
Sadhand, Vol. 21, Part 3, June 1996, pp. 363-380. © Printed in India.

Morphological processing of Indian languages for lexical
interaction with application to spelling error correction

P SENGUPTA and B B CHAUDHURI

Computer Vision and Pattern Recognition Unit, Indian Statistical Institute, 203
B T Road, Calcutta 700 035, India
email: [sprobal, bbc] @isical.ernet.in

Abstract. An NLP system for Indian languages should have a lexical sub-
system that is driven by a morphological analyzer. Such an analyzer should be
able to parse a word into its constituent morphemes and obtain Iexical projection
of the word as a unification of the projections of the constituent morphemes.
Lexical projections considered here are f-structures of the Lexical Functional
Grammar (LFG). A formalism has been proposed, by which the lexicon writer
may specify the lexicon in four levels. The specifications are compiled into a
stored lexicaI knowledge base on one hand and a formulation of derivational
morphology called Augmented Finite State Automata (AFSA) on the other
to achieve a compact lexical representation. The aspects of AFSA, especially
its power of morphological parsing of words in a computationally attractive
manner, has been discussed. An additional utility of the AFSA, in the form of
spelling error corrector, has also been discussed. Bangla, or Bengali is consid-
ered as a case study.

Implementation notes based on object-oriented programming principles has
been provided.

Keywords. Natural language prOcessing; morphological sub-system; lexi-
cal representation; augmented finite state automata; spelling corrector; object-
oriented implementation.

1. Introduction

As most Indian languages are richly inflectional, a realistic natural language processing
(NLP) system for any such language should have a morphological sub-system for pars-
ing surface forms of words into its constituent morphemes. Such a sub-system achieves
reduction in lexical redundancy and compactness of lexical representation. During the
course of NLP research, the present authors have proposed a formalism for lexical speci-
fication that leads to a compact lexical representation for an inflectional Indian language
(Sengupta & Chaudhuri 1993). The formalism performs efficient parsing of words leading

363

364 P Sengupta and B B Chaudhuri

W

Syntactic Component
k

Lexical Component

rd

Lexical
Analyzer

Syntactic Category

F Structures

. 4

Figure 1. Conventional lexical interaction.

to lexical projection in the form required by a Lexical Functional Grammar (LFG)
(Kaplan & Bresnan 1982). While conventional lexical analysis may be explained by
figure 1, our proposed morphosyntactic analyzer performs lexical analysis as shown in
figure 2. A detailed description of the formalism may be found in Sengupta (1994).

The central idea of morphological parsing of words is tackled in our formalism by an
Augmented Finite State Automata or AFSA that has been proposed by us. We have not
only studied the formal aspects of the AFSA but have also attempted an object-oriented
implementation of the same. The efficacy of the AFSA as a tool for dictionary storage with
spelling error detection/correction has also been investigated.

The importance of morphological processing is an established fact. Originally dealt with
at reasonable depth by Kaplan & Bresnan (1982), in contemporary works, the two-level
approach of Koskenniemi (1983) is most well known. The approach has been extensively
reviewed (Gazder 1985) and used in implemented frameworks (Ritchie et al 1987). Our
proposed recognition system is intermediate between the approaches of Kaplan et al and
Koskenniemi.

In § 2, we provide a general background of lexical analysis of Indian languages. Lexical
specification and representation as suggested in our scheme are taken up in § 3 and § 4,
respectively, the AFSA being introduced in the latter section. Spelling correction with the
AFSA is discussed in § 5 and notes on Object Oriented implementation of the lexical
analyzer, especially the AFSA are included in § 6.

W rd .t,ti omoe S tnttic Itructurecteo y
Lexical Component

Automata • • . Conjoined Morpho-Syntactic Ior
Parsing Words Morphemes Encoder

Figure 2. Lexical interaction with morpho-syntactic analysis.

Morphological processor for Indian languages 365

2. General background

The constituent morphemes of words in an Indian language are Stems which form the
essential component of words providing the meaning and Affixes. Depending on position
of conjoining, an affix is a prefix, an internal affix or a declension. We shall however keep
prefixes out of the purview of the present paper. Words are produced as a result of con-
joinings between a stem and an appropriate number of affixes (may be none), the last of
which will be called a declension. Every constituent morpheme of a word contributes to
its overall linguistic property. The morphemes may be partitioned into several classes with
morpho-syntactic rules, that are essentially non-recursive (i.e. regular), restricting conjoin-
ings among them. Another class of rules of generative morphology called spelling rules,
are concerned with morpho-phonemic or morpho-graphemic restructuring of symbols at
the boundaries of two conjoining morphemes. The spelling rules make the job of detection
of morphemic boundaries more difficult.

