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Morphological, physiological, cytological 
and phytochemical studies in diploid 
and colchicine-induced tetraploid plants 
of Fagopyrum tataricum (L.) Gaertn
Lin-Jiao Wang1,3, Mao-Yin Sheng1,2,3*, Pei-Cai Wen1,4 and Jia-Ying Du3,4

Abstract 

Background: Tartary buckwheat are very popular as an important functional food material and its cultivation is very 

widespread in our whole world, but there obviously lack works in the researches of genetic breeding for agricultural 

and medicinal utilization. The aim of this study is to obtain good germplasm resources for agricultural and medicinal 

use of tartary buckwheat (Fagopyrum tataricum) by inducing the tetraploid plants.

Results: Four cultivars of F. tataricum, that is, Qianwei 2#, Jinku 2#, Chuanqiao 1#, and Liuqiao 1# were selected to 

experiment. The tips of seedlings with two true leaves were treated by 0.25% (w/v) colchicine solution for 48, 72, and 

96 h, respectively. The chromosome number of treated plants was determined by metaphase chromosome count-

ing of root tip cells and PMCs (pollen mother cells) meiosis observation. Tetraploid induction successfully occurred in 

all three treatments with an efficiency ranging from 12.13 to 54.55%. The chromosome number of the diploid plants 

was 2n = 2x = 16, and that of the induced tetraploid plants was 2n = 4x = 32. The typical morphological and physi-

ological qualities were compared between the control diploid and corresponding induced tetraploid plants. Results 

showed that the induced tetraploid plants had obviously larger leaves, flowers, and seeds. Moreover, the content of 

seed protein and flavonoid were also increased in the tetraploid plants. The pollen diameter and capsule size of dip-

loid plants were significantly smaller than those of tetraploid plants.

Conclusion: Fagopyrum tataricum can be effectively induced into tetraploids by colchicines. The tetraploid induction 

can produce valuable germplasm resources for breeding and is a practicable breeding way in F. tataricum.
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Background
Buckwheat as an important, highly nutritional nonpoa-

ceous crop has great potential as source of food, forage, 

and medicine (Lin 1994; Holasova et al. 2002; Tang and 

Wang 2010; Pan and Chen 2010). Buckwheat originates 

from China and is widely distributed in Asia and Europe 

(Hou et  al. 2016). �e tartary buckwheat (Fagopyrum 

tataricum (L.) Gaertn), a diploid species (2n = 2x = 16), 

belongs to the big-achene group of genus Fagopyrum 

(Chen et al. 2004; Sheng et al. 2011). Tartary buckwheat 

grain, as an important functional food material, contains 

proteins with high biological value and balanced amino 

acid composition; relatively high crude fiber and vitamins 

B1, B2, and B6; and more rutin than common buckwheat 

(F. esculentum Moench) (Pan and Chen 2010; Wang et al. 

2015). �e products of tartary buckwheat are very popu-

lar and its cultivation is widespread in whole world (Lin 

1994). Although lots of cultivation and utilization have 

been done in tartary buckwheat, there obviously lack 

studies in the genetic breeding of tartary buckwheat for 
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agricultural and medicinal utilization (Ohnishi and Ohta 

1987; Chen et al. 2007).

�e polyploidy induction is a significant method for 

the production of new germplasm resources applica-

ble for plant genetic breeding (Tang et  al. 2010). Poly-

ploidy induction has been used as a breeding method in 

many plants, especially, in crop, horticulture and medi-

cal botany. Induced polyploidy can enhance qualities for 

agriculture, medicine and horticulture utilization (Tang 

et  al. 2010) and improve resistibility to environmental 

stresses and diseases (Ahloowalia 1967). Besides, poly-

ploidy induction can lead to content change of second-

ary metabolites (Majdi et al. 2010). Colchicine has been 

found to have a significant effect on polyploid induc-

tion and is widely used for inducing polyploidy in plants 

(Tang et al. 2010) because it can effectively arrests mitosis 

at the anaphase stage (Kunitake et al. 1998; Kermani et al. 

2003). Until now, numerous researchers reported that 

germplasm resources have been innovated using poly-

ploidization techniques in many crop or medicinal plants 

(Ahloowalia 1967; Kermani et al. 2003; Tang et al. 2010; 

Ye et al. 2010; Kanoktip et al. 2014) including F. esculen-

tum (Zhu and Gao 1988; Lian and Chen 2013). Limited 

works regarding tartary buckwheat, polyploidy induction 

works have been reported (Hou et  al. 2002; Zhou et  al. 

