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Abstract

Sampling is a basic operation in image processing. In classic literature, a morphological sam-
pling theorem has been established, which shows how sampling interacts by morphological
operations with image reconstruction. Many aspects of morphological sampling have been inves-
tigated for binary images, but only some of them have been explored for grey-value imagery.
With this paper, we make a step towards completion of this open matter. By relying on
the umbra notion, we show how to transfer classic theorems in binary morphology about
the interaction of sampling with the fundamental morphological operations dilation, ero-
sion, opening and closing, to the grey-value setting. In doing this we also extend the the-
ory relating the morphological operations and corresponding reconstructions to use of non-
flat structuring elements. We illustrate the theoretical developments at hand of examples.

Keywords: Sampling theorem, Mathematical morphology, Dilation, Erosion, Opening, Closing, Non-flat
morphology, Max-pooling

1 Introduction

Mathematical morphology is a very successful
approach in image processing, cf. [1–3] for an ac-
count. Morphological filters make use of a so called
structuring element (SE). The SE is characterised
by shape, size and centre location. There are two
types of SEs, flat and non-flat [4]. A flat SE de-
fines a neighbourhood of the centre pixel where
morphological operations take place. A non-flat
SE may additionally contain finite values used as
additive offsets. The basic morphological opera-
tions are dilation and erosion. In a discrete setting
as discussed in this work, these operations are re-
alized by setting a pixel value to the maximum
or minimum of the discrete image function within

the SE centred upon it, respectively. The funda-
mental building blocks dilation and erosion may
be combined to many morphological processes of
practical interest, like e.g. opening, closing or top
hats.

Sampling is a basic operation in signal and im-
age processing. The celebrated Nyquist-Shannon
sampling theorem relates the bandwidth of a
continuous-scale signal to its reconstruction via
equidistant sampled values, cf. [17] for an ac-
count. Turning to morphological filters, the classic
sampling theorem has an analogon within the
framework of discrete sets and lattices. In this
setting, the proceeding is based on image re-
construction by using samples together with the
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standard morphological processes of dilation and
erosion as well as their combinations; see the clas-
sic works of Haralick and co-authors [5, 16] as well
as previous developments in [4]. In these works,
sampling on the image grid was put in relation
with image reconstruction via dilation and closing,
and formulated in [5] as the digital morphological
sampling theorem.

Considering the literature that followed the
seminal work [5] on morphological sampling, we
are not aware of further elaborations on sam-
pling issues related to morphological filters. To
the best of our knowledge the results documented
in [5] have been cited for giving a theoretical ba-
sis for different developments, but they have not
been continued at exactly that point. However, in
the mentioned work several mathematical asser-
tions related to sampling and its interaction with
the basic morphological processes dilation, erosion
opening and closing have been addressed only for
binary images, while they have not been carried
over to the setting of grey value imagery. More pre-
cisely, this open issue refers to the situation when
filtering morphologically in the sampled domain,
i.e., making use of a sampled account of a given im-
age. This is from a computational point of view an
interesting setting since the image dimension and
thus the amount of necessary filtering operations
may be reduced by sampling considerably.

In the same line of classic works, the relation
between morphological operations and reconstruc-
tion of grey-value images was explored in the
context of max-pooling in [6]. Let us note that
the max-pooling operation as introduced in [18] is
often used in convolutional neural networks [15].

Let us elaborate a bit more at this point.
While [6] presents relations between operating
morphologically before sampling and morphologi-
cally operating in the sampled domain, there are
several limitations by the proceeding in [6], so that
it represents an important step in the investigation
of morphological operations in context of sampling
and reconstruction, but it is not a complete theory.
First, the theory in [6] is limited to a particular
type of sampling, i.e. max-pooling. Max-pooling
is the dilation by a square flat SE followed by
sampling, i.e., dilation is used in a first step as
a filter before the sampling step. Reconstruction
is also obtained in [6] by dilation. Since dilation
is not an idempotent operation, it is seldom used
directly as a filter in real world applications, and

a corresponding sampling and reconstruction set-
ting as in [6] bears considerable restrictions. Let
us also note that the work [6] assumes that the
SE is already a subset of the sampled domain, i.e.,
technically the SE is affected by and acts on only
those pixels of the image which are sampled. Fi-
nally, the work in [6] is limited to flat filters and
SEs. The discussions are limited to the lattice-
algebraic framework [7], which lacks the tools to
work with non-flat morphology.

Let us also elaborate a little more on the lat-
ter aspect in order to clarify the nature of our
proposed extensions upon aforementioned classic
works. The lattice algebraic theory provides a rich
framework to study mathematical morphology, see
e.g. [7, 12]. Lattice theory examines morphologi-
cal operations as transformations on the complete
lattice group of images. The ordering within the
lattice is based on the inherent ordering, whether
partial or total, of the pixel values, which, in the
case of grey-value images, is the total order of the
set of integers that make up the grey values. To
summarize, lattice theory is largely based on tonal
relationship between pixels. However, the lattice
theory in itself lacks effective tools to deal with
non-flat SEs and sampling. In particular, it largely
neglects the spatial relationship between pixels of
an image and the pixels of an SE as it moves
across the image during morphological operations.
The constraints imposed by lattice theory on the
study of grey-value morphological sampling are
apparent in [6], where the authors attempt to em-
ploy this approach. Firstly, the filters and S.Es
are restricted to be flat. Moreover, the SE is al-
ready in the sampled domain, that is, the action
of SE on the pixels of the image which are sam-
pled is unaffected by the image pixels which are
not sampled.

To overcome the aforementioned limitations,
we employ the umbra formulation of grey-value
images. Umbra technique allows us to treat
morphological operations on N -dimensional grey-
value images (by flat or non-flat SEs) as binary
morphological operations of their corresponding
(N + 1)-dimensional umbras [4]. Binary morphol-
ogy is in turn founded on the spatial arrangement
of pixels. Its basic operations are set operations,
where both the binary image and SE are treated
as sets of positional vectors. Furthermore, [5] thor-
oughly examines the connection between binary
morphology and sampling.
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Our Contributions. In a previous conference
paper [23], we have shown that it is possible to
extend the work in [6] to non-flat filters and SEs
using umbra formulation of morphological opera-
tions, and we have proposed a few results that can
be derived from [5]. More precisely, we explored
an alternative definition of grey-scale opening and
closing to prove reconstruction bounds for the in-
teraction of sampling with these operations. In
the current paper we build upon [23] and extend
the classic work of Haralick et al. in [5] on digi-
tal morphological sampling of grey value images.
As the main point of our developments, we for-
mulate and prove theorems relating morphological
operations, sampling and image reconstruction by
dilation and closing. Let us point out again clearly,
that corresponding results have been derived in a
relatively simple way for binary images in [5], but
they have not been extended up to now to grey-
value imagery. The theory we formulate is also
used here to extend the work in [6] to non-flat
morphology. In doing this, we give a theoretical
foundation for specific uses of the max-pooling op-
eration used in modern deep learning literature.
In total, compared to [23], we give a much more
extensive account of the theoretical framework,
proving in this context several additional results.

We believe that especially the extension to
non-flat morphology may be an interesting point
with respect to recent developments in incorporat-
ing morphological layers in neural networks, see
for instance [8–11]. There the learned morpholog-
ical filters within the layers are usually non-flat.
Thus we give a theoretical foundation of this re-
cent machine learning technique by the current
paper.

Paper Organisation. In the next section we
briefly recall the classic notions from mathemat-
ical morphology for binary as well as grey value
images, see for instance [4, 19–22] for a corre-
sponding account of the field and the basic notions
underlying our work. In addition, we will briefly
recall the digital morphological sampling theorem
in the binary and grey value setting, respectively.
The third section contains the main part of our
new results. In the fourth section, we use the
developed results to extend the theory in [6] to
non-flat structuring elements. We visualize the
meaning of theoretical developments by some ex-
periments within the text. The paper is finished
by concluding remarks.

2 Morphological Operations

As indicated we now recall formal definitions and
some fundamental properties of morphological op-
erations that help to assess the later developments.

2.1 Morphological Notions for
Binary Images

Let E denote the set of integers used to index the
rows and column of the image. EN is a N -tuple of
E. A (two dimensional)binary image A is a sub-
set of E2. That is, if a vector x ∈ A ⊆ E, then
the position at x is a white dot, where the de-
fault background is black. For sake of generality,
we consider the image as A ⊆ EN , N ∈ N [4].

Definition 1 Translation, Dilation and Erosion,
Reflection, Duality. Let A, B be subsets of EN . For
x ∈ EN , the translation of A by x is written as (A)x
= {c ∈ EN |c = a+x for some a ∈ A}. The dilation of
A by B is defined as

A⊕B = {c ∈ EN |c = a+ b for some a ∈ A, b ∈ B}

=
⋃
b∈B

(A)b

(1)

The erosion of set A by B is defined as

A	B = {x|x+ b ∈ A for each b ∈ B}

= {x ∈ EN |(B)x ⊆ A}

=
⋂
b∈B

(A)−b

(2)

In addition, the reflection of a set B is denoted by
B̆ = {x| for some b ∈ B, x = −b}. Moreover, it holds
duality in the sense (A	B)c = Ac ⊕ B̆.

Opening and Closing as described below can
be employed to erase image details smaller than
the structuring element without distorting unsup-
pressed geometric features, see e.g. [4]. They can
easily be generalised to the grey value setting.