The basic idea of our proposed formalism is to unite the lexicon, the lexical description
and the surface description into an integrated system. A few major aspects of the formalism
are:

• Stored iexical knowledge bases for morpheme classes, their inter-relationships and
spelling rules.

• A Lexical Specification phase in which the lexicon writer imparts linguistic knowledge
to build up the above knowledge bases.

• A Representation phase in which the following two levels of lexical representation are
generated:

- A Comprehensive Lexicon for every morpheme containing every relevant lexical
knowledge.

- A formulation of the rules of morpho-syntax and derivational morphology in the
form of an Augmented Finite State Automata (AFSA), which has the capability of
parsing words and detecting morpheme boundaries, even when spelling deformities
are present. The AFSA has pointer leading into the Comprehensive Lexicon for
information retrieval.

The formalism is presented as a software tool to be used by a linguistic expert for specifi-
cation of the lexicon of the target language. These specifications are to be 'compiled' into
the proposed representation scheme.

3. Lexicai specification

The linguistic expert would provide lexical description in four levels:

1. Specification of different morpheme classes.

2. Specification of rules of morpho-syntax.

3. Specification of a set of spelling rules.

4. Specification of a list of morphemes (constituting the vocabulary).

Unless otherwise mentioned, the specification format is like in LISP lists.

366 P Sengupta andBBChaudhuri

3.1 Specification of morpheme classes

The lexicon writer provides the names of different morpheme classes with the feature
structures - - a set of attribute names with a list of permitted attribute values (default
in brackets, $ for strings). Directives STEM or END indicate that it is a stem class or
declension class, respectively.

An Example Specification for morpheme classes VSTEM, NSTEM, VDEC, VCAUS,
NCASE and DEF (representing verbal stems, nominal stems, verbal declensions, verbal
causational affix, nominal case declensions and nominal definiteness affix, respectively):

(((VSTEM STEM END) ((VALENCY ([0] 1 2 3))
(BRED ($))

((NSTEM STEM END) (

(VDEC END) ((TENSE
(GNPH

))

(VCAUS END) ((CAUS
(NCASE END) ((CASE

(CAT ([material] abstract instrument place))
(ANIM (+ [-]))
(PRED ($))))
(PAST [HABIT] PRESENT))

(0 ip [2p-0h] 2p-lh 3p-lh 2/3p-2h))

(DEF END) ((DEF

(0 [I] 2))))
([NOM] DAT LOC OBLQ POSS))))

([YES] NO))))

3.2 Specification of rules of morpho-syntax

Rules of morpho-syntax (Word Grammar rules) govern formation of words from mor-
phemes and lead to restrictions on a morpheme of one class following a morpheme of
another in a word that has to be reflected in the AFSA. They are specified in the usual
manner of specifying syntactic LFG rules, i.e. a lexical category is constituted of (denoted
by ----~) morphemes of some classes. The rules may be annotated with f-structure schema.
An artificial morpheme class called NULL may be used as a mechanism to project lexical
information when certain morphemes are missing.

An example specification for verbs and nouns:
1. VERB ~ VSTEM NULL

(t TENSE) = IMPER
(t GNPH) = 2p - Oh

2. VERB ~ VSTEM VDEC

3. VERB ~ VSTEM VCAUS VDEC

4. NOUN ~ NSTEM NULL
(t CASE) = NOM

5. NOUN ~ NSTEM NCASE

6. NOUN ~ NSTEM DEF NCASE

7. NOUN ~ VSTEM VCAUS NCASE
(t CAT) = gerund

8. NOUN ---* VSTEM VCAUS DEF NCASE
(~ CAT) = gerund

3.3 Specification of spelling rules

Morphological conjoining in Bangla, especially in the common dialect, fails to be strictly
concatenative because there can be deformation of symbols around the boundary of

Morphological processor for Indian languages 367

conjoining morphemes in many cases. For example, when the two morphemes dhu (verb
stem "wash") and ben (a verb declension) conjoin, the resultant 'surface' form is dhoben.
Note that the deformation of u to o in the example is very near the conjoining boundary.
We therefore assume that words may have two different levels of representation. The rep-
resentation that we write, read, speak and hear is the surface level representation, while at
a lexical level of representation, morphological conjoining is strictly concatenative. Thus
the lexical form of the above example would be dhuben.

Paul (1986) has closely studied spelling deformities in Bangla, especially of the verbal
paradigm. From those observations, backed up by some of our own, we may list the
following salient features of spelling deformity:

• Any deformity may be characterized entirely by the 'atomic' operations addition or
deletion of a symbol and replacement of one (or more) symbol(s) by one (or more)
symbol(s). If 13 is used to denote the 'absence' of a symbol, all the above atomic
operations may be expressed by the single operation - replacement.

