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Morphological screening of mesenchymal
mammary tumor organoids to identify drugs that
reverse epithelial-mesenchymal transition
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Martina Strempfl 4, Michael J. Toneff5, Hannah L. Johnson3, Sendurai A. Mani6, Philip Jones7,

Clifford C. Stephan2 & Jeffrey M. Rosen 1✉

The epithelial-mesenchymal transition (EMT) has been implicated in conferring stem cell

properties and therapeutic resistance to cancer cells. Therefore, identification of drugs that

can reprogram EMT may provide new therapeutic strategies. Here, we report that cells

derived from claudin-low mammary tumors, a mesenchymal subtype of triple-negative breast

cancer, exhibit a distinctive organoid structure with extended “spikes” in 3D matrices. Upon a

miR-200 induced mesenchymal-epithelial transition (MET), the organoids switch to a

smoother round morphology. Based on these observations, we developed a morphological

screening method with accompanying analytical pipelines that leverage deep neural networks

and nearest neighborhood classification to screen for EMT-reversing drugs. Through

screening of a targeted epigenetic drug library, we identified multiple class I HDAC inhibitors

and Bromodomain inhibitors that reverse EMT. These data support the use of morphological

screening of mesenchymal mammary tumor organoids as a platform to identify drugs that

reverse EMT.
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T
riple-negative breast cancer (TNBC) is a heterogeneous
group of tumors defined by the lack of expression of
estrogen receptor (ER), progesterone receptor (PR), and

Her2. TNBC has been classified into minimally four subtypes,
among which the claudin-low subtype is the most mesenchymal,
and patients with these tumors have high rates of metastases and
chemoresistance1–4. The epithelial–mesenchymal transition
(EMT) is an evolutionarily conserved developmental program
during which cells lose epithelial markers and gain mesenchymal
traits. In response to pleiotropic signals, a group of EMT-
associated transcription factors and epigenetic regulators
orchestrate this complex transition. EMT confers metastatic
properties to cancer cells by enhancing motility, invasion, and
resistance to apoptotic stimuli. Moreover, intermediate or “partial
EMT” tumor cells acquire increased plasticity, display cancer
stem cell properties, and exhibit marked therapeutic resistance5–7.
An EMT signature was also found to be associated with a poor-
prognosis subtype of breast cancer defined by a distinct tumor
immune microenvironment8. Previous neoadjuvant clinical trials
revealed that residual breast cancers after conventional endocrine
therapy (letrozole) or chemotherapy (docetaxel) displayed these
intermediate EMT features as well as tumor-initiating properties9.
Thus, the EMT state is often the “default” phenotype observed
during therapeutic resistance across breast cancer subtypes. In a
preclinical claudin-low/mesenchymal genetically modified mouse
(GEM) model developed in our laboratory, re-expression of the
miR-200 microRNAs, which are master regulators of the
mesenchymal-epithelial transition (MET)10–12, reversed cancer
stem cell properties and sensitized tumors to chemotherapy13.
Therefore, identification of drugs that can phenocopy miR-200
and reprogram cells into an epithelial-like state may provide new
therapeutic strategies.

During the past years, several efforts have been made to screen
for EMT-reversing drugs. We previously developed the “Z-cad”
dual lentiviral fluorescent reporter system which comprises
destabilized green fluorescent protein (GFP) containing the ZEB1
3′ UTR and red fluorescent protein (RFP) driven by the E-
cadherin (CDH1) promoter14. Employing this reporter system, we
carried out a high-throughput small molecule drug screening and
identified several GSK3β inhibitors capable of inhibiting EMT in
MDA-MB-231 cells in two-dimensional (2D) culture15. Similarly,
other studies utilized a CDH1 promoter-driven luciferase reporter
in high-throughput screening and found that protein kinase A
(PKA) activation and histone deacetylase (HDAC) inhibitors
were able to restore epithelial differentiation16,17.