2012). In the present study, the tetraploid F. tataricum 

plants were successfully induced by colchicine. �e chro-

mosome number of the induced plants was confirmed 

by cytological identification, and the morphological fea-

tures of the induced tetraploid plants were recorded. �e 

germplasm characteristics and breeding utilization of 

such tetraploid materials were discussed. �e aim of this 

present study was to produce novel and valuable tetra-

ploid germplasm resources for the utilization of agricul-

ture and medicine in F. tataricum.

Methods
Plant material

Mature seeds of the following four F. tataricum culti-

vars (2n  =  2x  =  16): Qianwei 2#, Jinku 2#, Chuanqiao 

1#, and Liuqiao 1#, were collected from Guizhou, Shanxi, 

Sichuan, and Yunnan province of China, respectively. 

Before experiment in this study, they were stored in a 

freezer at temperature of 0–2  °C. �e field testing was 

conducted during 2012–2013  year in the experimental 

field site of Guizhou Normal University, Guiyang, China. 

�e laboratory test was conducted in the State Key Labo-

ratory Incubation Base for Karst Mountain Ecology Envi-

ronment of Guizhou Province, Guiyang, China.

Tetraploid induction

Before germination, seeds, firstly, were disinfected by 

0.3% K2MnO4 for 20  min, then washed with distilled 

water for three times and dried at a loft drier with 25 °C 

for about 24 h and finally sown into flower pots. �e pots 

were covered with transparent plastic film and incubated 

under greenhouse conditions. Colchicine was applied to 

the apical meristem of seedlings in the stage of two true 

leaves. �ree treatment durations (i.e. 48, 72 and 96  h) 

were studied to determine the optimum colchicine expo-

sure times at concentration of 0.25% (w/v) for tetraploid 

induction. Absorbent cotton balls sucked with a solution 

of colchicines (0.25%, w/v) were wrapped around the api-

cal tips of seedlings when two true leaves of the emerged 

seedlings appeared. �e experiments were conducted 

in a greenhouse and continued for the three treatment 

durations (i.e. 48, 72 and 96 h); the colchicines solution 

was dropped to the absorbent cotton balls twice a day, at 

8:30 and 17:30 o’clock. After the treatment durations, the 

absorbent cotton balls were removed from the seedling 

tips, and then the seedling tips were cleaned by distilled 

water and nursed further in the greenhouse. 50 seedlings 

were experimented for each treatment. After 2  weeks 

of the durations of colchicines treatment, death rate on 

young plants was recorded.

Chromosome counting and meiosis observation

�e ploidy levels were determined by chromosome 

counting of root tip cells, and confirmed by PMCs (pol-

len mother cells) meiosis observation. Before induction 

of polyploidy, the chromosome number was determined 

in root tips of germinated seeds. For the induced plants, 

seeds were obtained by self-pollination of each treated 

plant and the chromosome counting was also conducted 

in root tips. When root tips grew to 1–2  cm long, root 

rips were cut and pretreated by the method of soak-

ing in a saturated solution of α-bromine naphthalin at 

room temperature for 5  h. After pretreated, root tips 

were washed by distilled water for three times and then 

immersed in Carnoy’s liquid (ethanol:acetic acid  =  3:1) 

for 12–20  h. After three rinses by distilled water, the 

root tips were soaked in 1 N HCl at 60 °C for 8 min and 

then moved to distilled water. After that, the root tips 

were stained by improved Carbolfuchsin, and squashed 

for chromosome observation. For meiotic investigation, 

PMCs in young flowers of about one week age were fixed 

in Carnoy II solution and stained in 2% (w/v) aceto-car-

mine solution. Images of mitotic chromosomes in the 

root tip and meiosis were photo by a DP70 digital camera 

in a BX51 microscope (Olympus, Japan).

Morphological and physiological characteristics 

determinations

�e morphological and physiological characteristics were 

compared between the control diploid plants and corre-

sponding induced tetraploid plants. Parameters of plant 
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height, plant breadth, leaf length, leaf width, inflores-

cence length and flower size were directly measured by 

a ruler. A digital caliper was used to measure the char-

acteristics of leaf thickness and diameter of basal stem. 