• The innumerable individual instances of deformities may be reasonably generalized
with "global" (i.e., applicable during a conjoining between any two morphemes) or
"local" (applicable between pairs of morphemes from certain particular morpheme
class pairs) applicabilities.

We now introduce the concept of spelling rules and specifications thereof.

Alphabet: The set of all characters that can constitute a lexical form (resp. surface form)
of a word constitutes the alphabet I3L (resp. ZR). Z£ and ER are not not necessarily
identical.

An l-r pair: We define a : b, where a e I:L t3 t3 and b ~ ~R t_J 13, to be an l-r pair or
simply pair. A union al la21.., lag : bl Ib2.. . Ibk of pairs represents a disjunctive choice
ai : bi, 1 < i < k, from the k possible pairs.

An R-expression (RE): This is defined as a finite string of unions of pairs. For example,
R E = (a Ib) : (x Ix) 13 : y c : 13 is an R-Expression. If there are n unions in an R-Expression
RE, it represents all distinct 1-r-pairs of length n obtained by opening out the disjunctive
choices of the unions.

String matching: A string t is tail matched by a string s if I t I > I s I = n , and the last n
symbols of t spell out the string s. A string s head matches a string t if s is a prefix of t.

Spellingrule: Aspell ingruleisatemplateoftheformREl+RE2,whereRE1 andRE2
are R-expressions. The character + represents the abstract morpheme boundary. Intuitively,
a rule RE1 + RE2 means the following. At the boundary between two morphemes, let the
left morpheme tail match and fight morpheme head match RE L and RE~, respectively.
In the surface, the matched portion of the morphemes get translated to the corresponding

368 P Sengupta and B B Chaudhuri

symbols from R E (and R E f . In other words, a feasible pair of morphemes 1 m 1 + m2
matches a rule R E1 + R E2 and gets translated to surface s l tl t2s2 if and only if m 1 = s lrj ,
m2 : r2s2, rl E REL , tl ~ RESl, r2 E R E ~ , t2 E R E s and r l , t 1 and r2, t2 are
corresponding pairs.

Often, as a shorthand, a spelling rule template may be written as:
. . . S : T . . . +
where S and T are strings of identical size. This representation is a shorthand for I S I
different rules formed by taking members from S and T in order.

Local and global rules: Rules may be defined to be applicable at the boundary between
only some specified pairs of morpheme classes. In such cases, the rules are adorned by
the pairs of morpheme class. Such a rule will be called a local rule. All unadorned rules,
called global rules, are applicable at the boundaries of all morphemic pairs. In the event
of a rule clash between a local and a global rule, the local rule prevails. The specification
format of spelling rules is:

<Spelling Rule Template>[at(Mi,M2)]

where, M1 and M2 are morpheme classes. The "at" clause, if present, indicates a local
rule. '0' is the null symbol and symbols 'V', 'C' and = represent the set of all vowels, set
of all consonants and the entire alphabet set, respectively. Consider the following spelling
rulesasexamples.

I. V:V + a:o

2. eiuo:eiuo + 0:y e:e

3. V:V + ieu:000 nsk:nsk at VSTEM, VDEC

4. C:C a:e C:C + E:e at VSTEM, VDEC

5. a':i + i:e y:0 a':0 at VCAUS, VDEC

6. a':a' + 0:c 0:/ ch:ch at VCAUS, VDEC

The first two of the rules are global. For a more comprehensive list of spelling rules for
Bangla, see (Sengupta & Chaudhuri 1993; Sengupta 1994).

3.4 Morpheme list specification

The final level of lexical specification involves providing a list of morphemes.
Example:

i) pa': ((VSTEM (VALENCY i) (PRED 'get'))
(NSTEM (CAT instrument) (PRED 'foot')))

ii) pa't: ((VSTEM (VALENCY i) (PRED 'lay')))

1We say that a pair of morpheme classes (M 1 , M2) is a feasible pair, if any morpheme of class M2 can follow any
morpheme of class M1 in a word.

iii) mar:

iv) ma'r:

v) a':

vi) t'a':

vii) er:

viii) ke:

ix) e:

x) E:

xi) re:

Morphological processor for Indian languages

(VSTEM (PRED 'die') (CAUS 0)))

(VSTEM (VALENCY i) (PRED 'kill'))

(VCAUS))

(DEF))

(NCASE

(NCASE

(NCASE
(NCASE
(VDEC)

(CASE POSS)))

(CASE DAT)))