Recently, three-dimensional (3D) organoid culture systems
have emerged as improved models for cell behavior analysis and
personalized medicine applications. Organoids maintain cell–cell
interactions, display more similarities to the original tissues with
respect to their histology and transcriptomics, and provide more
accurate predictions for therapeutic responses18–25. To date,
dozens of drug screens have been carried out in organoid cultures
which primarily use viability-based endpoints in the determina-
tion of drug activity21,26–32. Since reversing EMT does not
necessarily alter cell viability, and many mesenchymal cells dis-
play unique organoid morphology as shown in this study, the
development of a morphological screening platform focusing
on EMT reprogramming provides valuable toolsets for drug
discovery.

Over the past decade, revolutions of computer vision have
resulted in the development of a fundamentally different type of
image analysis based on deep neural network (dNN) archi-
tectures. These systems work directly on the raw images and
provide an integrated approach that combines image feature
extraction, typically achieved using stacked convolutional and
pooling layers, with classification tasks using artificial neural

network33–36. In the context of phenotypic screening, the most
common applications of machine learning are retrieval of com-
pounds that mimic a control (classification) or placing com-
pounds with similar mechanisms of action together (clustering),
which have both been successfully addressed using dNN and
image embedding based approaches37–40. In this study, we uti-
lized primary cell lines derived from Trp53-null claudin-low GEM
models which generated spiky organoid structures in Matrigel.
We then optimized a 3D organoid culture platform and employed
an inducible miR-200c overexpression system as a control to
reverse EMT. This produced two distinct morphologies which
could be visually distinguished but were difficult to objectively
segment, thus precluded the utilization of conventional image
analysis approaches that rely on accurate segmentation. There-
fore, we developed a screening approach that combines generic
image features from a pre-trained dNN with a k-nearest neigh-
bors (k-NN) model to map the similarity of experimental treat-
ments to reference controls. Using this approach, we identified a
number of small molecule inhibitors that reversed EMT in an
epigenetic drug screen. These compounds fell into two broad
categories, inhibitors of class I HDAC and Bromodomain (BRD).
These data support the use of mesenchymal organoid morpho-
logical screens for EMT-reversing drug discovery. Such screens
also serve as a first step to provide insights into the epigenetic
regulation of the EMT phenotype.

Results
Reprogramming EMT by inducing miR-200c expression
changes organoid morphology. We first established several
primary cell lines from Trp53-null murine mammary tumor
models. These Trp53-null GEM tumors were previously estab-
lished by transplantation of donor mammary epithelium from
BALB/c mice, where Trp53 was deleted from the germline,
into syngeneic hosts for derivation of a variety of Trp53-null
mammary tumors41,42. Comparative oncogenomics and gene
profiling demonstrated that the resulting mammary tumors are
representative of the corresponding human breast cancer
subtypes43–45. As the engineered Trp53 cassette contains neo-
mycin resistance marker41,46, G418 can be added to culture
medium to remove stromal cells for the generation of primary
cell lines. Intriguingly, when embedded in Matrigel, single cells
from T11 and T12, two Trp53-null claudin-low mammary tumor
models, grew into organoid structures with projections invading
the surrounding matrix (Fig. 1a, b). The inducible expression of
the MET promoter miR-200c by addition of doxycycline (dox) to
TetOn-miR-200c cells prevented the formation of these invasive
protrusions without obviously affecting organoid size (Fig. 1b,
Supplementary Fig. 1a, b, and Supplementary Movie 1), and
markedly induced the expression of luminal cytokeratin K8 at
both RNA and protein levels (Fig. 1c and Supplementary
Fig. 1c–e). Phalloidin-stained F-actin revealed that cells in the
claudin-low organoids were invasive as F-actin was present in
structures resembling invadopodia; whereas in miR-200c
induced organoids, the F-actin had a cortical alignment with-
out evident invadopodia (Fig. 1d, Supplementary Fig. 2a, and
Supplementary Movie 2–5). Moreover, miR-200c induction
promoted the expression of the epithelial marker E-cadherin and
reduced the expression of the mesenchymal transcription factor
Zeb1, as demonstrated by Z-cad reporter analysis, immuno-
blotting, and immunostaining (Fig. 1e, f, and Supplementary
Fig. 2b–d). This morphological switch (spiky to round) provides
a unique real-time readout for EMT/MET dynamics and affords
the possibility of using these 3D organoids in image-based
screening to identify small molecules that can alter the EMT/
MET plasticity.
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Optimization of a 3D organoid screening assay and image
analysis. In order to perform screening, we first optimized an
automated method to reproducibly generate organoids in a 384-
well plate format. Since undiluted Matrigel is too viscous for
robotic liquid transfer, we tested organoid growth in 50%
Matrigel diluted with medium and confirmed that the organoid
phenotypes were similar to those observed in undiluted Matrigel
(Supplementary Fig. 3a). For organoid cultures, a cell-free coating
of 60% Matrigel was added to the bottom of wells, which pre-
vented the adherence of cells to the bottom of the well (Supple-
mentary Fig. 3b). Next, cells diluted in 50% Matrigel were
transferred to pre-coated plates, resulting in an ~1-mm thick
layer at the meniscus which contained 500 cells per well. After
allowing cells to recover for 2 days, plates were treated with drugs