Pollen grains were collected from flowers at anthesis, 

fixed in Carnoy II solution overnight, and then stained by 

1% (v/v) I2-KI solution to detect pollen vitality. �e pol-

len diameter (average of 30 pollens) was measured by a 

light microscope (magnification of 40×). Seed length was 

measured by a digital caliper and weight of 1000 seeds 

was determined by a balance scale.

Determination of seed protein and �avonoid content

�e seed protein and flavonoid content was determined 

and compared between the control diploid plants and 

corresponding induced tetraploid plants. Mature seeds 

were harvested, dried to constant weight, and then 

ground to a fine powder for the determination of seed 

protein and flavonoid content. An automatic micro-

Kjeldahl procedure was used to determine seed pro-

tein content using a conversion factor of 6.25 times the 

N content. Seed flavonoid content of each sample was 

determined following colorimetric method (Chang et al. 

2002). Briefly, 1  mL solution of each plant extracts (at 

0.4% w/v) in methanol were separately mixed with 4 mL 

of methanol, 2 mL of 10% aluminium chloride, and 3 mL 

of 1 M potassium acetate, and left at room temperature 

for 30 min. �e absorbance of the reaction mixture was 

measured at 420  nm with a double beam Perkin Elmer 

UV/Visible spectrophotometer (USA). �e calibration 

curve was prepared by preparing rutin solution at con-

centrations 1.25–20 μg ml−1 in methanol.

Statistical analysis

Comparisons of quantitative data between two vari-

able groups were made using Student’s unpaired t test 

(two-sample t test), and morphological variation rates 

among >2 groups were analysed using ANOVA and mul-

tiply comparison among levels of each factor and among 

combinations were analysed using Duncan’s test (Sheng 

et  al. 2011). All statistical analyses were performed by 

SPSS 16.0 software (Du 1999).

Results
Tetraploid induction

�e effects of different durations (48, 72, and 96 h) with 

0.25% (w/v) colchicines solution on death rate and induc-

tion efficiency of tetraploid induction in four chosen cul-

tivars of F. tataricum, were examined and recorded in 

Table  1. Results showed that the solution of colchicines 

was detrimental to growth and survival of seedlings. �e 

growth of untreated plants (control) was faster than the 

plants treated with colchicines solution. �e death rate 

(%) and tetraploid induction efficiency (%) were obvious 

differences among three different durations of colchicines 

treatment (Table 1). All the four cultivars can be induced 

tetraploids successfully, but the induction efficiency were 

obvious different. Among the twelve treatment combi-

nations, the tetraploid induction efficiency ranged from 

12.13 to 54.55%. Multi-comparison analysis indicated 

that the induction efficiency of the treatments of Qian-

wei 2# and Chuanqiao 1# with the treatment duration 

of 72  h are the highest (Table  1). �e mortality rates of 

treated seedling ranged from 2 to 10%, and along with the 

treatment duration increase, the mortality rates become 

higher.

Cytological di�erences

Metaphase chromosome observation of root tip cells 

showed that the control plants are diploid with 8 pairs of 

chromosomes (2n =  2x =  16) (Fig. 1a–d). As expected, 

there are 16 chromosome pairs in the putative tetraploid 

(2n  =  4x  =  32) (Fig.  1e–h). Observations of the meio-

sis in PMCs confirmed the chromosome number of the 

putative tetraploid plants. At meiotic MI stage, chro-

mosomes of diploid plants formed 8 bivalents (2x = 8II, 

Fig.  2c, d), while the putative tetraploid plants mostly 

formed 8 quadrivalents (4x =  8IV, Fig. 2a), occasionally 

4 quadrivalents and 8 bivalents (4x = 4IV + 8II, Fig. 2b) 

were observed. At meiotic telophase II, some abnormal 

phenomenons, such as micronucleus (Fig.  3a–d), tri-

ads (Fig. 3d), pentads (Fig. 3e), and hexads (Fig. 3f ) were 

observed in both of the control diploid and induced 

tetraploid plants, but the occurrence of abnormal phe-

nomenons in the control diploid plants are obviously less 

than in those induced tetraploid plants (Table 2).

