an isotropic opening. The family ,
engenders adouble granulometrywith respect to the

two parameters and .
In practice, expresses the amount of variation permitted in

the angles constituting a region. The above labeled openings
treat the data in a parallel way (e.g., each could
be performed by an independent processor).

B. Application

An industrial application of the labeled opening is presented.
When sorting oak boards destined to be used to make furniture,
it is necessary to find the knots, and to measure the sizes of the
small light patches. These two characteristics have been high-
lighted in Fig. 6(a), where the knots are surrounded by black
rectangles and the light patches by white rectangles (the three
light horizontal lines in this image are chalk lines drawn on the
board and are of no importance). Knots can be found using color
and texture characteristics, as they are usually much darker than
the surrounding wood, and usually perturb the directions of the
surrounding veins. The light patches are generally of a similar
color to other parts of the wood, but tend to cut veins, causing
a disruption in the dominant local texture orientation. An ap-
plication of the labeled opening operator to finding regions of
anomalous texture orientation is presented here.

Wood texture is oriented, meaning that there is a dominant
orientation in the neighborhood of each image point. This tex-
ture can therefore be represented by an image encoding the
dominant orientation in each pixel neighborhood. An algorithm
based on that developed by Rao [11] is used to extract these ori-
entations. The steps in this algorithm are as follows.
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Fig. 6. (a) Oak board with knots (indicated by black rectangles) and light patches (indicated by white rectangles) (image size608� 955 pixels). (b) Residue of
the labeled opening on the orientation image expanded and projected onto the original image (the regions enclosed by the white outlines correspond tothe residue).
(c) Reduced orientation image (size50 � 112 pixels) calculated using the Rao algorithm. (d) Union of the opening of each labeled region. (e) Residue of the
labeled opening on the orientation image.

Step 1) Detection of the edges of the wood and cropping of
the image to contain only the wood.

Step 2) Convolution by a Gaussian filter of size with
Gaussian width .

Step 3) Calculation of the angle at every pixel in the image
from the horizontal and vertical gradients.

Step 4) Determination of the dominant angle within a
moving frame of size pixels, moved in steps
of eight pixels horizontally and vertically.

Step 5) Construction of the reduced size orientation image
which encodes the dominant orientation in each
frame by a single pixel.
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Fig. 7. (a) and (c): The labels defined on the orientation image [Fig. 6(c)]. (b) and (d): the label definitions. (e): the connected opening by a square of size nine
pixels of each label shown in image a (the lightest grey represents the labeled regions eliminated by the opening). (f): the same opening performed on image c.

As the orientation of a vein can equally well be described by
two directions, namely, and , the angles are restricted
to values between 0and 180, such that . The
reduced size orientation image for Fig. 6(a) is shown in Fig. 6(c).

The aim is for the regions of anomalous orientation to appear
as the residue of a labeled opening. We used a connected la-
beled opening (opening with reconstruction) with and
a square structuring element with side of length nine pixels. The
isotropization of the opening (9) was approximated by varying

from 0 to 157.5 in steps of 22.5. The resulting label defi-
nitions are shown in Fig. 7(b) and (d), and the corresponding la-
beled images in Fig. 7(a) and (c) (two labeled images are shown
as the angular values of the labels overlap). The numbers shown
on the label definition diagrams indicate the order of the la-
beling as the value of increases. The result of the opening on

each of the labels in Fig. 7(a) and (c) are shown, respectively, in
Fig. 7(e) and (f), where the lightest grey represents the regions
eliminated by the opening operator. The union of the labeled re-
gions not eliminated by the opening (10) is shown in Fig. 6(d).
The residue [the inverse of Fig. 6(d)] is shown in Fig. 6(e), and
this residue expanded and projected onto the original image is
shown in Fig. 6(b), where the regions enclosed by the white out-
lines correspond to the residue.

The region of severe perturbation of veins due to the knots
on the lower part of the wood is found, although the upper part
of the largest knot is not detected as it is parallel to the veins
forming the largely homogeneous upper region of the board.
Most of the light patches are also detected. There are a few false
detections, corresponding to regions where there is a change in
the orientation of the veins without an associated defect (for
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example, at the top left of board), or to tiny misdetections which
could be eliminated by a subsequent area opening.

This algorithm has been applied to a database of 60 oak im-
ages with good results. However, even though defects are as-
sociated with texture orientation perturbations, the presence of
such a perturbation does not guarantee the presence of a defect.
The results of this transform should therefore ideally be used
as input to a decision procedure, which uses color and further
texture information to calculate the likelihood of a defect being
present.

V. CONCLUSION

Three possible approaches to applying mathematical mor-
phology to circular data are presented. The first involves using
differences (increments), the second makes use of a definition
for grouped circular data, and the third uses labels. Difference
versions of the gradient and top-hat are presented. Second, a
formulation of “pseudo” versions of the erosion and dilation
operators are given, which can be expanded to create the other
standard morphological operators. They have the advantage of
not requiring the choice of an origin on the circle, but suffer
from some unfortunate properties such as the non-idempotence
of the pseudo-opening and pseudo-closing operators. Finally,
openings on labeled images are presented. Applications of these
operators to the hue band of color images and to images en-
coding directional texture information are given. In addition to
these applications, these operators could be applied to any im-
ages containing phase information, such as electron microscope
images or spectrograms. In practice, we find that the use, if pos-
sible, of the circular centered operators or labeled operators give
the best results.