using a pin-transfer (Fig. 2a). Each plate contained 16 vehicle
(DMSO)-treated negative control wells, 16 dox-treated wells (for
miR-200c induction) as an EMT-reversing positive control, and
16 cell-free Media-only wells as a toxicity control. Cells were
incubated in the presence of drug for a duration of 5 days, after
which bright-field z-stack images were collected using the Ima-
geXpress Micro Confocal system.

Next, we developed an analytical workflow to map visually
similar wells (phenomimetics) to reference control wells using an
image embedding approach. Here we used an 18-layer residual
neural networks (RESNET-18) architecture47 that was pre-trained
on the ImageNet challenge dataset34 and extracted information at
the flattening layer in-between the convolutional and artificial
neural network layers to effectively convert images into a
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Fig. 1 Reversing EMT by inducing miR-200c expression changes organoid morphology. a Schematic diagram of 3D organoid cultures in regular culture

format. b Morphology of vehicle- or dox-treated T11 and T12 organoids by phase-contrast microscopy. Representative images of independent biological

duplicates (n= 10). Scale bar: 100 μm. c IF staining of Keratin 8 in vehicle- or dox-treated T11 organoid sections. Representative images of independent

biological triplicates. Scale bar: 20 μm. d F-actin staining of vehicle- or dox-treated T11 whole-mount organoids. Representative images of independent

biological triplicates. Scale bar: 50 μm. e Z-cad reporter imaging in vehicle- or dox-treated T11 whole-mount organoids. EMT cells would be green and

MET cells would be red based on the design of the reporter system. Representative images of independent biological triplicates. Scale bar: 50 μm.

f Immunoblotting assay of EMT markers in vehicle- or dox-treated T11 and T12 organoids. Representative images of independent biological triplicates.
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descriptive numeric vector. We then performed either principal
component analysis (PCA) or k-NN clustering to visualize the
phenotypic landscape and map experimental wells to control-like
conditions, respectively. The resulting PCA showed that the
controls were well clustered and that the positive and negative
controls are primarily separated in the first principal component,
while the positive and media-only control are separated by the
second principal component. This subsequently prompted us to
generate a k-NN model to statistically map drug-treated wells to
the reference controls, respectively (Fig. 2b). In the initial
optimization assays, time-lapse microscopy was carried out to
identify a time point where the negative (DMSO) and positive
(dox) controls could be fully statistically resolved. We found that
DMSO-treated and miR-200 induced wells are fully distinguish-
able after 5 days of drug treatment, and this time point was used
in all subsequent screening assays (Supplementary Fig. 3c). To

monitor assay quality, we sub-sampled the control wells into non-
overlapping training and testing sets. All testing wells can be
correctly assigned to their respective treatment groups using this
analytical pipeline, implying that the model is functional (Fig. 2b).
In order to evaluate the effects of subsampling and the number of
neighbors used for classification, we trained one hundred
iterations of k-NN models using randomly assigned subsamples
for each K-value between 1 and 6. Those data showed minimal
differences when trained on any given subsample or K-values,
indicating that this method is robust and not influenced by the
sampling method (Supplementary Fig. 4).