Definition 2 Opening and Closing, Duality of
Opening and Closing. The opening of B ⊆ EN by
structuring element K is denoted by B ◦ K and is
defined as B◦K = (B	K)⊕K. Analogously, opening
is denoted as B •K = (B ⊕K) 	K. The operations
are dual i.e. (A •B)c = Ac ◦B.
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We note that there exist the following alterna-
tive definitions of opening and closing which are
useful in proofs of various results:

A ◦B = {x ∈ A| for some y, x ∈ By ⊆ A}

=
⋃

{y|By⊆A}

By (3)

and

A •B = {x|x ∈ B̆y implies B̆y ∩A 6= ∅} (4)

Let us now give some comments on the mean-
ing of the binary digital morphological sampling
theorem at hand of an example, see Figure 1.
As the corresponding sampling theorem will be
recalled in detail for the grey-value setting, we
refrain from giving a more detailed exposition
here.

We observe that the sampling sieve S as in
the figure will return every second grid point after
sampling. Fixing the centre point of the structur-
ing element K at the same pixel as the centre
of the sampling sieve, we see that the range of
the structuring element is smaller than the dis-
tance between grid points of the sampling sieve.
This amounts for a correct sampling and can be
used systematically for image reconstructions as
documented by an example given in Figure 2.

We now recall the binary version of the Digital
Morphological Sampling Theorem from [5].

Theorem 2.1 (Binary Digital Morphological Sam-
pling Theorem) Let F, K, S ∈ EN , where F is the
binary image, S is the sampling sieve and K is the
structuring element used for filtering. Suppose S and
K satisfy the sampling conditions

I. S ⊕ S = S

II. S = S̆

III. K ∩ S = {0}
IV. K = K̆

V. a ∈ Kb ⇒ Ka ∩Kb ∩ S 6= ∅
Then,

I. F ∩ S = [(F ∩ S) •K] ∩ S
II. F ∩ S = [(F ∩ S)⊕K] ∩ S

III. (F ∩ S) •K ⊆ F •K
IV. (F ∩ S)⊕K ⊇ F ◦K

V. If F = F ◦K = F •K, then (F ∩ S) •K ⊆ F ⊆
(F ∩ S)⊕K

VI. If A = A ◦ K and F ∩ S = A ∩ S, then A ⊇
(F ∩ S)⊕K ⇒ A = (F ∩ S)⊕K

VII. If A = A • K and F ∩ S = A ∩ S, then A ⊆
(F ∩ S) •K ⇒ A = (F ∩ S) •K

The conditions IV and V imply that S ⊕K =
EN . The condition III implies that K is just
smaller than two sampling intervals. The Morpho-
logical Sampling Theorem states how the image
must be filtered (i.e. opened or closed by K)
to preserve the relevant information after sam-
pling and gives set bounding relationships on
reconstruction of morphologically filtered images.

We now proceed by reproducing some re-
sults given in [6] on relation between sampling
the binary image after performing morphological
operations and morphologically operating in the
sampled domain. These results will still be use-
ful later in the grey value setting, as these are
concerned with the underlying set on which the
operations are performed.

Let us note that the set B is the SE which
is used to perform morphological operations on
the image F1. The example figures in this section
demonstrate the relationship between morpholog-
ically operating on the image F1 with B, sampling
using sieve S and filter K.

Some of the following results, e.g. Theorem 2.9
or Theorem 2.5, require that B = B ◦K. This in
essence means that B does not have any details
(white region) finer than the filter K, and B can
be appropriately reconstructed from the sampled
SE, B ∩ S, as mentioned in the Binary Digital
Morphological Sampling Theorem 2.1, cf. result V.

Proposition 2.2 Let B ⊆ EN be the structuring
element. Then

I. (F ∩ S)⊕ (B ∩ S) ⊆ (F ⊕B) ∩ S
II. (F ∩ S)	 (B ∩ S) ⊇ (F 	B) ∩ S

Figures 3 and 4 illustrate the first part of above
proposition. Figures 6 and 7 illustrate the second
part of the proposition.

Lemma 2.3 I. (F∩S)⊕(B∩S) = [F⊕(B∩S)]∩S
II. (F ∩ S)	 (B ∩ S) = [F 	 (B ∩ S)] ∩ S
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K

B S

:Origin

:Positions in set

:Positions not in set

Figure 1 The sets K, S and B used as an example; K is the underlying structuring element, and S is the sampling sieve.

Figure 2 Binary example image, of size 102 × 102, F1 (left), its maximal reconstruction after sampling, (F1 ∩ S) ⊕ K,
(centre) and its minimal reconstruction after sampling, (F1 ∩ S) • K, (right). For computing the maximal and minimal
reconstruction, respectively, the original image F1 has first been sampled by F1 ∩ S, which may reduce effectively the
resolution (to a quarter of the original one) as only every second pixel is taken into account in both grid directions, see S
in Figure 1. Then, by dilating with K on the original grid, i.e. with the original resolution, we obtain as by the process
of dilation an upper bound version of the original image called maximal reconstruction. The minimal reconstruction is
obtained by closing the sample with K on the original grid.

Figure 3 (F1⊕B)∩S ABC
ABCDE

Figure 4 (F1 ∩S)⊕ (B ∩S)
ABCDE

Figure 5 {[(F1 ∩ S) • K] ⊕
B} ∩ S

Figure 6 (F1	B)∩S ABC
ABCDE

Figure 7 (F1 ∩S)	 (B ∩S)
ABCDE

Figure 8 {[(F1 ∩ S)⊕K]	
B} ∩ S
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Lemma 2.4 Let B = B◦K . Then [(F ∩S)•K]⊕B ⊆
[(F ∩ S)⊕K]⊕ (B ∩ S)

The following two theorems formulated in
[5], as indicated for binary images, elaborate on
interaction of sampling and dilation/erosion, re-
spectively. Let us note that these theorems serve
as a motivation for proving and validating cor-
responding theorems in the grey value setting
later.

Theorem 2.5 Sample Dilation Theorem. Let B = B◦
K. Then (F ∩S)⊕ (B ∩S) = {[(F ∩S) •K]⊕B}∩S

Theorem 2.6 Sample Erosion Theorem. Let B = B◦
K Then (F ∩S)	 (B ∩S) = {[(F ∩S)⊕K]	B}∩S.

Notice that Figures 3 and 5 are identical. These
figures demonstrate Sample Dilation Theorem 2.5,
meaning that dilation in sampled domain (here,
(F1 ∩ S) ⊕ (B ∩ S)) is equivalent to sampling af-
ter dilation of the minimal reconstruction (here,
{[(F1 ∩ S) •K]⊕B} ∩ S).

Similarly, Figures 7 and 8 are identical. This
pair demonstrates Sample Erosion Theorem 2.6,
meaning that erosion in sampled domain (here,
(F1 ∩ S) 	 (B ∩ S)) is equivalent to sampling af-
ter erosion of the maximal reconstruction (here,
{[(F1 ∩ S)⊕K]⊕B} ∩ S).

Proposition 2.7 [F ◦(B∩S)]∩S = (F ∩S)◦(B∩S)

Proposition 2.8 [F • (B∩S)]∩S = (F ∩S)• (B∩S)

Similarly to Theorems 2.5, 2.6, the follow-
ing two theorems provide the interaction of two
other fundamental morphological operations, clos-
ing and opening, with sampling. We will also
extend the following result to the grey value
setting.

Theorem 2.9 Sample Opening and Closing Bounds
Theorem. Suppose B = B ◦K, then

I. {F ◦ [(B ∩ S)⊕K]} ∩ S ⊆ (F ∩ S) ◦ (B ∩ S) ⊆
{[(F ∩ S)⊕K] ◦B} ∩ S

II. {[(F ∩ S) •K] • B} ∩ S ⊆ (F ∩ S) • (B ∩ S) ⊆
{F • [(B ∩ S)⊕K]} ∩ S

Figures 9-11 demonstrate interaction of sam-
pling with opening operation. We can observe that
opening in the sampled domain is bounded above
by sampling the opening of maximal reconstruc-
tion of image (here, {[(F1 ∩S)⊕K] ◦B}∩S) and
bounded below by sampling of opening by maxi-
mal reconstruction of filter (here, {F1 ◦ [(B ∩S)⊕
K]} ∩ S).

In a similar way, Figures 12-14 demonstrate
interaction of sampling with closing operation. We
see that closing in sampled domain is bounded by
sampling of closing minimal reconstruction of the
image (here, {[(F1∩S)•K]•B}∩S) and sampling
of closing by maximal reconstruction of the filter
(here, {F1 • [(B ∩ S)⊕K]} ∩ S).

Theorem 2.10 Sampling Opening And Closing
Theorem. Suppose B = B ◦K.

I. If F = (F ∩ S)⊕K and B = (B ∩ S)⊕K, then
(F ∩ S) ◦ (B ∩ S) = (F ◦B) ∩ S

II. If F = (F ∩ S) •K and B = (B ∩ S)⊕K, then
(F ∩ S) • (B ∩ S) = (F •B) ∩ S

2.2 Morphological Notions for
Grey-value Images

Let E be the set of integers used for denoting the
indices of the coordinates. A grey-value image is
represented by a function f : F → L, F ⊆ EN ,
L = [0, l], where l > 0 is the upper limit for grey
values at a pixel in grey-value image, and N = 2
for two dimensional grey-value images.

The SEs are of finite size. The morphologi-
cal operations require taking max or min of grey
values over finite sets (of pixels) in our setting.
Therefore, the results are independent on whether
L is a discrete set (e.g., subset of integers) or a
continuous set (e.g., sub-interval of real numbers).

The proposed extension of the previous notions
to grey-value images requires to define the notions
of top surfaces and the umbra of an image, com-
pare [4]. Also see Figure 15 for the latter. In a first
step we rely on both notions for defining dilation
and erosion.