(CASE LOC) (CAT place))
(CASE OBLQ) (CAT material)
)

(VDEC (TENSE CONTINF) (GNPH 0)))

(VDEC (GNPH 2p-lh))
(VDEC (TENSE CONDINF) (GNPH 0))
(NCASE (CASE LOC) (CAT place))
(NCASE (CASE OBLQ) (CAT material))

369

xii) ten: (VDEC (TENSE HABIT) (GNPH 2/3p-2h)))

Observe the following in the above specification:

1. A morpheme may belong to multiple classes as in i), ix), xi).

2. There may be alternations in the lexical specification as in ix) xi).

3. A morpheme may be specified only with its class as in v), vi), ix).

4. There is no harm in re-specifying a default attribute value as in xii).

5. An attribute not in set of default attributes of a word may also be specified, as in iii).

4. Lexical representation

There are two levels of lexical representation:

• A Comprehensive Lexicon for every morpheme.

• An Augmented Finite State Automata (AFSA).

4.1 The comprehensive lexicon

The comprehensive lexicon is basically an indexed database of morphemes. The specifi-
cation of an individual morpheme is first completed by copying the default specifications
from the class it belongs. From this, tuples of the type:

< Morpheme Class > (< AttributeName/Path > < Attribute Value >) (. . .)

are created and stored in the database entry for the morpheme. There may be multiple
tuples for the same morpheme.

370 P Sengupta and B B Chaudhuri

4.2 Introduction to the AFSA

The Augmented Finite State Automata (AFSA) is our proposed tool for parsing words
into constituent morphemes. In the normal mode of use, the AFSA accepts the surface
representation of a word as input and ultimately generates index pointers into the com-
prehensive lexicon for the morphemes constituting the word. The lexical projection of the
word can be recovered as a result of unification of the lexical projections of the constituent
morphemes. We have assumed that the application of a rule at a boundary is context-free,
neither affecting nor being affected by an earlier or later application of a rule at some other
boundary.

The AFSA consists of a forest of DirectedAcyclic Graphs (DAGs). Each DAG represents
a finite state recognizer for a class of morphemes. However, there is a single DAG for all
STEM type morphemes. The DAGs consist of two types of edges - - lexical or/-edge and
surface or s-edge. Transition along 1-edges only from the root node to a terminal node
of a DAG recognizes a lexical morpheme. Transition along s-edges however, recognize
one surface form of some lexical morpheme. The different DAGs in the system are also
interconnected by 1- and s-edges. However, the inter-DAG edges are qualitatively different
from intra-DAG edges. We call inter-DAG edges active and intra-DAG edges passive. The
active edges encode the morpho-syntactic restrictions applicable for the language specified
by the lexicon writer as described in § 3.2.

4.3 Formal definition of the AFSA

The AFSA consists of a forest of DAGs, where every DAG consists of:

a. A set of nodes representing states. Nodes are labelled as passive, l-active and/or s-active.

b. A set of l-passive edges between a pair of nodes in the same DAG.

c. A set of s-passive edges between a pair of nodes in the same DAG.

d. A set of l-active edges linking a (terminal) node of one DAG to the root node of another
DAG. The word active node will be used interchangeably with terminal node.

e. A set of s-active edges linking a terminal node of one DAG to a root node of another
DAG. Every s-active edge has a disjunction of one or more index pointers into the com-
prehensive lexicon. Every s-active node is associated with one or more s-active edges.
Additionally, if the DAG to which an s-active node belongs represents a morpheme class
with the END directive, the node has one trivial s-active edge. Unlike normal s-active
edges, a trivial s-active edge does not link to any node in a different DAG. However, it
has an index pointer into the Comprehensive Lexicon.

f. A set of associations connecting an 1-active and one or more s-active nodes.

Every DAG has a unique root l-node and one or more root s-nodes. The root 1-node is also
a root s-nodes.

4.4 Parsing in the AFSA

Input: The surface representation of a word - - s

Aim:
ofs .

Morphological processor for Indian languages 371

To recover pointers into the Comprehensive Lexicon of the constituent morphemes

Data structures: The AFSA and a Stack of quadruples (dag, node, index, k), where
node is an active node in DAG dag, index is an index pointer into the Comprehensive
Lexicon and latest morphemic boundary is at the k - 1-th symbol of the input.

Driving routine of the AFSA:

Step-1 dag +-- STEM; node <--- root 1-node of the STEM DAG; k +-- 1. (Here k points
to the character in s currently being scanned). Clear the Stack.