Morphological and physiological di�erences

�e comparison of vegetative characteristics and repro-

ductive traits between the confirmed tetraploid plants and 

corresponding diploid plants of the four studied cultivars 

were presented in Tables 3 and 4, respectively. Results of 

two-sample t test statistical analysis indicated significant 

(p  =  0.01) differences between the control diploid and 

induced tetraploid lines of F. tataricum with regard to the 

length, width and thickness of the leaves and the leaf index 

(Fig. 4). Compared with the corresponding diploid plants, 

the length, width and thickness of the leaves in all of the 

induced tetraploid plants had increased. �e averages of 

increasing rate were 13.98, 37.40 and 139.33%, respec-

tively. �ere were no significant differences (p  =  0.05) 

in plant height, crown size or diameter of the basal stem 

between the control diploid and corresponding tetra-

ploid lines in each of the four studied cultivars. However, 

regarding to transverse diameter of the flower bud, flower 

diameter, length of petal, and width of petal, significant 
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differences (p =  0.01) were observed (Fig. 5). �e diam-

eters of pollen grains in the induced tetraploid plants were 

significantly larger (p  =  0.01) than those in each corre-

sponding diploid cultivars (Fig. 5), with an increasing rate 

of 28.13% in “Qianwei 2#”, 45.81% in “Jinku 3#”, 28.35% 

in “Chuanqiao 1#”, and 42.67% in “Liuqiao 1#” cultivar, 

respectively. Contrarily, the pollen vitality in the induced 

tetraploid plants were significantly lower (p = 0.05) than 

those in the corresponding diploid cultivars (Fig. 6). �e 

seed size and thousand-seed weight in the induced tetra-

ploid lines were obviously greater (p =  0.05) than those 

in the corresponding diploid cultivars (Fig. 7). Regarding 

to parameters of the average length of inflorescence, inflo-

rescence number per individual, and floret number per 

inflorescence, no significant differences were observed 

between the control diploids and corresponding induced 

tetraploid plants.

In the process of plant cultivation, the resistance of 

the diploid and induced teteraploid lines to pathogens 

and insects were observed by the method of Mohammad 

et  al. (2013). �e main diseases and pests of F. tatari-

cum in the area of Guizhou, China are powdery mildew, 

aphids and scale insects. Results showed that the resist-

ance of the induced tetraploid lines to these pathogens 

and insects is stronger than those of the corresponding 

diploid plants. �e average infection rate of the induced 

teraploid lines (7.93%, ranging from 3.1 to 10.5%) is sig-

nificance less (p = 0.05) than those of the corresponding 

diploid plants (10.08%, ranging from 5.1 to 12.5%).

Di�erences of seed protein and �avonoid content

�e seed protein and flavonoid content of induced tetra-

ploid and corresponding diploid lines of each of the four 

cultivars were determined and compared by the method 

of two-sample t test (Table 5). Results showed there are 

significant (p  =  0.01) differences of seed protein and 

flavonoid content between the control diploid and cor-

responding tetraploid lines of F. tataricum. �e seed 

protein content in the confirmed tetraploid plants were 

significantly higher (p  =  0.01) than the corresponding 

diploid plants. �e average increasing rates were: 12.75% 

in “Qianwei 2#”, 39.57% in “Jinku 2#”, 14.60% in “Chuan-

qiao 1#”, and 27.59% in “Liuqiao 1#” cultivar, respectively. 

Also, the seed flavonoid content in the tetraploid lines 

was significantly higher (p = 0.01) than the correspond-

ing diploid lines, with an average increasing rates: 79.92% 

in “Qianwei 2#”, 28.86% in “Jinku 2#”, 10.10% in “Chuan-

qiao 1#”, and 51.15% in “Liuqiao 1#” cultivar, respectively.

Discussion
Tetraploid induction and identi�cation in F. tataricum

Polyploidization is a very important and valuable 

method for plant breeding to improve various impor-

tant morphological and physiological characteristics 

and to generate valuable germplasm resources, and it 

has been successfully applied in many plant species 

(Tang et al. 2010; Dhooghe et al. 2011). Colchicine, as a 

chromosome doubling agent, has been widely applied 

to induce plant polyploidy because it disturbs the mito-

sis at the anaphase stage to result in chromosome dou-

bling (Nigel et al. 2007; Pour et al. 2012). �e tetraploid 

plants of common buckwheat were successfully induced 

with colchicines treatment by Zhu and Gao (1988) and 

Zhu et al. (1992); however, such research is very lacking 

in tartary buckwheat. In the present study, treatments 

with 0.25% (w/v) colchicines solution for three different 

Table 1 E�ects of colchicines (0.25%) treated duration on death rate, and tetraploid induction e�ciency in treated culti-

vars of Fagopyrum tataricum

Death rate was recorded after 2 weeks of colchicines treatment

Di�erent capital letters indicate signi�cance of the di�erence between two mean values at the p = 0.01 level, as tested by Duncan’s test