Definition 3 Top Surface. Let A ⊆ EN × L. and
F = {x ∈ EN | for some y ∈ L, (x, y) ∈ A}. Then the
top surface of A is denoted as T [A] and defined as
T [A](x) = max{y| (x, y) ∈ A}.
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Figure 9 {F1 ◦ [(B ∩ S) ⊕
K]} ∩ S ABCDE

Figure 10 (F1∩S)◦ (B∩S)
ABCDE

Figure 11 {[(F1 ∩S)⊕K] ◦
B} ∩ S

Figure 12 {[(F1 ∩ S) •K] •
B} ∩ S

Figure 13 (F1∩S)• (B∩S)
ABCDE

Figure 14 {F1 • [(B ∩ S) ⊕
K]} ∩ S

Definition 4 Umbra of an Image. Let F ⊆ EN
and f : F → L. The umbra of the image f is denoted
by U [f ] and is defined as U [f ] = {(x, y)| x ∈ F , y ∈
L and 0 ≤ y ≤ f(x)}.

The umbra is useful for studying geometric re-
lations between pixels, as it makes use of both
spatial and tonal information. Thus, umbra ap-
proach provides important and convenient tools to
deal with non-flat SEs and sampling, as already
briefly discussed in the introduction. Using um-
bra allows us to describe grey-value morphological
operations in terms of corresponding binary oper-
ations of umbra, making use of SE on umbra of
the image. Thereby, the SE by itself is also trans-
ferred to the umbra setting. See Definition 5 for
dilation, Definition 6 for erosion and Proposition
6 for opening and closing. In this way we are able
to extend many morphological concepts developed
for binary images directly to grey-value images.

Our definition of umbra, compare Figure 15,
turns out to work perfectly well for grey-value im-
ages, compare [4]. Note that we restrict ourselves
here to discrete non-negative pixel values at dis-
crete positions (pixels). The underlying concept

cannot be directly extended to continuous domain
or negative values, compare [13, 14].

Definition 5 Dilation for Grey Value Images.
Let F, K ⊆ EN and f : F → L, k : K → L. The
dilation of f by k is denoted by f ⊕ k : F ⊕K → L
and is defined as f ⊕ k = T [U [f ]⊕ U [k]].

Definition 6 Erosion for Grey Value Images.
Let F, K ⊆ EN and f : F → L, k : K → L. The ero-
sion of f by k is denoted by f 	 k : F 	K → L and
is defined as f 	 k = T [U [f ]	 U [k]].

As already mentioned, the operations of open-
ing and closing can easily be extended from binary
images to the grey-value setting, following the
same combination of dilation/erosion as in Defi-
nition 2. That is, f ◦ k = (f 	 k) ⊕ k and f • k
= (f ⊕ k) 	 k. Similarly to the binary versions,
grey-value opening and closing are anti-extensive
and extensive, respectively. Both grey-value open-
ing and closing are idempotent as well as dual
operations.

Propositions 2.11 and 2.12 are used to compute
dilation and erosion for a grey-value image.
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Figure 15 Left: An example grey-value image, of size 102 × 102, f : F → L used for examples. Right: Visualisation of
the corresponding umbra.

Proposition 2.11 Let F, K ⊆ EN and f : F → L,
k : K → L. Then f ⊕ k : F ⊕K → L can be computed
by (f ⊕ k)(x) = maxu∈K, x−u∈F {f(x− u) + k(u)}.

Proposition 2.12 Let F, K ⊆ EN and f : F → L,
k : K → L. Then f 	 k : F 	K → L can be computed
by (f 	 k)(x) = minu∈K {f(x+ u) − k(u)}.

Let us note that the method to compute (f 	
k)(x) as given in Proposition 2.12 is valid only for
x such that (x, y) ∈ U [f ]	U [k] for some y. To ex-
tend the definition to all x ∈ F	K, one may define
(f	k)(x) = max{0,minu∈K {f(x+ u) − k(u)}}.

Suppose now A and B are umbras. Then
A ⊕ B and A 	 B are umbras. The Umbra Ho-
momorphism Theorem below makes this property
precise.

Theorem 2.13 Umbra Homomorphism
Theorem. Let F, K ⊂ EN and f : F → L and
k : K → L. Then

I. U [f ⊕ k] = U [f ]⊕ U [k]

II. U [f 	 k] = U [f ]	 U [k]

We will employ at some point the following
notions.

Definition 7 Reflection of an Image. The reflec-
tion of a grey-value image f : F → L is denoted by
f̆ : F̆ → L, and it is defined as f̆(x) = f(−x) for each
x ∈ F̆ .

Definition 8 Negative of an Image. The negative
of a grey-value image f : F → L is denoted by −f :
F → L, and it is defined as (−f)(x) = l − f(x) for
each x ∈ F , where l > 0 is again the upper limit for
possible grey values.

Let us note that Haralick [4] defines the neg-
ative of an image via (−f)(x) = −f(x), x ∈ F .
Definition 8 as we propose above is more suitable
for many purposes because the grey value at a
pixel is not supposed to be negative.

We also recall the concept of boundedness for
grey-value images. Let f : F → L and g : G → L
be two grey-value images. We say f ≤ g if F ⊆ G
and f(x) ≤ g(x) for each x ∈ F .

Let us now recite the grey-value morphological
sampling theorem from [5].
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Theorem 2.14 The Grey Scale Digital Morpho-
logical Sampling Theorem. Let F,K, S ⊆ EN , f :
F → L is the image, k : K → L is the structuring
element used for filtering. Let K,S, and k : K → L
satisfy the following conditions:

I. S ⊕ S = S

II. S = S̆

III. K ∩ S = {0}
IV. a ∈ Kb ⇒ Ka ∩Kb ∩ S 6= ∅
V. k = k̆

VI. k(a) ≤ k(a− b) + k(b), ∀a, b ∈ K with a− b ∈ K
VII. k(0) = 0

Then,

I. f |S = (f |S • k)|S
II. f |S = (f |S ⊕ k)|S

III. f |S • k ≤ f • k
IV. f ◦ k ≤ f |S ⊕ k
V. If f = f ◦ k and f = f • k, then f |S • k ≤ f ≤

f |S ⊕ k
VI. If g = g • k , g|S = f |S and g ≤ f |S • k then

g = f |S • k
VII. If g = g ◦ k , g|S = f |S and g ≥ f |S ⊕ k then

g = f |S ⊕ k

The conditions V, VI and VII are introduced
in [5] to allow for proper sampling and reconstruc-
tion. The conditions V and VI imply k(y) ≥ 0 ∀y ∈
K. The class of flat SEs symmetric about the ori-
gin as well as the class of paraboloid SEs with
k(0) = 0 and symmetric about the origin, satisfy
these conditions.

We recall one more proposition from [5], which
is employed in proofs of some results in the next
section.

Proposition 2.15 Let F,K, S ⊆ EN , f : F → L, k :
K → L. Suppose k = k̆, u ∈ Kv imply S ∩Ku ∩Kv 6=
∅ and k(a) ≤ k(a − b) + k(b), ∀a, b ∈ K satisfying
a− b ∈ K.

Then for every u ∈ K, f(x + z) − k(z) ≤ (f |S ⊕
k)(x+ u)− k(u) for each z ∈ K satisfying u− z ∈ K.

3 New Extensions of the
Classic Morphological
Sampling Theorem

Before discussing sampling in the forthcoming
subsection, let us introduce the notion of the

reflection of the umbra useful in our setting. Fur-
thermore, we prove an umbra-based monotonicity
principle.

Definition 9 Reflection of Umbra. Let A ⊆ EN ×
L be a non-empty set (not necessarily an umbra).
Then the reflection of A is denoted by Ã and is de-
fined as Ã = {(x, a)| (−x, y) ∈ A for some y ∈ L,
l − T [A](−x) ≤ a ≤ l}.

Proposition 3.1 Umbra Monotonicity Principle.
Let A ⊆ EN × L and B ⊆ EN × L be two non-empty
sets. If A ⊆ B, then Ã ⊆ B̃.

Proof

(x, a) ∈ Ã⇒ (−x, y1) ∈ A for some y1 ∈ L
and l − T [A](−x) ≤ a ≤ l

⇒ (−x, y2) ∈ B for some y2 ∈ L and

l − T [B](−x) ≤ l − T [A](−x) ≤ a ≤ l

⇒ (x, a) ∈ B̃

�

We will make use also of the following notion.

Definition 10 Translation of an Umbra. Let A ⊆
EN×L be a non-empty set (not necessarily an umbra)
and y0 ≥ 0. Then, A(x0,y0) = {(x+x0, y+y0)|(x, y) ∈
A and 0 ≤ y + y0 ≤ l}.

In our work, we will employ the following al-
ternative definitions of grey scale opening and
closing. Our notions rely on the alternative defini-
tions of opening and closing for grey value images
as formulated in (3) and (4) for binary images.

Proposition 3.2 Alternative Definition of Grey
Scale Opening / Closing.

U [f ◦ k] =
⋃

{(x,y)|U [k](x,y)⊆U [f ]}
U [k](x,y) (5)

U [f • k] = U [(−((−f) ◦ k̆))]

= {(x, y)|(x, y) ∈ ˜U [k](x0,y0)

implies ˜U [k](x0,y0) ∩ U [f ] 6= ∅}

(6)
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Proof The alternative definition of opening directly
follows Umbra Homomorphism Theorem and defini-
tion of opening for grey-value images.