Identification of EMT-reversing epigenetic small molecule
inhibitors through mesenchymal organoid morphological
screening. Multiple studies show that significant epigenetic
changes are associated with EMT and are frequently required to
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Fig. 2 3D organoid cultures and the development of RESNET. a Schematic diagram of organoid cultures and screening workflow. Plates are generated by

first depositing a buffer layer of 60%Matrigel to prevent cells from adhering to the bottom. Cell-containing 50%Matrigel is then added followed by media.

Drugs are transferred using a 100 nl pin tool 2 days after cell seeding and serial bright-field imaging is performed in the following days. b Image analysis

pipeline. 3D image stacks are first background corrected and projected into a single z-plane. High-level image features are then derived from the flattening

layer of the RESNET-18 pre-trained on the ImageNet dataset. Principal component analysis is then used to explore response patterns (the percent of

variance that is explained by each principal component is labeled to the axis) and k-nearest neighbor model is constructed for subsequent classification

tasks. Assay quality is monitored using a 50/50 train/test split for each control category, which is shown in the confusion matrix. Negative (Neg), DMSO-

treated wells; Positive (Pos), miR-200c induced wells; Media, cell-free wells. Act/Pred, Actual vs Predicted. c Principal component analysis of RESNET-18

features for experimental samples with control regions annotated (blue, negative region; dark green, positive region; red, media region). Increasing drug

concentrations are shown from low (black) to high (yellow).
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mediate the functions of EMT transcription factors48,49. There-
fore, screening for EMT-reversing epigenetic therapies should
provide fundamental insights into the epigenetic basis of EMT
and may lead to novel therapeutic approaches. We obtained an
epigenetic drug library comprising 65 small molecule chemicals
targeting multiple epigenetic modifiers (readers, writers, and
erasers) from the Institute for Applied Cancer Science (IACS) at
MD Anderson Cancer Center (Supplementary Data 1). These
compounds were screened at four concentrations with two
independent biological replicates for both T11 and T12 organoid
cultures. Exploratory PCA analysis showed that drug-treated
wells resided within the component space of controls and showed
some assemblance of dose-dependency with lower concentration
of drugs primarily in the negative control region and higher
concentrations migrating toward the positive and media-only
controls (Fig. 2c). These data encouraged us to train a series of k-
NN models using plate level and batch aggregated datasets. The
models generated from each assay plate are used to provide a real-
time feedback of the assay robustness as well as to qualify indi-
vidual experiments for inclusion into the larger dataset. The batch
aggregated models are iteratively retrained as qualified assay
batches are added and are ultimately the model that is used to
classify experimental drugs. For all models, half of the controls
were used as the training set, while the remainder were used for
statistical evaluation of accuracy calculated from the confusion
matrix. From these data, we can see that the resulting k-NN
models generally had a high accuracy when trained at the batch
(80%) and cumulative (90%) levels for both the T11 and T12 cell
models, suggesting that the assay is robust with well-resolved
controls and there are no major batch effects present (Supple-
mentary Fig. 4).

Next, drug-treated organoids were assigned a continuous
ranking of drug activity (represented by Area Under the
dose–response Curve, AUC) using the classification probabilities
for each of the three mapped categories namely: Negative (no
effect, DMSO-like), Positive (reduced branching structures, miR-
200c induction-like), or Media (no organoid present). In our
dataset, we observed a number of drugs with saturated signal (i.e.,
drugs where all data points are either positive-like or negative-
like), drugs that followed a sigmoidal dose–response curve, and
finally drugs with a multi-stage response where positive-like
effects switch to toxic effects (i.e., resembled Media-only wells) as
a function of increasing drug concentrations (Supplementary
Data 2). Therefore, to provide a robust curve fit across all of the
observed response patterns, we chose to use a support vector
regression-based method. This approach does not make any
assumptions on the underlying shape of the curve and is therefore
more generalizable when compared to fitting data against a 4-
parameter logistic regression curve50. In both T11 and T12
models, HDAC and BRD inhibitors were retrieved as classes of
drugs that consistently resembled miR-200 induction, as shown
by their high AUC_Pos score (Fig. 3a and Supplementary Data 2).
The extensive overlap between the top hits in both claudin-low
organoid models suggests that HDACs and BRD proteins are
common regulators of EMT (Fig. 3b). Inhibitors that target
histone methyltransferases (HMT, including PRMT1/3/4/5, G9a,
DOT1L, SETD7, EZH2), histone lysine demethylase (KDM,
including LSD1, KDM4A/5B/6B), or methyl-lysine reader (MLR,
including L3MBTL3) were more similar to DMSO-treated control
wells across the majority of concentrations.