Cultivar Duration of treatment (h) Number of seedlings Death rate (%) Tetraploid induction e�ciency (%)

Qianwei 2# 48 50 2.00 29.15 D

72 50 6.00 53.23 A

96 50 10.00 41.45 BC

Jinku 2# 48 50 2.00 12.13 E

72 50 4.00 31.24 D

96 50 6.00 19.35 E

Chuanqiao 1# 48 50 4.00 50.34 B

72 50 6.00 54.55 A

96 50 8.00 48.56 B

Liuqiao 1# 48 50 4.00 18.34 E

72 50 8.00 30.45 D

96 50 10.00 20.04 E
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durations of 48, 72, and 96 h were used to induce tetra-

ploid plants in F. tataricum. From results, we conclude 

that the treated duration would obviously affect the effi-

ciency of tetraploid induction and death rate of seedlings. 

Numerous previous studies indicated that the dura-

tion of colchicines treatment was positive correlation to 

the seedlings death rate in many plant species (Sikdar 

and Jolly 1994; Mohammad et  al. 2013). Our study also 

showed the similar results in F. tataricum, indicating 

such effect may be common in plant. However, the dura-

tion of colchicines treatments which may cause higher 

death rate also resulted in higher efficiency to induce 

tetraploids (Chakraborti et  al. 1998; Mohammad et  al. 

2013). �erefore, the suitable duration of the colchicines 

solution treatment is very important to obtain successful 

Fig. 1 Chromosomes of root tip cell of the diploid F. tataricum 

cultivars (a–d) and their corresponding induced tetraploids (e–h) 

(a/e Qianwei 2#; b/f Jinku 2#; c/g Chuanqiao 1#; d/h Liuqiao 1#). Bars 

5 μm

Fig. 2 Chromosome configuration of meiotic MI stage of the diploid 

and induced tetraploid F. tataricum (a 4x = 8IV, b 4x = 4IV + 8II, c and 

d 2x = 8II)

Fig. 3 Abnormal cell division of PMC at meiotic TII stage of the 

induced tetraploid F. tataricum plants (a Tetrads with micronucleus; b 

tetrad with multiple nucleoli; c Pentad with multiple nucleoli; d triad 

with multiple nucleoli; e pentads; f hexads). Arrows show multiple 

nucleoli
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tetraploid induction. In the present study, the death rate 

of plants treated by colchicines ranging 2.0–10.0% was 

recorded. Ahloowalia (1967) reported that seedling mor-

tality rate was 74.6% in Lolium perenne plants treated 

with 0.2% colchicines for 3  h, while Liu et  al. (2007) 

reported that seedling mortality rate was 100% in Pla-

tanus acerifolia plants treated with 0.5% colchicines for 

24 h. Due to a low mortality rate observed in the present 

study, we concluded that F. tataricum plants may have 

a high level of resistance to the colchicines toxicity. It 

can be also deduce that colchicines should be effective 

for producing tetraploids in other species of Fagopyrum 

genus because F. tataricum was effectively induced into 

tetraploids by colchicines.

Until now, several approaches have been used for the 

polyploidy identification in plants (Tandon and Bali 1957; 

Pei 1985; Li and Zhang 1991; Yang et al. 2006). Numer-

ous early studies confirmed that the size and number of 

stomata and the number of chloroplasts within the guard 

cells of the induced tetraploid plant were significantly dif-

ferent from the corresponding diploid plants (Speckmann 

et  al. 1965; Tan and Dunn 1973; Cohen and Yao 1996; 

Beck et al. 2003). In the event of chromosome doubling, 

morphological characteristics of plants can change signif-

icantly. �us, morphological characteristics were useful 

markers in the identification of induced tetraploids. First, 

a large population of treated seedlings was pre-screened 

for putative tetraploid lines by morphological markers in 

the present study. Subsequently, the real tetraploid lines 

were confirmed by chromosome counting of root tip cells 

and meiosis in PMCs. �is technological process is con-

sidered fast and effective for the identification of induced 

tetraploid plants. In the present study, the length, width, 

and thickness of leaves of the tetraploid plants induced 

from the four different F. tataricum cultivars significantly 

increased in comparison to the corresponding control 

diploid plants. Parameters of the flower diameter, seed 

size and weight of 1000 seeds also significantly increased 

in the induction tetraploid plants, in comparison to the 

control diploid plants. �e chromosome number of F. 

tataricum, 2n  =  2x  =  16, was reported (Sheng et  al. 