Step-2 If the end of string has not been reached, proceed to Step-3. Otherwise, check if
node is an s-active node. If not, proceed to Step-5. Otherwise, let p ~ Pt, where pt is
the trivial index pointer for node. Push (dag, node, p, k) in stack and exit with success.

Step-3 If node is an s-active node, non-deterministically decide whether to make an active
transition. If yes, let the chosen non-trivial s-active edge lead to node n in DAG d and let
p be the index pointer of the chosen edge. Push (d, n, p, k) onto stack. Make dag +-- d
and node +-- n and repeat step 3. If active transition is not taken, proceed to Step-4.

Step-4 If there is an s-passive edge in DAG dag from node node to node n on the k-th
character of s, make node ~ n; k +-- k + 1 and go to Step-2.

Step-5 If there is no s-active or s-passive transition possible in DAG dag from node node
based on the k-th character of s, or if k points beyond the last character of s, pop
(dag, node, p, k) from stack (where p is a dummy variable) and resume in Step-2. If
the pop operation falls, exit with failure, i.e. declare the input word to be ill-formed.

Output pointers to comprehensive lexicon: If the driving routine terminates success-
fully, the stack contains r, r > 1 quadruples (dt, hi , Pl, kl), (d2, n2, P2, k2) (dr, nr,
Pr, kr). The lexical projection of the word is the union of the r sets of schema obtained
from the comprehensive lexicon by following the pointers Pl, P2 Pr.

4.5 Automatic generation of AFSA

The specifications provided by the lexicon writer are compiled into an AFSA. The com-
pilation proceeds with two passes over the list of morphemes, along with an intermediate
pass over the list of spelling rules. The compilation process is pre-processed by a pass over
the list of morpheme classes. The second pass also consults the set of spelling rules. The
compilation process has been discussed in detail in Sengupta (1994). The AFSA obtained
after the first pass of compilation has been shown in figure 3 and the final AFSA produced
is shown in figure 4.

4.6 Complexity and related issues

The worst case time complexity of parsing in AFSA is of exponential order, primarily due
to the non-determinisms at various stages. Let there be n DAGs in the system corresponding

372 P Sengupta and B B Chaudhuri

a ~

STEM

V D E C

E

NCASE

VCAUS

DEF

POSS

Edges are both l-passive and s-passive. Numbered circles are active nodes. Figures on terminal

nodes indicate entry number of Morpheme Lexicon indexed by the nodes.

Figure 3. The AFSA after first pass of compilation.

to n - 1 non-STEM morpheme classes and one common STEM DAG. The worst casefirst
level non-determinism occurs at an active node (which is also a passive node) of the STEM

DAG where the next symbol has active transitions to every n - 1 non-STEM DAG as well

as a passive transition. This gives rise to an n level non-determinacy. The worst case second
level non-determinism is of order n - 1 and may occur at an active node of a non-STEM

Morphological processor for Indian languages 373

DAG, where there may be n - 2 active transitions to the remaining n - 2 non-STEM DAG
(active transitions from a DAG to itself are not possible) as well as a passive transition.
Similarly, k-th level non-determinism is of order n - k + 1. Of course, while parsing a
given word, there may be at most n levels of non-determinism, since otherwise there must
be a cyclic active transition. As all non-determinisms are multiplicative, the worst case
scenario during parsing could lead to n ! non-deterministic choice for every single symbol
of the word, hence giving a O(k n!) worst case complexity for a word of length k.

We have observed that while there may be many active transitions from an active node
of the STEM DAG, active transitions from an active node of a non-STEM DAG is fewer.
This is because, a non-STEM morpheme class may be followed by only a few other DAGs
in morpho-syntax rules, allowing us to conclude that only first level non-determinism af-
fects computational complexity appreciably. Pragmatic worst case complexity is therefore
0 (k n) ~ still exponential !

STEM

TO VDEC/2

e To VDEC jJ VCAUS

To VDEC I] VCAUS

VCAUS H VDEC H NCASE
CAU$]I | VDEC/I | NCASE/I II VDEC ~ NCASE

To VDEC II VCAUS

~e , ~., , .L.. . .~To VDECI3 II VDEC

~ T o VDEC/2

VDF_~

/
t

/

!

Figure 4. Continued on next page.

374 P Sengupta and B B Chaudhuri

NCASE

I

V C A U S

i • • T o V D E C / 3

l

~ To VDEC II DEF

~ To VDEC II VDEC/] II DZF

DEF

P O S S

\
\

* I-act~ve N o d e + s - a c t i v e N o d e - - b E d g e

Figure 4. The final compiled AFSA.