We elaborate here on the last equality in (6).
(x, y) ∈ U [f • k] = U [(−((−f) ◦ k))]

⇔ for any α > 0, (x, l + α− y) 6∈ U [((−f) ◦ k)]

⇔ for any α > 0, for any (x0, y0), y0 ≥ 0,
satisfying (x, l + α− y) ∈ U [k̆](xo,y0+α),

we have U [k̆](xo,y0+α) 6⊆ U [(−f)]

⇔ for any α > 0, for any (x0, y0), y0 ≥ 0,
satisfying (x, l + α− y) ∈ U [k̆](xo,y0+α),

∃ u ∈ K̆ : T [U [k̆](xo,y0+α)](u+ x0) > l − f(u+ x0)

⇔ for any α > 0, for any (x0, y0), y0 ≥ 0,
satisfying (x, l + α− y) ∈ U [k̆](xo,y0+α),

∃u ∈ K̆ : f(u+ x0) > l − T [U [k̆](x0,y0+α)](u+ x0)

⇔ for any (x0, y0), y0 ≥ 0,
satisfying (x, l − y) ∈ U [k̆](x0,y0),

∃u ∈ K̆ : f(u+ x0) ≥ l − T [U [k̆](x0,y0)](u+ x0)

⇔ (x, y) ∈ ˜U [k](−x0,y0) implies
˜U [k](−x0,y0) ∩ U [f ] 6= ∅

i.e. for any (x, y) ∈ EN × L, (x, y) ∈ ˜U [k](x0,y0)

implies ˜U [k](x0,y0) ∩ U [f ] 6= ∅.
�

In [4], the authors describe the effect of closing
with a paraboloid SE as ”taking the reflection of
the paraboloid, turning it upside down and sliding
it all over the top surface of f . The closing is the
surface of all the lowest point reached by the slid-
ing paraboloid”. The Proposition 6 demonstrates
this mathematically, for all considered types of
SEs.

3.1 Morphologically Operating in
the Sampled Domain

In this section, we present the main results of this
paper. We examine the relation between sampling
after performing the morphological operations and
morphological operating in sampled domains on
grey-value images.

We study morphologically operating on image
f : F → L by a SE b : B → L with respect to
sampling, using a sieve S. The SE k : K → L
is used to filter the image f as well as the SE

b, for sampling. k is also used for the purpose of
reconstruction. We assume that S,K ⊆ EN and
k : K → L satisfy the conditions mentioned in
The Grey-Value Digital Morphological Sampling
Theorem (2.14).

As in the case of binary images, some of the
following results, e.g. Theorem 3.6, Theorem 3.10
etc. require that b = b ◦ k. This in essence means
that b does not have any details finer than the filter
k, and b can be appropriately reconstructed from
the sampled SE b|S as mentioned in the Grey-
value Digital Morphological Sampling Theorem
2.14, result V.

It is interesting to note that due to idem-
potence of morphological opening, given any SE
b : B → L, when filtered (using morphological
opening) with k, gives b ◦ k = bfilt : B ◦ K → L,
and bfilt satisfies the property bfilt ◦ k = (b ◦ k) ◦ k
= b ◦ k = bfilt.

Proposition 3.3 Let B ⊆ EN , and b : B → L be
the structuring element employed in the dilation and
erosion. Then,

I. (f |S ⊕ b|S) ≤ (f ⊕ b)|S
II. (f |S 	 b|S) ≥ (f 	 b)|S

Proof I. We know, from Proposition 2.2 I, that (F∩
S)⊕ (B ∩ S) ⊆ (F ⊕B) ∩ S.
Let x ∈ (F ∩ S)⊕ (B ∩ S). Then,

(f |S ⊕ b|S)(x)

= max
x−u∈F∩S, u∈B∩S

{f |S(x− u) + b|S(u)}

= max
x−u∈F∩S, u∈B∩S

{f |S(x− u) + b|S(u)}

≤ max
x−u∈F, u∈B

{f(x− u) + b(u)}

= (f ⊕ b)(x)

But, x ∈ (F ∩ S)⊕ (B ∩ S) ⊆ (F ⊕B) ∩ S ⊆ S.
It follows (f ⊕ b)(x) = (f ⊕ b)|S(x),
which implies (f |S ⊕ b|S)(x) ≤ (f ⊕ b)|S(x).

II. We know, from Proposition 2.2 II, (F 	 B) ∩ S
⊆ (F ∩ S)	 (B ∩ S).
Let x ∈ (F 	B) ∩ S. Then,

(f 	 b)|S(x) =(f 	 b)(x)

= min
u∈B
{f(x+ u)− b(u)}

≤ min
u∈B∩S

{f(x+ u)− b|S(u)}
(7)
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k : K → Z

b : B → Z
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Figure 16 The structuring elements k and b used in the examples

k2 : K → Z
b : B2 → Z
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:Value of function is x at the position

:Position not in the domain
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Figure 17 The non-flat structuring elements k2 and b2 used in examples

Thus, x ∈ (F	B)∩S and u ∈ B∩S ⇒ x+u ∈ S
(∵ S ⊕ S = S)
Also, x ∈ F 	B and u ∈ B ⇒ x+ u ∈ F .
Therefore, from (7), we have,

(f 	 b)|S(x) ≤ min
u∈B∩S

{f(x+ u)− b|S(u)}

= min
u∈B∩S

{f |S(x+ u)− b|S(u)}

=(f |S 	 b|S)(x).

Thus, (f 	 b)|S ≤ (f |S 	 b|S).
�

Figures 19 and 18 illustrate the first part of
above proposition. We see that dilation in the sam-
pled domain (here, f |S ⊕ b|S) is bounded above
by sampling of dilated image (here, (f ⊕ b)|S).
Figures 25 and 24 illustrate the second part of the
proposition, i.e. erosion in sampled domain (here,
f |S	b|S) is bounded below by sampling of eroded
image (here, (f 	 b)|S). The illustrations of the
above proposition using non-flat SEs k2 and b2 are
given in Figures 22, 21 28 and 27.

Lemma 3.4 I. (f |S ⊕ b|S) = (f ⊕ b|S)|S
II. (f |S 	 b|S) = (f 	 b|S)|S

Proof I. We know from Lemma 2.3 that
[F ⊕ (B ∩ S)] ∩ S = (F ∩ S)⊕ (B ∩ S)
Let x ∈ [F ⊕ (B ∩ S)] ∩ S = (F ∩ S)⊕ (B ∩ S).
Then,

(f ⊕ b|S)|S(x) =(f ⊕ b|S)(x)

= max
u∈B∩S, x−u∈F

{f(x− u) + b|S(u})

x ∈ [F⊕(B∩S)]∩S⇒ x ∈ S. Similarly, u ∈ B∩S
⇒ u ∈ S
S = S̆ and S⊕S = S, therefore, x−u ∈ S Thus,
we have, (f ⊕ b|S)|S(x) =

max
u∈B∩S, x−u∈F

{f(x− u) + b|S(u}) =

max
u∈B∩S, x−u∈F∩S

{f(x− u) + b|S(u}) =

max
u∈B∩S, x−u∈F∩S

{f |S(x− u) + b|S(u}) =

(f |S ⊕ b|S)(x)

This is true for each x ∈ [F ⊕ (B ∩ S)] ∩ S
= (F ∩ S) ⊕ (B ∩ S) , therefore (f |S ⊕ b|S) =
(f ⊕ b|S)|S .

II. We know from Lemma 2.3 that
[F 	 (B ∩ S)] ∩ S = (F ∩ S)	 (B ∩ S).
Let x ∈ F 	 (B ∩ S)] ∩ S = (F ∩ S) 	 (B ∩ S).
Then,

(f 	 b|S)(x) = min
u∈B∩S

{f(x+ u)− b|S(u)}

x ∈ [F 	 (B ∩ S)] ∩ S and u ∈ (B ∩ S) ⇒ x ∈
S, u ∈ S, x+u ∈ S and x+u ∈ F i.e x+u ∈ F∩S.
Therefore, (f 	 b|S)(x) =

min
u∈B∩S

{f(x+ u)− b|S(u)} =

min
u∈B∩S

{f |S(x+ u)− b|S(u)} =

(f |S 	 b|S)(x)

This holds for all x ∈ [F 	 (B ∩ S)] ∩ S = (F ∩
S)	 (B ∩ S).Thus, (f |S 	 b|S) = (f 	 b|S)|S .

�
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Lemma 3.5 Let B = B ◦ K and b = b ◦ k Then,
(f |S • k)⊕ b ≤ (f |S ⊕ k)⊕ b|S

Proof By Umbra Homomorphism Theorem 2.13, do-
main of (f |S • k) is (F ∩ S) •K.
Let x ∈ [(F ∩ S) •K]⊕B ⊆ [(F ∩ S)⊕K]⊕ (B ∩ S)
(by Lemma 2.4). Then,

(f |S•k)(x) = max
x−u∈(F∩S)•K, u∈B

{(f |S•k)(x−u)+b(u)}

For each u ∈ B, B = B ◦K ∴ ∃y such that Ky ⊂ B
and by Sampling Conditions (see, Theorem 2.14, IV),
∃z ∈ Ky ∩Ku ∩ S.
z = k0 + u for some k0 ∈ K. Also, z ∈ Ky ⊆ B
⇒ z ∈ B ∩ S.
By Proposition 2.15, b(u) ≤ b(z) + k(−k0).
Since, K = K̆ , (x−u) ∈ (F ∩S)•K ⇒ (x−u)−k0 ∈
(F ∩ S)⊕K and

(f |S • k)(x− u) =

((f |S ⊕ k)	 k)(x− u) =

min
a∈K
{(f |S ⊕ k)(x− u+ a)− k(a)} ≤

(f |S ⊕ k)(x− u− k0)− k(−k0)

For each u ∈ B satisfying (x− u) ∈ (F ∩ S) •K ∃z =
(u + k0) ∈ (B ∩ S) satisfying (x − z) ∈ (F ∩ S) ⊕K
and thus, we have,

(f |S • k)(x− u) + b(u) ≤
(f |S ⊕ k)(x− z)− k(−k0) + b(z) + k(k0) =

(f |S ⊕ k)(x− z) + b|S(z)

Thus, (f |S • k)(x) =

max
x−u∈(F∩S)•K, u∈B

{(f |S • k)(x− u) + b(u)}

≤ max
(x−z)∈(F∩S)⊕K, z∈(B∩S)

{(f |S ⊕ k)(x− z) + b|S(z)}

= ((f |S ⊕ k)⊕ b|S)(x)

This holds for all x ∈ [(F ∩ S) •K]⊕B ⊆ [(F ∩ S)⊕
K]⊕(B∩S). Therefore, (f |S •k)⊕b ≤ (f |S⊕k)⊕b|S .