2013). In the present study, as expected, the chromosome 

Table 2 Comparisons of meiotic TII stage between the induced tetraploids and their corresponding diploid F. tataricum 

cultivars

ta Indicate the t value of abnormal cell frequency (%)

tb Indicate the t value of micronucleus to cell ratio

** Indicate signi�cance of the di�erence at the p = 0.01 level

Cultivar Tetraploid Diploid t
a

t
b

Sum of cell Abnormal cell 
frequency (%)

Micronucleus 
to cell ratio

Sum of cell Abnormal cell 
frequency (%)

Micronucleus 
to cell ratio

Qianwei 2# 132 30.30 0.5000 112 5.36 0.0536 4.9645** 7.6190**

Jinku 2# 107 25.23 0.4486 107 4.67 0.0467 4.2171** 6.8096**

Chuanqiao 1# 140 18.57 0.3857 159 4.40 0.0440 3.9015** 7.3160**

Liuqiao 1# 194 28.87 0.4897 124 4.03 0.0403 5.4857** 8.4178**

Average 25.05 0.4494 4.45 0.0445

Table 3 Comparisons of  vegetative characteristics between  the induced tetraploids and  their corresponding diploid F. 

tataricum cultivars

Di�erent small-case/capital letters indicate the signi�cance of di�erence between two mean values at the p = 0.05/0.01 level, respectively, as tested by two-sample t 

test, the same below

Vegetative char-
acteristic (cm)

Qianwei 2# Jinku 2# Chuanqiao 1# Liuqiao 1#

4x 2x 4x 2x 4x 2x 4x 2x

Plant height 66.30 ± 20.20a 55.03 ± 5.35a 62.21 ± 15.34a 56.00 ± 10.23a 59.80 ± 21.02a 61.67 ± 2.34a 75.00 ± 23.12a 69.90 ± 11.20a

Plant breadth 40.23 ± 12.34a 45.89 ± 9.21a 39.36 ± 12.89a 51.24 ± 18.21a 45.34 ± 18.23a 43.89 ± 8.90a 53.34 ± 20.01a 50.34 ± 15.78a

Diameter of basal 
stem

1.03 ± 0.38a 0.98 ± 0.31a 1.11 ± 0.38a 1.02 ± 0.30a 0.99 ± 0.20a 0.96 ± 0.13a 1.20 ± 0.14a 1.21 ± 0.33a

Leaf length 6.12 ± 0.12A 5.28 ± 0.28B 6.39 ± 0.22A 5.63 ± 0.26B 6.56 ± 0.17A 5.86 ± 0.15B 7.23 ± 0.32A 6.31 ± 0.18B

Leaf width 4.02 ± 0.28A 3.34 ± 0.17B 4.21 ± 0.21A 3.25 ± 0.13B 3.99 ± 0.15A 3.05 ± 0.11B 5.32 ± 0.21A 3.15 ± 0.15B

Leaf thickness 0.95 ± 0.05A 0.38 ± 0.13B 0.83 ± 0.04A 0.35 ± 0.11A 0.88 ± 0.14A 0.41 ± 0.10B 0.92 ± 0.09A 0.36 ± 0.16B

Leaf index 
(length/width)

1.43 ± 0.22a 1.21 ± 0.25b 1.48 ± 0.31a 1.11 ± 0.32b 1.32 ± 0.18a 1.39 ± 0.20a 1.42 ± 0.23a 1.35 ± 0.19a
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Table 4 Comparisons of reproductive characteristics between the induced tetraploids and their corresponding diploid F. 

tataricum cultivars

Di�erent small-case/capital letters indicate the signi�cance of di�erence between two mean values at the p = 0.05/0.01 level, respectively, as tested by two-sample  

t test, the same below

Reproductive  
characteristic

Qianwei 2# Jinku 2# Chuanqiao 1# Liuqiao 1#

4x 2x 4x 2x 4x 2x 4x 2x

Vertical length of 
flower bud (mm)