• "~ is- Edge

Focusing entirely on first level (i.e. localized in the STEM DAG) non-determinism only,
it is possible to reduce it further by associating a set of lookahead symbols with active
edges. An active transition is taken only if the next symbol belongs to the lookahead set.
A non-determinism is then encountered when all the following conditions hold:

• The present node is an active node.

• Total transitions (both active as well as passive) possible from the present node, with
the next symbol as "lookahead", is more than one.

While worst case complexity still remains exponential, since non-determinism is now
governed by two independent events of moderate probability, the practical complexity
is quite low. It is difficult to analytically compute the average case complexity since it

Morphological processor for Indian languages 375

is not easy to estimate the distribution of words being fed to the AFSA. We made the
following short study for a moderate lexicon consisting of 565 stems of different classes.
We identified the nodes in the STEM DAG that cause non-determinism, along with the
offending characters.

The results are shown below:

Total number of stems = 565
Total number of nodes = 764
Total number of active nodes = 551
Total number of offending active nodes = 124

Of the 124 offending nodes (less than 17% of all nodes), in as high as 84, the offending
symbol was i. Invariably, these nodes recognized verbal stems and the non-determinism
was between active transitions to the VCAUS (since by the effect of some spelling rules,
the causational affix i becomes iy, if the following verbal declension is E realized as e in the
surface) and VDEC (since there are many declensions like i, ite, ila, etc., that begin with
i. We fine-tuned our recognizer to lookahead to the second lookahead character at active
nodes, if the next symbol is i. This leaves us with 60 isolated offending active nodes in the
AFSA. The test runs show near linear (with respect to word length) run time complexity.

5. Use of AFSA in spelling correction

A spelling corrector is a computer program that takes a presumably misspelt word as input
and suggests possible correctly spelt alternative words for the same. The suggested words
are in a way at close Hamming vicinity of the input word. In general, an erroneous word
may have been generated from a correct word due to one or more of the following:

• A character symbol at some position of the correct word has been substituted by some
other character. This is the most general type of error, generally known as substitution
error.

• A character symbol at some position of the correct word has been dropped inadvertently.
This error is known as a deletion error.

• A spurious character has been inserted at some position of the correct word resulting
in an insertion error.

If the null character, whose external manifestation in a string is absence of any symbol
at its position, is considered to belong to the logical character set, the deletion and insertion
error can be considered to be special cases of the substitution error. In deletion error, the
deleted character is substituted by the null character while in insertion error, a null character
is substituted by a non-null character.

Computing the precise Hamming vicinity of a word is very difficult. The accepted
spelling correction techniques assume that errors accumulate with decreasing order of
probability. Usually, as in our implementation, the probability of a single error (of either
of the three types) is assumed to be 0.5. At every subsequent error, the probability hitherto
encountered is halved. In this way, there is an informal relationship between the Hamming
distance between a correct word and a (possibly) erroneous one to the probability of the
latter. The lower the probability, the greater is the Hamming distance.

376 P Sengupta and B B Chaudhuri

On principle, our spelling corrector proceeds as follows. Given an input (possibly er-
roneous) word, it goes about recognizing the same in the AFSA. During the process, it
continuously builds up a list of possible words along with their probabilities as well as
proper prefixes of such words and their probabilities. In every elementary step, yet another
prefix is selected from the latter list proceeded with one more character (may be null) at
the end. As a result of an elementary operation, more prefixes may be added to the list.
However, if the chosen prefix was found to be of a probability below a threshold, i.e., it is
already quite far away from any valid word, it may be discarded. If the newly generated
prefix represents a full word, it is also appended to the list of possible words.

The AFSA can be easily used as the building block of a spelling corrector. Only the
s-edges of the AFSA need be considered by a spelling corrector. In our implementation,
described in more detail in Das (1994), the following auxiliary data structures are used:

• The W o r d N o d e structure is a 4-tuple (str, pos,prob, node), where str is a string of char-
acters representing a word-prefix. Recall that every valid word-prefix may be associated
with one or more nodes of the AFSA, the multiplicity being due to the non-determinism
introduced by the active nodes/edges. In the above tuple, node is one such node. pos is
an integer denoting the position of the input word with which the prefix str is associated
and prob is the hitherto computed probability of str.

• The Possible Word List (PWL) is a list of possible suggestions in case the input word
is erroneous.

• The Search List SL is a list of prefixes to be considered, actually stored as a list of
WordNodes,

In an elementary operation, a WordNode wn is taken out from SL and processed upon.
During this processing, wn .node becomes the current node. Depending upon the situation,
three types of search moves may be necessary:

• If wn.node is a passive node, the move Pass iveSearch carries out a one character
lookahead making transitions along passive edges.