�

We arrive at two of the main results of this
section. The following two theorems illustrate
the interaction between sampling and grey-value
dilation and grey-value erosion.

Theorem 3.6 Grey-value Sample Dilation Theorem
Let B = B ◦K and b = b ◦ k, then f |S ⊕ b|S = ((f |S •
k)⊕ b)|S .

Proof By Lemma 3.4, f |S ⊕ b|S = (f |S ⊕ b)|S .
By Extensivity property of closing (Proposition 68 of
[4]), f |S ≤ f |S • k ⇒ (f |S ⊕ b)|S ≤ ((f |S • k)⊕ b)|S
⇒ f |S ⊕ b|S ≤ ((f |S • k)⊕ b)|S .

Let x ∈ [((F ∩S)•K)⊕B]∩S ⊆ [(F ∩S)⊕K]⊕(B∩S)
(Lemma 2.4).
For any u ∈ B ∩ S, we have (x− u) ∈ S ∵ S = S ⊕ S
and S = S̆. Also, by the Sampling conditions,
[(F ∩ S) ⊕ K] ∩ S = F ∩ S and (f |S ⊕ k)|S = f |S .
From Lemma 3.5, we have

((f |S • k)⊕ b)|S(x) ≤ ((f |S ⊕ k)⊕ b|S)|S(x)

= ((f |S ⊕ k)⊕ b|S)(x)

= max
(x−u)∈(F∩S)⊕K, u∈B∩S

{(f |S ⊕ k)(x− u) + b|S(u)}

= max
(x−u)∈[(F∩S)⊕K]∩S, u∈B∩S

{(f |S ⊕ k)|S(x− u) + b|S(u)}

= max
(x−u)∈(F∩S), u∈B∩S

{(f |S)(x− u) + b|S(u)}

= (f |S ⊕ b|S)(x)

i.e. ((f |S • k)⊕ b)|S(x) ≤ (f |S ⊕ b|S)(x),
∀x ∈ [((F ∩ S) •K)⊕B] ∩ S.

Thus, (f |S • k)⊕ b)|S ≤ (f |S ⊕ b|S)
i.e. f |S ⊕ b|S = ((f |S • k)⊕ b)|S . �

Figures 19 and 20 are identical. This illus-
trates the Grey-value Sample Dilation Theorem,
i.e. dilation in sampled domain (here, (f |S ⊕ b|S))
is equivalent to sampling after dilating the mini-
mal reconstruction (here, ((f |S • k) ⊕ b)|S). The
theorem is illustrated by Figures 22 and 23 for
non-flat morphology.

Remark 1 It can be shown using Umbra Homomor-
phism Theorem 2.13 that opening and closing of
grey-value images are increasing operations. That is,
if f ≤ g, then for any S.E c : C → L, f ◦ c ≤ g ◦ c and
f • c ≤ g • c.

Theorem 3.7 Grey-value Sampling Erosion Theorem
Let B = B ◦ K and b = b ◦ k. Then f |S 	 b|S =
((f |S ⊕ k)	 b)|S .

Proof From Grey-value Morphological Sampling
Theorem 2.14, we have (f |S ⊕ k)|S = f |S ,
i.e. (f |S 	 b|S) = (f |S ⊕ k)|S 	 b|S .
From Lemma 3.4, we have (f |S ⊕ k)|S 	 b|S =
((f |S ⊕ k)	 b|S)|S ≥ ((f |S ⊕ k)	 b)|S .

We show that f |S 	 b|S ≤ ((f |S ⊕ k)	 b)|S .
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Figure 18 (f ⊕ b)|S Figure 19 (f |S ⊕ b|S) Figure 20 ((f |S • k)⊕ b)|S

Figure 21 (f ⊕ b2)|S Figure 22 (f |S ⊕ b2|S) Figure 23 ((f |S •k2)⊕b2)|S

Let x ∈ (F ∩ S)	 (B ∩ S) = {[(F ∩ S)⊕K]	B} ∩ S
(by Theorem 2.6).
We show that minu∈B∩S{(f |S)(x + u) − b|S(u)} ≤
minu′∈B{((f |S)⊕ k)(x+ u′)− b(u′)}
u′ ∈ B ⊆ (B ∩ S) ⊕ K ⇒ u′ = u0 + k0, where
u0 ∈ B ∩ S and k0 ∈ K
b = b ◦ k, therefore, by Proposition 2.15, we have
b(u′) ≤ b|S(u0) + k(k0).
If u′ = u0 + k0 , then ((f |S) ⊕ k)(x + u′) ≥
(f |S)(x+ u0) + k(k0).
Thus, for each u′ ∈ B, ∃u0 ∈ B ∩ S such that
{((f |S)⊕k)(x+u′)−b(u′)} ≥ {(f |S)(x+u0)−b|S(u0)}
i.e. minu∈B∩S{(f |S)(x + u) − b|S(u)} ≤
minu′∈B{((f |S)⊕ k)(x+ u′)− b(u′)},
∀x ∈ (F ∩ S)	 (B ∩ S).
⇒ f |S 	 b|S ≤ ((f |S ⊕ k)	 b)|S .

�

As expected, Figure 25, erosion in sampled do-
main (here, (f |S 	 b|S)), is identical to Figure 26,
sampling after eroding the maximal reconstruc-
tion (here, (f |S ⊕k)|S 	 b|S ), thus demonstrating
an example of the above theorem. Figures 28 and
29 illustrate the above theorem for non-flat filter
and SE.

We now proceed to discuss the interaction of
grey-value opening and closing with sampling and
reconstruction.

Proposition 3.8 (f ◦ b|S)|S = f |S ◦ b|S

Proof Let x ∈ (F ◦ (B ∩ S) ∩ S = (F ∩ S) ◦ (B ∩ S)
(by Proposition 2.7).
Clearly, f |S ◦ b|S ≤ (f ◦ b|S) ⇒ (f |S ◦ b|S)(x) ≤
(f ◦ b|S)(x) = ((f ◦ b|S)|S)(x)
Thus, (f ◦ b|S)|S ≥ f |S ◦ b|S .

We show that if x ∈ (F ◦(B∩S))∩S = (F∩S)◦(B∩S)
then ((f ◦ b|S)|S)(x) ≤ (f |S ◦ b|S)(x)

(f ◦ b|S)(x) = T (U [f ] ◦ U [b|S ])(x) =
T (

⋃
{(y,y0)|U [b|S ](y,y0)⊆U [f ], y0≥0} U [b|S ](y,y0))(x)

⇒ (x, (f ◦ b|S)(x)) ∈ U [b|S ](y,y0) ⊆ U [f ]
⇒ x = b+ y for some b ∈ B ∩S x, b ∈ S implies y ∈ S
and
(B ∩ S)y ⊆ F ⇒ (B ∩ S)y ⊆ (F ∩ S)
Taking intersection with (S × L), we have,
(x, (f ◦ b|S)(x)) ∈ U [b|S ](y,y0) ∩ (S × L) =
U [b|S ](y,y0) ⊆ U [f ] ∩ (S × L) = U [f |S ]
⇒ (x, (f ◦ b|S)(x)) ∈ U [b|S ](y,y0) ⊆ U [f |S ]
⇒ (x, (f ◦ b|S)(x)) ∈ U [f |S ◦ b|S ]
⇒ ((f ◦ b|S)|S)(x) ≤ (f |S ◦ b|S)(x)
Thus, (f ◦ b|S)|S ≤ f |S ◦ b|S
∴ (f ◦ b|S)|S = f |S ◦ b|S �

Proposition 3.9 (f • b|S) = f |S • b|S
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Figure 24 (f 	 b)|S Figure 25 (f |S 	 b|S) Figure 26 (f |S ⊕ k)|S 	 b|S

Figure 27 (f 	 b2)|S
ABCDE

Figure 28 (f |S 	 b2|S)
ABCDE

Figure 29 (f |S ⊕ k2)|S 	
b2|S

Proof Let x ∈ (F ∩ S) • (B ∩ S) = (F • (B ∩ S)) ∩ S
(by Proposition 2.8).
Clearly, since closing is increasing and f |S ≤ f , we
have,(f |S • b|S)(x) ≤ (f • b|S)(x) = ((f • b|S)|S)(x).
Therefore, (f |S • b|S) ≤ ((f • b|S)|S).

We show that if x ∈ (F∩S)•(B∩S) = (F •(B∩S))∩S,
⇒ (x, ((f •b|S)|S)(x)) = (x, (f •b|S)(x)) ∈ U [f |S•b|S ].

(x, (f •b|S)(x)) ∈ U [(f •b|S)|S ] = U [(f •b|S)]∩(S×L)
⇒ ∃(y, y0) , y0 ≥ 0 such that (x, (f • b|S)(x)) ∈

˜U [b|S ](y,y0) and ˜U [b|S ](y,y0) ∩ U [f ] 6= ∅
⇒ x ∈ ˘(B ∩ S)y and ˘(B ∩ S)y ∩ F 6= ∅
⇒ y ∈ S and ˘(B ∩ S)y ∩ F = ˘(B ∩ S)y ∩ (F ∩ S)

⇒ ˜U [b|S ](y,y0) ∩ (S × L) = ˜U [b|S ](y,y0).
Therefore, (x, ((f • b|S)|S)(x)) = (x, (f • b|S)(x)) ∈

˜U [b|S ](y,y0) ∩ (S × L) = ˜U [b|S ](y,y0) and
˜U [b|S ](y,y0)∩(S×L)∩U [f ] = ˜U [b|S ](y,y0)∩U [f |S ] 6= ∅

⇒ (x, ((f • b|S)|S)(x)) ∈ U [f |S • b|S ]
⇒ (f • b|S)|S ≤ f |S • b|S ,

∴ (f • b|S)|S = f |S • b|S . �

The next theorem is another major result of
this section. The next theorem bounds opening
and closing in sampled domain, by sampling after
opening or closing.