4.12 ± 0.16A 3.23 ± 0.22B 4.01 ± 0.24a 3.36 ± 0.25b 3.99 ± 0.20a 3.37 ± 0.15b 4.19 ± 0.23A 3.30 ± 0.11B

Transverse diameter of 
flower bud (mm)

2.35 ± 0.18A 1.88 ± 0.21B 2.22 ± 0.12A 1.79 ± 0.20B 2.31 ± 0.15a 2.01 ± 0.11b 2.68 ± 0.17A 1.90 ± 0.23B

Flower diameter (mm) 5.15 ± 0.26A 3.68 ± 0.20B 6.35 ± 0.32A 3.24 ± 0.19B 5.45 ± 0.25A 3.56 ± 0.18B 6.41 ± 0.20A 3.29 ± 0.12B

Length of petal (mm) 2.69 ± 0.11A 1.63 ± 0.12B 3.01 ± 0.18A 1.51 ± 0.18B 2.23 ± 0.13A 1.25 ± 0.20B 2.95 ± 0.09A 1.17 ± 0.18B

Width of petal (mm) 0.90 ± 0.03A 0.52 ± 0.06B 0.97 ± 0.09A 0.49 ± 0.02B 0.88 ± 0.07A 0.40 ± 0.05B 0.95 ± 0.03A 0.38 ± 0.08B

Pollen grain diameter 
(μm)

5.01 ± 0.34A 3.91 ± 0.28B 5.57 ± 0.34A 3.82 ± 0.23B 4.98 ± 0.31A 3.88 ± 0.28B 5.55 ± 0.27A 3.89 ± 0.31B

Pollen-vigorous (%) 20.35 ± 1.38B 49.36 ± 3.21A 18.89 ± 1.34B 42.66 ± 2.89A 19.67 ± 1.89B 45.89 ± 2.92A 17.89 ± 1.25B 40.96 ± 3.01A

No. of inflorescences 
per plant

42 ± 6a 39 ± 8a 37 ± 7a 35 ± 8a 43 ± 7a 39 ± 5a 38 ± 9a 33 ± 5a

Average length of 
inflorescence (cm)

8.91 ± 4.25a 10.35 ± 4.36a 7.89 ± 5.02a 10.78 ± 5.21a 7.34 ± 4.56a 9.67 ± 3.89a 6.99 ± 4.23a 10.36 ± 5.01a

No. of flowers per 
inflorescence

34 ± 21a 67 ± 31a 42 ± 20a 73 ± 26a 39 ± 25a 71 ± 30a 49 ± 22a 77 ± 31a

Thousand-seed weight 
(g)

24.41 ± 3.67A 19.38 ± 2.25B 22.66 ± 1.89A 19.11 ± 1.12B 31.59 ± 1.35A 18.12 ± 0.98B 26.84 ± 2.01A 17.57 ± 1.03B

Seed size (mm) 8.29 ± 0.84A 5.86 ± 0.73B 8.10 ± 0.35A 6.01 ± 0.34B 7.20 ± 0.17A 5.63 ± 0.22B 7.17 ± 0.24A 5.42 ± 0.11B

Fig. 4 Leaves of the induced tetraploids and their corresponding diploid F. tataricum cultivars (a Qianwei 2#; b Jinku 2#; c Chuanqiao 1#;  

d Liuqiao 1#)
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number of control diploid plants was 2n = 2x = 16 and 

the induced tetraploid plants 2n = 4x = 32 (Fig. 1). �e 

autotetraploids, pre-screened by morphological mark-

ers, were confirmed by chromosome counting and PMCs 

meiosis observation. Results showed that applying the 

morphological characteristics as preliminary screening 

markers for the identification of induced tetraploid lines 

was feasible.

Germplasm characteristics and utilization of tetraploid in F. 

tataricum

In the present study, all the four F. tataricum cultivars 

were successfully induced into tetraploid plants by col-

chicine. In comparison to the control diploid plants, 

several morphological characteristics were significantly 

increased in the induced tetraploid plants, such as leaf 

size, chlorophyll content, flower size and pollen diam-

eter. Particularly, the important agronomic parameters 

of seeds, including seed size and thousand-seed weight, 

of the induced tetraploid plants were significantly greater 

than the control diploid plants. In addition, the seed pro-

tein and flavonoid content also significantly increases 

in the induced tetraploid plants. �e improvement of 

morphology, physiology, and phytochemistry in the 

induced tetraploid lines obtain from the four F. tatari-

cum cultivars suggest that tetraploids are useful materi-

als for generating innovative germplasm resources in the 

genetics and breeding of genus Fagopyrum. Generally, 

polyploids have higher genetic adaptability and resist-

ance to environmental stresses than diploids. Li et  al. 