The reader should be aware that in most cases, circular data
does not appear alone, but is combined with other non-circular
values. For color images, these are usually luminance or inten-
sity and saturation; and for oriented textures, measures of mag-
nitude or coherence. More generally, the question arises with
vector data when one wants their processing to be independent
of the choice of the vector base. For example, a 2-D Euclidean
vector may be represented in polar coordinates .
Then any processing that combines the above circular operators
(for ) with operators on yields a result that does not depend on
the orientation of the initial base . A similar comment ap-
plies in when vectors are decomposed into their spherical or
their cylindrical representations. The development of operators
which treat these non-angular values along with the related an-
gular quantities in a rotationally invariant way is an interesting
topic for further development.

Finally, we note that a detailed experimental comparison of
the angular morphological operators with standard operators on
the same data set is not done, as it is immediately obvious from
the data which approach should be used. If, during the analysis
of a set of data or an image, one has to choose an arbitrary origin
before applying an operator, then the rotationally invariant op-
erators in this paper are to be preferred.

REFERENCES

[1] J. Chanussot and P. Lambert, “Total ordering based on space filling
curves for multivalued morphology,” inProc. ISMM, 1998, pp. 51–58.

[2] M. L. Comer and E. J. Delp, “Morphological operations for color image
processing,”J. Electron. Imag., vol. 8, pp. 279–289, July 1999.

[3] M. C. d’Ornellas, R. Boomgaard, and J. Geusebroek, “Morphological
algorithms for color images based on a generic-programming approach,”
in Proceedings of the XI Brazilian Symposium on Computer Graphics
and Image Processing (SIBGRAPI’98). Piscataway, NJ: IEEE Press,
1998.

[4] H. Talbot, C. Evans, and R. Jones, “Complete ordering and multivariate
mathematical morphology: Algorithms and applications,” inProc.
ISMM, 1998, pp. 27–34.

[5] R. A. Peters, II, “Mathematical morphology for angle-valued images,”
Proc. SPIE, vol. 3026, 1997.

[6] C.-H. Demarty and S. Beucher, “Color segmentation algorithm using an
HLS transformation,” inProc. ISMM, 1998, pp. 231–238.

[7] C. Zhang and P. Wang, “A new method of color image segmentation
based on intensity and hue clustering,” inProc. 15th ICPR, vol. 3,
Barcelona, Spain, 2000, pp. 617–620.

[8] J. Serra,Image Analysis and Mathematical Morphology. New York:
Academic, 1982.

[9] , Image Analysis and Mathematical Morphology Volume 2: Theo-
retical Advances. New York: Academic, 1988.

[10] P. E. Trahanias, D. Karakos, and A. N. Venetsanopoulos, “Directional
processing of color images: Theory and experimental results,”IEEE
Trans. Image Processing, vol. 5, pp. 868–880, June 1996.

[11] A. R. Rao, A Taxonomy for Texture Description and Identifica-
tion. New York: Springer-Verlag, 1990.

Allan G. Hanbury was born in George, South
Africa, in 1974. He received the B.Sc.(Hons.)
and M.Sc. degrees in physics from the University
of Cape Town, South Africa, in 1995 and 1999,
respectively. He is presently pursuing the Ph.D.
degree at the Centre of Mathematical Morphology,
Paris School of Mines, France.

He is presently a Researcher at the Centre of
Mathematical Morphology, Paris School of Mines.
His main topics of research are the application
of mathematical morphology to images encoding

directional information, defect detection in textures, and the development of
algorithms for real-time wood inspection applications.

Jean Serrawas born in 1940. He received the degree
of mining engineering in 1962, and the Ph.D. degree
in geostatistics in 1967. During this time, in coopera-
tion with Georges Matheron, he laid the foundations
of a new method called “mathematical morphology”
(1964), the purpose of which was to describe quanti-
tatively shapes and textures of natural phenomena, at
micro and macro scales.

In 1967, he (with G. Matheron) founded the Centre
de Morphologie Mathématique at the Paris School of
Mines. He has been working in this framework as a

Director of Research. He successively oriented mathematical morphology to-
ward optical microscopy (in the 1970s), industrial control (in the 1980s), and
multimedia (in the 1990s). In the last 15 years, his three major contributions
to mathematics and physics include: morphological filtering, which is an alter-
native to Fourier analysis (in cooperation with G. Matheron, 1982–1987); the
formulation of mathematical morphology in the convenient framework of com-
plete lattices (in cooperation with G. Matheron, 1984–1988); and a theory for
connectivity adapted to image analysis, 1993–2000. He holds several patents of
devices for image processing. His main book is a two-volume treatise entitled
Image Analysis and Mathematical Morphology(New York: Academic, 1982,
1988).

Dr. Serra was Vice President for Europe of the International Society for Stere-
ology from 1979 to 1983. He founded the International Society for Mathemat-
ical Morphology in 1993, and was elected its first president. He has received
various awards and titles, such as Doctor Honoris Causa of the University Au-
tonoma of Barcelona, Spain, in 1993, and the first AFCET Award in 1988.