Theorem 3.10 Grey-value Sample Opening and
Closing Bounds Theorem Let B = B ◦K and b = b◦k,
then

I. (f ◦ [b|S ⊕ k])|S ≤ f |S ◦ b|S ≤ ((f |S ⊕ k) ◦ b)|S
II. ((f |S • k) • b)|S ≤ f |S • b|S ≤ (f • (b|S ⊕ k))|S

Proof I
It is shown in Theorem 2.9 that [F ◦ (B ∩ S)] ⊇
[F ◦ ((B ∩ S)⊕K)].
Using Umbra Homomorphism Theorem 2.13, we have
U [f ◦ b|S ] = U [f ] ◦ U [b|S ] ⊇ U [f ] ◦ U [b|S ⊕ k] =
U [f ◦ (b|S ⊕ k)].
Using Proposition 3.8, U [f |S ◦ b|S ] = U [(f ◦ b|S)|S ] =
U [f ◦ b|S ] ∩ (S × L) ⊇ U [f ◦ (b|S ⊕ k)] ∩ (S × L) =
U [(f ◦ (b|S ⊕ k))|S ]
⇒ (f ◦ [b|S ⊕ k])|S ≤ f |S ◦ b|S .

Let x ∈ (F ∩ S) ◦ (B ∩ S).
We show that (x, (f |S ◦ b|S)(x)) ∈ U [((f |S ⊕k)◦ b)|S ].
U [f |S ◦ b|S ] = U [f |S ] ◦ U [b|S ]
(x, (f |S ◦ b|S)(x)) ∈ U [f |S ◦ b|S ]⇒ ∃(y, y0) ∈ EN ×L,
y0 ≥ 0, such that
(x, (f |S ◦ b|S)(x)) ∈ U [b|S ](y,y0) ⊆ U [f |S ].
We have, U [b|S ] = U [b]∩ (S ×L) ⊆ U [b] ⇒ (x, (f |S ◦
b|S)(x)) ∈ U [b].
Since, b = b ◦ k, b|S ⊕ k ≥ b. Therefore,
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U [b|S ⊕ k](y,y0) ⊇ U [b](y,y0).
We show that U [b|S ⊕ k](y,y0) ⊆ U [f |S ⊕ k].
For any u ∈ [(B ∩ S)y ⊕K], (b|S ⊕ k)(u− y) + y0 =

max
u−s∈K,s∈(B∩S)y

{b|S(s− y) + k(u− s)}+ y0

= (b|S)(s0 − y) + k(u− s0) + y0

ABCDEF for some s0 ∈ (B ∩ S)y

≤ (f |S)(s0) + k(u− s0)

ABCDEF ∵ U [b|S ](y,y0) ⊆ U [f |S ]

≤ (f |S ⊕ k)(u)

⇒ U [b|S ⊕ k](y,y0) ⊆ U [f |S ⊕ k]
⇒ (x, (f |S ◦ b|S)(x)) ∈ U [b](y,y0) ⊆ U [f |S ⊕ k]
⇒ (x, (f |S ◦ b|S)(x)) ∈ U [(f |S ⊕ k) ◦ b].
Since, x ∈ S, (x, (f |S ◦ b|S)(x)) ∈ U [(f |S ⊕ k) ◦ b] ∩
(S × L) = U [((f |S ⊕ k) ◦ b)|S ]
⇒ f |S ◦ b|S ≤ ((f |S ⊕ k) ◦ b)|S .

II
We know, by Theorem 2.9 that, {[(F∩S)•K]•B}∩S ⊆
(F ∩ S) • (B ∩ S) ⊆ {F • [(B ∩ S)⊕K]} ∩ S.
By Proposition 3.9, we have f |S • b|S = (f • b|S)|S .
And, from Umbra Homomorphism Theorem 2.13 and
Proposition 3.1, we have (f •b|S)|S ≤ (f •(b|S⊕k))|S ,
i.e. if x ∈ (F • (B ∩ S)) ∩ S, then ∃(y, y0) ∈ EN × L,

y0 ≥ 0 such that (x, (f • b|S)(x)) ∈ ˜U [b|S ](y,y0) and
˜U [b|S ](y,y0) ∩ U [f ] 6= ∅
˜U [b|S ](y,y0) ⊆ ˜U [b|S ⊕ k](y,y0) ⇒ (x, (f • b|S)(x)) ∈

˜U [b|S ⊕ k](y,y0) and ˜U [b|S ⊕ k](y,y0) ∩ U [f ] 6= ∅
⇒ (x, (f • b|S)(x)) ∈ U [(f • (b|S ⊕ k))|S ] (∵ x ∈ S),
i.e. f |S • b|S = (f • b|S)|S ≤ (f • (b|S ⊕ k))|S .

We know from Theorem 2.9, that under given
conditions, {[(F ∩S)•K]•B}∩S ⊆ (F ∩S)• (B∩S).
Let r = (f |S • k).
We, first prove (r ⊕ b) ◦ k = r ⊕ b.
Opening of Grey-value image is anti-extensive (Propo-
sition 67 of [4]). Therefore, (r ⊕ b) ◦ k ≤ r ⊕ b.
We show r⊕b ≤ (r⊕b)◦k, i.e. U [r⊕b] ⊆ U [(r⊕b)◦k].

U [(r ⊕ b) ◦ k]

=
⋃

{(y,y0)∈EN×L|U [k](y,y0)⊆
⋃

(a,b)∈U[r] U [b](a,b)}
U [k](y,y0)

⊇
⋃

(a,b)∈U [r]

{
⋃

{(y,y0)∈EN×L|U [k](y,y0)⊆U [b](a,b)}
U [k](y,y0)}

=
⋃

(a,b)∈U [r]

U [b](a,b)

= U [b⊕ r]
i.e. r ⊕ b = (r ⊕ b) ◦ k

By Grey-value Sampling Theorem 2.14, we have
r ⊕ b ≤ ((r ⊕ b)|S ⊕ k).
(r • b)|S = ((r ⊕ b)	 b)|S ≤ (((r ⊕ b)|S ⊕ k)	 b)|S .
By Theorem 3.7, (∵ b = b ◦ k), we have , (((r⊕ b)|S ⊕
k)	 b)|S = (r ⊕ b)|S 	 b|S .
By Theorem 3.6, (∵ r = (f |S •k)), we have (r⊕b)|S	
b|S = (f |S ⊕ b|S)	 b|S = f |S • b|S
⇒ (r • b)|S ≤ f |S • b|S
i.e. ((f |S • k) • b)|S ≤ f |S • b|S . �

Figures 30-32 demonstrate interaction of sam-
pling with opening operation. Figures 36-38
demonstrate interaction of sampling with closing
operation.

We observe that opening in sampled domain
(here, f |S ◦ b|S) is bounded above by sampling
after opening of maximal reconstruction of the im-
age (here, ((f |S⊕k)◦ b)|S) and bounded below by
sampling after opening by maximal reconstruction
of the SE (here, f ◦ [b|S ⊕ k])|S). Similarly, clos-
ing in sampled domain (here, f |S •b|S) is bounded
above by sampling after closing with maximal
reconstruction of SE (here, (f • (b|S ⊕ k))|S)
and bounded below by sampling after closing the
minimal reconstruction (here, ((f |S • k) • b)|S).

In similar fashion, Figures 33-35 demonstrate
the interaction of sampling with opening operation
for non-flat structuring elements, and Figures 39-
41 demonstrate the interaction of sampling with
closing operation for non-flat SEs.

If the image coincides with its maximal or
minimal reconstruction, then it satisfies some ad-
ditional properties with respect to sampling and
opening respectively closing. These are mentioned
in Theorem 3.11, which directly follows Theorem
3.10.

Theorem 3.11 Grey-value Sample Opening and
Closing Theorem If B = B ◦K, b = b ◦ k, then

I. If F = (F∩S)⊕K, f = f |S⊕k , B = (B∩S)⊕K
and b = b|S ⊕ k, then f |S ◦ b|S = (f ◦ b)|S .

II. If F = (F ∩S)•K , f = f |S •k, B = (B∩S)⊕K
and b = b|S ⊕ k, then f |S • b|S = (f • b)|S .
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Figure 30 (f ◦ [b|S ⊕ k])|S Figure 31 f |S ◦ b|S Figure 32 ((f |S ⊕ k) ◦ b)|S

Figure 33 (f ◦ [b2|S⊕k2])|S Figure 34 f |S ◦ b2|S Figure 35 ((f |S ⊕ k2) ◦ b)|S

Figure 36 ((f |S • k) • b)|S Figure 37 f |S • b|S Figure 38 (f • (b|S ⊕ k))|S

Figure 39 ((f |S •k2)• b2)|S Figure 40 f |S • b2|S Figure 41 (f •(b2|S⊕k2))|S

4 Max-pooling and
Reconstruction with
Non-flat SEs

The max-pooling operation introduced in [18]
is often used in CNNs [15]. Max-pooling is a
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k2 : K → Z
c2 : C = C ∩ S → Z

: Origin

: Value of function is x at the position

: Position not in the domain

x
0

10

10 10 10

10

1010

10 10

10

10

1010

10 10

1010

Figure 42 The non-flat structuring elements k2 and c2 used in examples.

morphological operation, more precisely, it is mor-
phological dilation by a square or rectangular flat
filter followed by sampling [9].