Validation of top EMT-reversing hits. To validate the primary
organoid screening, we conducted more complete dose–response
assays of the top-ranked positive control-like hits. For these
assays, each drug was tested against 10 concentrations in half-log

steps with technical quadruplicates in both T11 and T12 models.
The quality control analyses showed 100% performance in dis-
criminating control wells (Supplementary Fig. 4). In the
dose–response curves, all the drugs were validated with consistent
results in the overlapping concentration ranges when compared
to the primary screen (Fig. 4a, b). Importantly, the concentration
of drug that is required to switch the organoid phenotype was
resolved from this set of experiments. Accordingly, drug activity
was ranked on the basis of potency, defined here as the con-
centration of drug that is required to have a 50% probability of
belonging to the positive control-like classification (PR50). The
most potent EMT-reversing drug in T11 was Fimepinostat
(IACS-101190), a dual HDAC and PI3K inhibitor, which dis-
played strong positive-like effect at nanomolar concentrations
(Fig. 4a). In the T12 model, Fimepinostat showed a positive-like
effect at 10 nM ranges but switched to a more toxic like pheno-
type at higher concentrations, resulting in an atypical curve that
failed to converge (Fig. 4b). HDAC inhibitors (Givinostat,
Abexinostat, and Mocetinostat) showed reprogramming effects at
near micromolar concentrations (Fig. 4b). To evaluate the
potential drug effects on cell viability, we performed a counter
screen at the end time point using 3D Cell TiterGlo (CTG) that
measures ATP-levels as a surrogate of cell viability. These data
show that the concentration of most drugs required to shift
organoids from resembling the negative to the positive controls
was less than that causing significant toxicity (Supplementary
Fig. 5), indicative of a reprogramming event.

To further confirm the effects of the top hits on EMT
reprogramming, we conducted immunoblotting assays in drug-
treated T11 and T12 cells in 2D cultures. Upon Fimepinostat
treatment, we observed a potent induction of E-cadherin in T11
and T12 and conversely a marked reduction of Zeb1 and Slug
expression in T11 cells (Fig. 5a, b). Moreover, Fimepinostat
treatment-induced CDH1 promoter-driven RFP reporter activity
and Cdh1 RNA expression in a dose-dependent manner
(Supplementary Fig. 6a, b), indicating the transcriptional
activation of E-cadherin by Fimepinostat. The two BRD
inhibitors, IACS-070654 and I-BET151 (IACS-000044), reduced
Slug protein and RNA expression (Fig. 5a–d). The three class I
HDAC inhibitors, Abexinostat (IACS-100046), Mocetinostat
(IACS-100074), and Givinostat (IACS-100753), were able to
reduce Slug expression in T11 cells and induce E-cadherin
expression in T12 cells. These three HDAC inhibitors also
increased CDH1-RFP reporter activity and Cdh1 RNA expression
in both T11 and T12 cells, indicating a transcription regulation
(Fig. 5a–d, and Supplementary Fig. 6c). All these HDAC
inhibitors were effective at upregulating the acetylation levels of
histone H3 and H4, indicating that the drugs hit their targets. For
comparison, GSK-J4 (IACS-001202), which is a KDM6B inhibitor
that did not show up as the top positive hit in the screen, failed to
cause detectable changes in EMT proteins or RNA (Fig. 5a, c).
Collectively, using two independent organoid models, these
studies illustrate the potential application of morphological
screening of claudin-low organoids in the identification of
EMT-reprogramming drugs with high accuracy and sensitivity.