(2007) reported that induced tetraploids significantly 

increased their cold tolerance than corresponding diploid 

Fig. 5 Flowers of the induced tetraploids and their corresponding diploid F. tataricum cultivars (a Qianwei 2#; b Jinku 2#; c Chuanqiao 1#;  

d Liuqiao 1#)
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plants in the studied ornamental plants. While in the 

group of agricultural and medical plants, the induced 

tetraploids significantly increased biomass or effective 

compounds content. �e present study also shows those 

induced tetraploid plants of F. tataricum display stronger 

resistance to environmental stress than corresponding 

diploids.

To further evaluate the potential value of induced 

tetraploids in the F. tataricum breeding, the meiosis 

in PMCs of the induced tetraploids and correspond-

ing control diploids were analysed. �e abnormities of 

meiosis in PMCs mainly happened at the MI and TII 

stag. �e abnormal chromosome behaviours observed 

at MI and TII stages may imply the occurrence of dis-

turbances in the process of meiosis at PMCs (Chen et al. 

2004). In the present study, at MI and TII stage at the 

meiosis, a few of abnormal chromosomal behaviors and 

cell divisions, such as micronucleus, triads, pentads, 

and hexads, were observed in both of the control dip-

loid and induced tetraploid plants, but the frequency of 

abnormities of the PMCs meiosis in induced tetraploid 

plants are significantly more than the control diploid 

plants. �is result explains the low seed-setting percent-

age of the induced tetraploid lines. At MI stage of the 

Fig. 6 Pollen grains of the induced tetraploids and their corresponding diploid F. tataricum cultivars (a Qianwei 2#; b Jinku 2#; c Chuanqiao 1#;  

d Liuqiao 1#)
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meiosis of tetraploid plants, various chromosome con-

figurations including bivalents, univalent, trivalent, and 

quadrivalent of chromosome synapsis were observed, 

showing that the meiotic chromosome synapsis of tetra-

ploid plants is very complicated. �is can be attributed 

to the chromosome doubling by colchicines treatment 

to form a autotetraploid which have four sets of each 

chromosome in the genome. �e problems in chromo-

some synapsis among four homologous chromosomes 

of autotetraploid cause the unbalance of chromosome 

segregation and result in high genetic instability in pol-

len grains.

Conclusions
Fagopyrum tataricum can be effectively induced into 

tetraploids by colchicines. In comparison to the control 

diploid plants, various agronomic traits may be signifi-

cantly increased in the induced tetraploid plants, includ-

ing seed size, thousand-seed weight, leaf size, chlorophyll 

content, flower size and pollen diameter. �e content of 

seed protein and flavonoid may also be increased in the 

tetraploid plants. Moreover, the genetic instability in 

tetraploid plants also increased. �e induced tetraploid 

materials can be used to generate innovative germplasm 

for the Fagopyrum species breeding.

Fig. 7 Seeds of the induced tetraploids and their corresponding diploid F. tataricum cultivars (a Qianwei 2#; b Jinku 2#; c Chuanqiao 1#; d Liuqiao 1#)

Table 5 Comparisons of seed protein content and seed �avonoid content between induced tetraploids and their corre-

sponding diploid F. tataricum cultivars

Content Qianwei 2# Jinku 2# Chuanqiao 1# Liuqiao 1#

4x 2x 4x 2x 4x 2x 4x 2x

Seed protein (%) 16.4 ± 0.32A 14.9 ± 0.45B 19.4 ± 1.56A 13.9 ± 1.14B 15.7 ± 1.14A 13.7 ± 1.03B 18.5 ± 1.21A 14.5 ± 0.96 B

Seed flavonoid (%) 4.57 ± 0.25 A 2.54 ± 0.18B 3.84 ± 0.38A 2.98 ± 0.27B 3.23 ± 0.22A 2.91 ± 0.16B 3.96 ± 0.31A 2.62 ± 0.11B
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