The Sampling Operator, σ(.), as defined below,
generalizes max-pooling to sampling after dilat-
ing with a paraboloid filter k. In this section, we
study about generalized max-pooling (i.e. σ(.)),
its corresponding reconstruction and the effects of
morphologically operating after max-pooling.

We assume that the sampling sieve S ⊆ EN
and the filter k : K → L satisfies conditions I-
VII of Grey-value Digital Morphological Sampling
Theorem 2.14. We extend the definitions and re-
sults of [6] to non-flat structuring element. That is,
we do not impose the condition k(u) = 0, ∀u ∈ K
or c(x) = 0, ∀x ∈ C = C ∩ S. In this section, we
have used the non-flat SEs k2 and c2, as described
in Figure 42, for the examples.

Definition 11 Sampling Operator Let F ⊆ EN and
f : F → L be the image. The structuring element
k : K → L and sieve S are defined as above. The
sampling operator is denoted by σ(.) and is defined as
(σ(f)) = (f ⊕ k)|S , that is (σ(f))(s) = (f ⊕ k)|S(s),
∀s ∈ (F ⊕K) ∩ S.

Similarly, reconstructing operator is defined.

Definition 12 Reconstructing Operator Let G ⊆ S
and g : G→ L be the sampled image. The structuring
element k : K → L and sieve S are defined as above.
The reconstructing operator is denoted by σ̇(.) and is
defined as
σ̇(g) = g•k, that is, (σ̇(g))(x) = (g•k)(x), ∀x ∈ G•K.

Notice that Reconstructing Operator uses mor-
phological closing for reconstruction, i.e. mini-
mal reconstruction, as described via Grey-value
Digital Morphological Sampling Theorem 2.14.
The choice of closing for reconstruction allows

the Reconstructing Operator to form an algebraic
adjunction with the Sampling Operator. Here,
(α(.), β(.)) is an algebraic adjunction if β(f) ≤ g
iff f ≤ α(g).

We show that (σ̇, σ) forms an adjunction with
the non-flat SE as well.

Proposition 4.1 Let f : F (⊆ EN )→ L be an image
in the unsampled domain and g : G(⊆ S) → L be an
image in sampled domain.
Then, σ(f) ≤ g ⇔ f ≤ σ̇(g).
i.e (f ⊕ k)|S ≤ g ⇔ f ≤ g • k.

Proof Let (f ⊕ k)|S ≤ g. Then (f ⊕ k)|S ⊕ k ≤ g⊕ k.
By result V of Grey-value Digital Morphological
Sampling Theorem 2.14, we have f ≤ f |S ⊕ k. This
gives f ⊕ k ≤ (f ⊕ k)|S ⊕ k ≤ g⊕ k. i.e f ⊕ k ≤ f ⊕ k.
Since grey-value erosion and and dilation forms an
adjunction, using Proposition 65 of [4], we have, f
≤ (g ⊕ k)	 k = g • k.

Conversely, let f ≤ g•k. G = G∩S, therefore g = g|S .
f ≤ g|S • k ⇒ (f ⊕ k) ≤ g|S ⊕ k by Proposition 65 of
[4].
By result II of Grey-value Digital Morphological
Sampling Theorem 2.14, we have, (g|S ⊕ k)|S = g|S .
⇒ (f ⊕ k)|S ≤ (g|S ⊕ k)|S = g|S = g. �

Definition 13 Reconstruction Operator Let F ⊆ EN
and f : F → L be the image. The structuring element
k : K → L and sieve S are defined as above. The
reconstruction operator is denoted by ρ(.), and it is
defined by
ρ(f) = σ̇(σ(f)) = (f ⊕ k)|S • k.

Similarly, an upper bound of Reconstruction
operator is given by δ(.) defined as
δ(f) = (f ⊕ k)|S ⊕ k. Clearly, by Lemma A.3,
(f ⊕ k)|S • k ≤ (f ⊕ k)|S ⊕ k, i.e ρ(f) ≤ δ(f), for
any given image f .
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Note that Reconstruction operator (ρ(.), Defi-
nition 13) is distinct from Reconstructing operator
(σ̇(.), Definition 12). Reconstruction operator is
used to study the effects in the image after a cy-
cle of sampling (i.e. generalized max-pooling, with
σ(.)) and reconstructing (with σ̇(.)).

We have shown that (σ̇, σ) is an adjunction.
By Proposition 2.6 of [7] we have the following
lemma.

Lemma 4.2 Let f : F (⊆ EN ) → L be any image.
Then, f ≤ ρ(f) = σ̇(σ(f)) = (f ⊕ k)|S • k.

Now, we give the relation between operating
after max-pooling and max-pooling after perform-
ing the morphological operation, when σ(.) and
ρ(.) is used for max-pooling and reconstruction,
respectively. Let us reiterate. Both the filter k :
K → L used in max-pooling and reconstruction
operators and c : C(⊆ S) → L are not restricted
to be flat. Therefore k, K and S must only satisfy
the conditions of Grey-value Morphological Sam-
pling Theorem 2.14, and c can be any arbitrary
non-negative function defined on in the sampled
domain, i.e. C = C ∩ S and c = c|S . Some mi-
nor results utilized in the proof of the following
proposition are given in the Appendix, Section A.

Proposition 4.3 Let F ⊆ EN and f : F → L be
the image. The structuring elements c : C(⊆ S)→ L,
k : K → L and sieve S are defined as above. Then,

I. σ(f ⊕ c) = σ(f)⊕ c,
i.e. ((f ⊕ c)⊕ k)|S = (f ⊕ k)|S ⊕ c

II. σ(f 	 c) ≤ σ(f)	 c σ((f ⊕ k)	 c),
i.e. ((f 	 c)⊕ k)|S ≤ (f ⊕ k)|S 	 c ≤ (((f ⊕ k)	
c)⊕ k)|S

III. σ(f ◦ c) ≤ σ(f) ◦ c ≤ σ((f ⊕ k) ◦ c),
i.e. ((f ◦ c)⊕ k)|S ≤ (f ⊕ k)|S ◦ c ≤ (((f ⊕ k) ◦
c)⊕ k)|S

IV. σ(f • c) ≤ σ(f) • c ≤ σ((f ⊕ k) • c),
i.e. ((f • c)⊕ k)|S ≤ (f ⊕ k)|S • c ≤ (((f ⊕ k) •
c)⊕ k)|S

V. ρ(f)⊕ c ≤ ρ(f ⊕ c),
i.e. ((f ⊕ k)|S • k)⊕ c ≤ ((f ⊕ c)⊕ k)|S • k

VI. ρ(f 	 c) ≤ ρ(f)	 c ≤ ρ((f ⊕ k)	 c),
i.e. ((f 	 c)⊕ k)|S ≤ ((f ⊕ k)|S • k)	 c ≤ (((f ⊕
k)	 c)⊕ k)|S • k

VII. ρ(f) ◦ c ≤ ρ((f ⊕ k) ◦ c),
i.e. ((f ⊕ k)|S • k) ◦ c ≤ (((f ⊕ k) ◦ c)⊕ k)|S • k

VIII. ρ(f) • c ≤ ρ((f ⊕ k) • c),
i.e. ((f ⊕ k)|S • k) • c ≤ (((f ⊕ k) • c)⊕ k)|S • k

Proof I.

((f ⊕ c)⊕ k)|S = ((f ⊕ k)⊕ c)|S , by Proposition 60 of [4]

= ((f ⊕ k)⊕ c|S)|S , because c = c|S
= (f ⊕ k)|S ⊕ c|S , by Lemma 3.4, I

= (f ⊕ k)|S ⊕ c

II. We first show ((f 	 c)⊕ k)|S ≤ (f ⊕ k)|S 	 c.

((f 	 c)⊕ k)|S ≤ ((f ⊕ k)	 c)|S , by Lemma A.4, II

= ((f ⊕ k)	 c|S)|S , ∵ c = c|S
= (f ⊕ k)|S 	 c|S , by Lemma 3.4, II

= (f ⊕ k)|S 	 c

We now show (f ⊕k)|S 	 c ≤ (((f ⊕k)	 c)⊕k)|S .

(f ⊕ k)|S 	 c = (f ⊕ k)|S 	 c|S , because c = c|S
= ((f ⊕ k)	 c|S)|S , by Lemma 3.4, II

= ((f ⊕ k)	 c)|S
≤ (((f ⊕ k)	 c)⊕ k)|S , by Lemma A.1

III. We first show ((f ◦ c)⊕ k)|S ≤ (f ⊕ k)|S ◦ c.

((f ◦ c)⊕ k)|S ≤ ((f ⊕ k) ◦ c)|S , by Lemma A.5, II

= ((f ⊕ k) ◦ c|S)|S , because c = c|S
= (f ⊕ k)|S ◦ c|S , by Proposition 3.8

= (f ⊕ k)|S ◦ c

We now show (f ⊕ k)|S ◦ c ≤ (((f ⊕ k) ◦ c)⊕ k)|S .

(f ⊕ k)|S ◦ c = (f ⊕ k)|S ◦ c|S , because c = c|S
= ((f ⊕ k) ◦ c|S)|S , by Proposition 3.8

= ((f ⊕ k) ◦ c)|S
≤ (((f ⊕ k) ◦ c)⊕ k)|S , by Lemma A.1

IV. We first show ((f • c)⊕ k)|S ≤ (f ⊕ k)|S • c.

((f • c)⊕ k)|S ≤ ((f ⊕ k) • c)|S , by Lemma A.5, II

= ((f ⊕ k) • c|S)|S , because c = c|S
= (f ⊕ k)|S • c|S , by Proposition 3.9

= (f ⊕ k)|S • c

We now show (f ⊕ k)|S • c ≤ (((f ⊕ k) • c)⊕ k)|S .