To further evaluate whether reprogramming of EMT can
increase chemosensitivity, we transplanted T12 tumor cells into
the mammary fat pad of mice and started drug treatment when
tumors become palpable (Fig. 6a). Since Mocetinostat (MOC) is
currently under clinical trials in several tumor types and showed
good reprogramming efficacy in T12, we decided to test its effect
in vivo. It has been reported that HDAC inhibitors often work
synergistically with DNA methyltransferase inhibitors such as
Azacytidine (AZA) in reactivation of aberrantly silenced genes in
cancer51; thus, we included AZA with MOC for further studies.
Of note, Azacytidine alone did not alter organoid morphology
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nor did it induce E-cadherin expression in T12 cells (Supple-
mentary Fig. 7). When transplanted in vivo, T12 tumors treated
with combined AZA and MOC exhibited EMT reversal although
some variation was observed among tumors from different mice
as expected since these immunoblots were performed on end-
stage tumors containing both stroma and immune cells (Fig. 6b
and Supplementary Fig. 8). T12 tumors are very aggressive and
reached the ethical endpoint 2 weeks after treatment initiation.
Epigenetic therapy or chemotherapy alone prolonged mice
survival by a few days. However, the treatment of MOC and
AZA sensitized T12 tumors to carboplatin, indicated by the
prolonged survival of tumor-bearing mice (Fig. 6c). These data
suggest that drugs identified from the morphological organoid
screen potentially may be utilized for combination therapies
in vivo.

Discussion
Most breast cancer deaths in the United States can be ascribed to
recurrent metastatic disease that is resistant to conventional
therapies. Exploring the molecular mechanisms and developing
new therapies for treatment resistance is imperative especially for
TNBC for which there is no targeted therapy. As EMT confers
cancer stemness and chemoresistance, the discovery of drugs that
alter the EMT program may provide new therapeutic approaches
to sensitize breast cancers to standard-of-care chemotherapy and
to overcome therapy resistance. Moreover, the impact of EMT-
reversing drug discovery may extend well beyond resistant TNBC
to other types of therapy-resistant cancer and metastatic disease.
A unique feature of our organoid screen is that it can differentiate
EMT-reprogramming effects from direct cell killing, which is the
endpoint in most cell viability-based assays. This is critical
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acetyltransferase, HDAC histone deacetylase, HMT histone methyltransferases, KDM histone lysine demethylase, MLR methyl-lysine reader, PRMT1

protein arginine methyltransferase 1.
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because these targeted therapies may ultimately be used in
combination with standard-of-care chemotherapy in the clinic.

Tumor organoids are being increasingly utilized for basic and
translation research. However, many of the endpoints used to
detect drug actions rely on biochemical readouts. At the time of
this publication, other groups have successfully implemented
single organoid morphometric analysis for drug screening
applications52–54. One favorable aspect of using image-based
analysis is that multiple aspects of biological response can be
simultaneously captured and subsequently used to identify
unique molecular mechanisms of action52,55,56. In these studies,
distinct morphological patterns were identified by image seg-
mentation. Unlike those studies, our model system creates a
highly invasive and often-interconnecting morphology that con-
founded segmentation. For this reason, we generate an analytical
approach using dNN-derived image features that does not rely on
explicit segmentation to provide an automated screening solution
for this model system. Both image classification and regression
can be performed using dNN inspired approaches. Indeed, mul-
tiple methods have been proposed to implement dNN driven
analysis, which includes training dNN architectures on de novo
data, fixing potions of the dNN architecture and fine-tuning the
remainder, and directly using the features produced from pre-
trained convolutional layers as an input for secondary statistical
modeling. From a functional standpoint, training an entire deep
neural network takes hundreds to many thousands of repre-
sentative images that are subjectively determined as a function of
the complexity of images, number of categories being trained, and
specific structure of the dNN. Importantly, the heavy requirement
of utilizing large data is primarily driven by the training of
convolutional layers responsible for feature extraction. However,
it has been observed that convolutional layers trained on very
large visually diverse images sets, such as the ImageNet dataset,
are generally informative and can be “fine-tuned” to novel
applications by supplementing de novo datasets57. In turn, this