• If on the other hand wn.node is an active node, the move A c t i v e S e a r c h carries out
the lookahead from the root node to the DAGs to which there are active edges from
tO n .node.

• It may happen that Wn.pOs indicates that scanning has proceeded beyond the last char-
acter of the input word. In such a case, the look ahead proceeds from Wn.node till a
terminal node is reached, i.e., a valid word is detected. This is taken care of by the move
ForwardSearch.

The overall spelling corrector algorithm begins with an 2 n p u t W o r d COCl . . . Csize-l,
empty PWL and SL containing the only WordNode wn = ("", O, 1.0, n), where, n is the
root node of the STEM DAG. Note that the initial probability wn .prob is 1.0.
The main loop of the spelling corrector is as follows:

while (SL is not empty) {

wn - Some item taken out of SL;

if (wn.node is terminal &&

0.5**(size-wn.pos)>threshold) { /* ** is to-the-power */

Morphological processor for Indian languages 377

/* Word recognized at the node is close enough */
add wn.str to PWL;

}
if (wn.prob>threshold) { /* Proceed only if probability is sufficient */

if (wn.node is active) ActiveSearch(wn);
if (wn.pos<size) { /* Still possible to associate */

PassiveSearch(wn);
}
else {

ForwardSearch(wn);
}

}
throw away wn;

)

It is appropriate to describe at least the Pas s iveSearch module here.

void PassiveSearch(WordNode wn)
{

if (found (nl=passive transition on inputWord[wn.pos] from wn.node)) {
/* Normal proceed. Do not.alter probability */

add WordNode(wn.strl linputWord[wn.pos],wn.pos+l,wn.prob,nl)
to SL;

}
if (wn.pos<size-i &&

found (nl=passive transition on inputWord[wn.pos+l] from wn.node)) {
/* Possibility of detection of an Insertion error.

The insert character is inputWord[pos].
This is notionally deleted. */
add wordNode(wn.strl linputWord[wn.pos+l],wn.pos+2,wn.prob/2,nl)
to SL;

}
k = number of passive edges from wn.node
for (i=0;i<k-l;i++) { /* for all edges do */

nl = node reached following i-th passive edge from wn.node;
c = character on the i-th passive edge;
create wnl = WordNode(wn.strilc,wn.pos,wn.prob,nl);

/* wnl shall take care of Deletion and/or Substitution error.
Consolidation done below. */
if (nl is active node) ActiveSearch(wnl);

/* Taking active closure of nl before handling itself */
if (found (n2=passive transition on inputWord[wn.pos] from nl)) {

/* Taking care of Deletion of c at wn.pos-th position */
add WordNode(wn.strllcllinputWord[wn.pos],wn.pos+l,wn.prob/2,n2)
to SL;

}
if (wn.pos<size-I &&

found (n2=passive transition on inputWord[wn.pos+l] from nl)) {
/* Taking care of Substitution of c by inputWord[wn.pos+l]

at wn.pos-th position */
add WordNode(wn.strlictlinputWord[wn.pos],wn.pos+2,wn.prob/2,n2)
to SL;

}
} /* end for */

} /* end function Passive Search */

Consider as an example, the input pa're and the tiny AFSA as shown in the figure.
(Although pa're is a valid Bangla word, the AFSA of the figure does not recognize it.)
With a threshold of 0.125 (i.e. total error not exceeding two), our spelling corrector would
give suggestions mere, raa're, mare, ma'ra', mara', pa'te, pete, pa'ten, pa'y, pa'ke.

378 P Sengupta and B B Chaudhuri

6. Implementation notes

The major object (also known as c 1 a s s es in C++ parlance) used are:

Passive Node: This class represents a passive node of the AFSA. It contains lexical
and surface back passive edges to the previous node. There is a container of pairs (c, lp),
where c is a symbol from the lexical alphabet and lp is a pointer to another node. Thus the
items of this container are l-passive edges. There is another similar container for s-passive
edges. Member functions includes forward/reverse lexical/surface transition procedures.

Active Node: Is inherited fi'om PassiveNode. There are two additional containers for 1-
and s-active edges. Each contained item of these containers is an Active Edge. There are
member functions for making 1- and s-active transitions. Another important member data
of ActiveNode is pLexList , which is a pointer to a linked list of pointers to the Lexicon
c 1 a s s. All members of the list are assumed to be disjunctively pointing to different lexical
entries.

Active Edge: Is a pair (pLook, pNode) where, pLook is a pointer to a set of "lookahead"
symbols and pNode is the root of the DAG to where the active transition is taken.

Lexicon: This c 1 a s s does not have any important member data. It serves the purpose
of interacting with the lexicon through database management routines to draw lexical
projections of morphemes.