(f ⊕ k)|S • c = (f ⊕ k)|S • c|S , because c = c|S
= ((f ⊕ k) • c|S)|S , by Proposition 3.9

= ((f ⊕ k) • c)|S
≤ (((f ⊕ k) • c)⊕ k)|S , by Lemma A.1

V.

((f ⊕ k)|S • k)⊕ c ≤ ((f ⊕ k)|S ⊕ c) • k,
by Lemma A.6, II
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Figure 43 Grey-value example image f (left), its reconstruction ρ(f) (centre) and its reconstruction δ(f) (right). We can
clearly notice, that f ≤ ρ(f) ≤ δ(f). In this figure, we have used non-flat SEs k2 and c2 as described in 42.

Figure 44 σ(f ⊕ c2) Figure 45 σ(f)⊕ c2

Figure 46 σ(f 	 c2) Figure 47 σ(f)	 c2 Figure 48 σ((f ⊕ k2)	 c2)

Figure 49 σ(f ◦ c2) Figure 50 σ(f) ◦ c2 Figure 51 σ((f ⊕ k2) ◦ c2)
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Figure 52 σ(f • c2) Figure 53 σ(f) • c2 Figure 54 σ((f ⊕ k2) • c2)

Figure 55 ρ(f)⊕ c2 Figure 56 ρ(f ⊕ c2)

Figure 57 ρ(f 	 c2) Figure 58 ρ((f ⊕ k2)	 c2)

Figure 59 ρ(f) ◦ c2 Figure 60 ρ((f ⊕ k2) ◦ c2)
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Figure 61 ρ(f) • c2 Figure 62 ρ((f ⊕ k2) • c2)

= ((f ⊕ k)|S ⊕ c|S) • k,
because c = c|S
= ((f ⊕ k)⊕ c|S)|S • k,
by Lemma 3.4, I

= ((f ⊕ k)⊕ c)|S • k
= ((f ⊕ c)⊕ k)|S • k,
by Proposition 60 of [4]

VI. We first show ((f	c)⊕k)|S ≤ ((f⊕k)|S•k)	c.

((f 	 c)⊕ k)|S • k ≤ ((f ⊕ k)	 c)|S • k,
, by Lemma A.4 II

= ((f ⊕ k)	 c|S)|S • k,
because c = c|S
= ((f ⊕ k)|S 	 c|S)| • k,
by Lemma 3.4, II

= ((f ⊕ k)|S 	 c)| • k
≤ ((f ⊕ k)|S • k)	 c,
by Lemma A.7

In the remaining parts we apply the result III of
Grey-value Morphological Sampling Theorem, 2.14, to
(f ⊕ k) to obtain

(f ⊕ k)|S • k ≤ (f ⊕ k). (Eq1)

We now show ((f⊕k)|S•k)	c ≤ (((f⊕k)	c)⊕k)|S•k.

((f ⊕ k)|S • k)	 c ≤ (f ⊕ k)	 c, by (Eq1)

≤ (((f ⊕ k)	 c)⊕ k)|S • k,
by Lemma 4.2

VII.

((f ⊕ k)|S • k) ◦ c ≤ (f ⊕ k) ◦ c, by (Eq1)

≤ (((f ⊕ k) ◦ c)⊕ k)|S • k,
by Lemma 4.2

VIII.

((f ⊕ k)|S • k) • c ≤ (f ⊕ k) • c, by (Eq1)

≤ (((f ⊕ k) • c)⊕ k)|S • k,
by Lemma 4.2

�

The results I -IV give relations in sampled
domain. The results V-VIII give relations in
reconstructed images. The interaction between
sampling operator σ(.) and morphological opera-
tions with non-flat SEs is illustrated in Figures
44-54. Figures 55 to 62 illustrate interaction of
reconstruction operation ρ(.) with morphological
operations using non-flat SEs. In the following ex-
amples we have used the non-flat SEs k2 and c2
as described in Figure 42.

5 Conclusion

In this paper we have built upon classic works of
Haralick and co-authors, and we have shown in
detail how to transfer digital sampling theorems
concerned with four fundamental morphological
operations, namely dilation, erosion, opening and
closing, from the binary setting to grey-value
images.

Using the above results, we have also extended
the work of Heijmans and Toet on max-pooling,
morphological sampling and reconstruction to use
of non-flat structuring elements.

With this paper we have not only worked on
closing a gap in the foundation of mathemati-
cal morphology. Our aim is also to address some
fundamental theoretical aspects of the pooling op-
eration encountered in machine learning. In our
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future work we also strive to elaborate more on
this aspect.

Appendix A Some Minor
Results

In this section, we present some smaller results
which are utilized in the discussions of Section 4.

Let F, G, C, K ⊆ EN and f : F → L, g : G→
L, c : C → L and k : K → L. Let S ⊆ EN be the
sampling sieve.

Lemma A.1 Let 0 ∈ K, k(0) = 0 and k(u) ≥ 0
∀u ∈ K. Then, f ≤ f ⊕ k.

Proof We first show that if 0 ∈ K then F ⊆ F ⊕K.
Clearly, x ∈ F and 0 ∈ K ⇒ (x+ 0) ∈ F ⊕K. Thus,
x ∈ F ⊕K. ∴ F ⊆ F ⊕K.
We now show f ≤ f ⊕ k. For all x ∈ F ⊆ F ⊕K, we
have (f ⊕ k)(x) = maxx−u∈F, u∈K{f(x− u) + k(u)}
≥ f(x− 0) + k(0) = f(x)
∴ ∀x ∈ F , f(x) ≤ (f ⊕ k)(x). �

Lemma A.2 If f ≤ g then f |S ≤ g|S .

Proof We have, ∀x ∈ F ⊆ G, f(x) ≤ g(x). That is
∀s ∈ F ∩ S ⊆ G ∩ S, f |S(s) ≤ g|S(s). Therefore,
f |S ≤ g|S . �

Lemma A.3 Let 0 ∈ K, k(0) = 0 and k(u) ≥ 0
∀u ∈ K. Then, f 	 k ≤ f .

Proof We first show that if 0 ∈ K then F 	K ⊆ F .
Clearly, x ∈ F 	K ⇒ ∀u ∈ K, x+ u ∈ F .
0 ∈ K ∴ x+ 0 = x ∈ F , which implies F 	K ⊆ F .
We now show f 	 k ≤ f .
For any x ∈ F 	 K, we have, (f 	 k)(x) =
minx+u∈F, u∈K{f(x + u) − k(u)} ≤ f(x + 0) − k(0)
= f(x). �

Lemma A.4 I. (F 	 C)⊕K ⊆ (F ⊕K)	 C
II. (f 	 c)⊕ k ≤ (f ⊕ k)	 c

Proof I.
Let x ∈ (F	C)⊕K. Then, x = u+k where u ∈ F	C,
k ∈ K.

u ∈ F 	 C implies ∀c0 ∈ C, u+ c0 ∈ F .
⇒ ∀c0 ∈ C, (u+ k) + c0 = (u+ c0) + k ∈ F ⊕K.
Therefore, x = u+ k ∈ (F ⊕K)	 C.
II.
From Umbra Homomorphism Theorem (Theorem 58
of [4] ), we have U [(f 	 c) ⊕ k] = U [f 	 c] ⊕ U [k]
= (U [f ] 	 U [c]) ⊕ U [k]. Similarly, U [(f ⊕ k) 	 c] =
(U [f ]⊕ U [k])	 U [c].
We have (F 	 C) ⊕ K ⊆ (F ⊕ K) 	 C. Also, using
the logic of Part I of the proof, (U [f ]	U [c])⊕U [k] ⊆
(U [f ]⊕ U [k])	 U [c].
Therefore, we can conclude, (f 	 c)⊕ k ≤ (f ⊕ k)	 c.

�

Lemma A.5 I. (F ◦ C)⊕K ⊆ (F ⊕K) ◦ C
II. (f ◦ c)⊕ k ≤ (f ⊕ k) ◦ c

Proof I.

(F ◦ C)⊕K = ((F 	 C)⊕ C)⊕K
= ((F 	 C)⊕K ⊕ C, by Prop. 3 of [4]

⊆ ((F ⊕K)	 C)⊕ C, by Lemma A.4, I

= (F ⊕K) ◦ C
II.

(f ◦ c)⊕ k = ((f 	 c)⊕ c)⊕ k
= ((f 	 c)⊕ k)⊕ c, by Prop. 60 of [4]

≤ ((f ⊕ k)	 c)⊕ c, by Lemma A.4, II

= (f ⊕ k) ◦ c
�

Lemma A.6 I. (F • C)⊕K ⊆ (F ⊕K) • C
II. (f • c)⊕ k ≤ (f ⊕ k) • c

Proof I.

(F • C)⊕K = ((F ⊕ C)	 C)⊕K
⊆ ((F ⊕ C)⊕K)	 C, by Lemma A.4, I

= (F ⊕K) • C
II.

(f • c)⊕ k = ((f ⊕ c)	 c)⊕ k
≤ ((f ⊕ c)⊕ k)	 c, by Lemma A.4, II

= ((f ⊕ k)⊕ c)	 c, by Prop. 60 of [4]

�



Springer Nature 2021 LATEX template

Article Title 23

Lemma A.7 (f 	 c) • k ≤ (f • k)	 c

Proof

(f 	 c) • k = ((f 	 c)⊕ k)	 k
≤ ((f ⊕ k)	 c)⊕ k, by Lemma A.4, II

= (f ⊕ k)	 (c⊕ k), by Prop. 61 of [4]

= (f ⊕ k)	 (k ⊕ c), by Prop. 59 of [4]

= ((f ⊕ k)	 k)	 c, by Prop. 61 of [4]

= (f • k)	 c
�
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