Other classes used are FStructure, Pair, etc., along with member functions
to perform Locate and Merge operations of LFG. These c 1 a s ses are discussed in more
detail in Sengupta (1994).

Object returned by the lexical sub-system: As shown in figure 2, there are two major
contents in the object returned by the lexical sub-system - - Word category of the input
word being parsed and the f-structure. In practice, the structure of the object returned by
the lexical component is not exactly so. The reason is that in our proposed system, there is
an intervening supra-lexical layer (Sengupta & Chaudhuri 1996; Sengupta 1994) between
the syntactic component and the lexical component. The components of the object actually
returned is as follows:

• The input word itself.

• Word Category. Indicating the tentative word category of the input word.

• A list of constituent morphemes.

• A list of (codes for) morpheme classes M1, M2, • • • for the constituent morphemes of
the word. Thus, the details of morpho-syntactic composition of the input word is also
returned.

• A list of (pointers to) f-structures F1, F2, • • • for the constituent morphemes.

Morphological processor for Indian languages 379

• A (pointer m) the unified ~structure of the wo~.

• A (pointer ~) the semantic clause of the word.

Imeraction with the lexical su~sys~m is carded out through the ~llowing ~nction:

int primitiveLexAnalysis(char *word,

\\ Input word
LexPrimitive *lexPrim

\\ Returned object
); // Returns TRUE

// if parse successful,
// FALSE otherwise

7. D i s c u s s i o n s

The formalism proposed here has been tried out for a medium sized lexicon in Bangla
consisting of about three hundred verb stems, one thousand nominal stems and a few
stems of some other classes. There are about forty verb declensions and about ten case
declensions capable of generating 2,400 VERBs (causated and non-causated) and 10,000
NOUNs. The results of parsing obtained were very satisfactory, with near linear recognition
time complexity.

The lexical projection of a compound stem produced as a result of euphony of two stems
can be derived from the conjoining stems. As a result, euphony is a more attractive subject
of study than prefixes. If an AFSA is used to perform rule-based de-euphonization, it may
have too many self-loops, resulting in reduction of efficiency. However, at the level of
sentential syntax analysis, considerable advantages may be derived from rule-based de-
euphonization. We have made some initial studies (Panda 1992). However, it is too early
to report any major achievement.

The biggest advantage of our formalism is the compactness and lucidity of represen-
tation. The recognizers are finite-state networks n a well-studied formalism. The repre-
sentation scheme is easy to understand and quite flexible. The underlying LFG formalism
permits a broad generalization across morpheme boundaries as in the last example taken up
in § 4.5 (i.e. mara 'y) . Comparing our formalism with Koskenniemi's two level approach,
we find that the latter does not incorporate morpho-syntactic restrictions in the automata
itself.

Finally, the potential power of the AFSA as the building block of a spelling corrector
has been amply demonstrated.

References

Das M 1994 Implementation of a spelling checker for Bengali language. M Tech dissertation,
Indian Statistical Institute, Calcutta

Gazder G 1985 Review article: Finite state morphology. Linguistics 23:597-607
Kaplan R M, Kay M 1981 Phonological rules and finite state transducers. ACL/LSA Assoc.

Comput. Linguistics (New York: Linguistic Soc. Am.)

380 P Sengupta and B B Chaudhuri

Kaplan R M, Bresnan J 1982 Lexical fuctional grammar: A formal system for grammatical
representation. In The mental representation of grammatical relations (ed.) Joan Bresnan
(Cambridge, MA: MIT Press) pp 173-281

Koskenniemi K 1983 Two level model for morphological analysis. In Proceedings of the Inter-
national Joint Conference on Artificial Intelligence Karlsruhe, West Germany, pp 683-685

Panda H R 1992 Rule based "Sandhi Bicched" (de-euphonization) of Bengali. M Tech dissertation,
Indian Statistical Institute, Calcutta

Paul J 1986 Bangla verb morphology: A reconsideration. Indian Linguistics 47(1-4): 73-79
Ritchie G D, Pulman S G, Black A W, Russell G J 1987 A computational framework for lexical

description. Comput. Linguistics 13:290-307
Sengupta P, Chaudhuri B B 1993 A morpho-syntactic analysis based lexical sub-system. Int. J.

Pattern Recogn. Art(f. Intell. 7:595-619
Sengupta P, Chaudhuri B B 1996 Projection of multi-worded lexical entities in an inflectional

language. Int. J. Pattern Recogn. Artif lntell. (in press)
Sengupta P 1994 On lexical and syntactic processing of Bangla language by computer. Ph D

dissertation, Indian Statistical Institute, Calcutta