effectively reduces the demand for large volumes of data and time
required to train a network and is often referred to as transfer
learning. Finally, image embedding simply applies the pre-trained
convolutional layers to images and outputs a descriptive numeric
vector extracted from various layers of the architecture. This
approach skips fine-tuning and can be effectively used to provide
robust classification of images using a relatively small dataset58.
Likewise, we foresee this approach as being amendable to a wide
array of cellular model systems with the caveat that the phenotype
is visually apparent and remotely similar to the information
learned from the initial training domain59. With this potential
limitation, it is unknown whether this approach will capture less
obvious phenotypes or ones that cannot be characterized visually
in advance. One potentially interesting extension to this approach
would be to train the convolutional layers of a dNN using images
of organoids in order to generate an organoid-specific feature
vector. This could potentially further bolster the accuracy of
models and provide a route toward building regressive models.
However, to achieve this a drastically larger dataset would be
needed, which is outside the scope of this study.

The weakly or semi-supervised learning leverages the known
experimental structure to generate pseudo-labels for training60.
Here, the general assumption is that within a given cell model,
wells treated under similar conditions will have a similar response
pattern, which was visually confirmed for this dataset. Under this
logic, one can assign pseudo-labels to the data based on the
experimental conditions under which they are run. This type of
logic has been successfully deployed in other experimental con-
texts, which aimed to clustering drugs with similar mechanisms
of action60. Using those labels, a simple model is constructed with
the aim of retrieving images based on content. While this
approach has a certain level of imprecision, the implementation
of robust models trained across experimental batches with non-
overlapping train/testing split can provide a robust estimate of
performance.

ba

Compound Top LogPR50

Fimepinostat 0.93 -9.20

IACS-011840 0.97 -7.77

Givinostat 1.00 -7.01

Abexinostat 0.96 -6.99

Mocetinostat 1.00 -6.36

I-BET151 1.00 -6.15

IACS-070654 0.90 -6.11

Compound Top LogPR50

Fimepinostat - -Inf

IACS-011840 0.99 -8.29

Givinostat 0.96 -6.97

Abexinostat 0.67 -6.96

Mocetinostat 0.55 -6.94

I-BET151 1.00 -6.78

IACS-070654 0.96 -7.43

-9 -8 -7 -6 -5 -4

-0.5

0.0

0.5

1.0

1.5

Dose response curve

Log[Cmpd,M]

P
ro

b
a

b
il

it
y

(p
o

s
-l

ik
e

)

Abexinostat

Mocetinostat

IACS-070654

Fimepinostat

I-BET151

Givinostat

IACS-011840

-9 -8 -7 -6 -5 -4

-0.5

0.0

0.5

1.0

1.5

Dose response curve

Log[Cmpd,M]

P
ro

b
a

b
il

i t
y

(p
o

s
-l

ik
e

) Fimepinostat

IACS-011840

Givinostat

Mocetinostat

IACS-070654

I-BET151

Abexinostat

T11 T12

Fig. 4 Dose curve responses of the top drug hits. Dose–response curves of the probability resembling the positive control by concentration for T11 (a) and

T12 (b) organoids. Data points represent the mean and standard deviation of four technical replicates. Curves are fit using a constrained 4-parameter

logistic using Graphpad Prism. The resulting curve fit parameters describing efficacy (top probability score) and potency (LogPR50 concentration) are

summarized in the lower table.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-24545-3 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:4262 | https://doi.org/10.1038/s41467-021-24545-3 | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


In this study, we developed a screening approach that com-
bines generic image features from a pre-trained dNN with a k-
NN model that was used to map the similarity of experimental
treatments to reference controls. We chose to use this approach
because the features space produced by extracting information
from various levels of dNN architectures has previously demon-
strated robust performance in a wide array of image classification

tasks as well as equivalent if not better performance when com-
pared to “hand crafted” feature spaces such as scale-invariant
features transforms (SIFT), local binary patterns (LBP), and
histogram of oriented gradients (HOG)58,61–63. The utilization of
a k-NN to map unlabeled wells to control-like conditions is
further benefitted by providing some level of explanation through
the visualization of the nearest neighbors used to determine the
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classification label while still accounting for visual heterogeneity
found across the control conditions64,65.

Our collection of Trp53-null GEM models displays significant
intertumoral heterogeneity which phenocopies human TNBC45,66.
On examination of tumor-derived 3D organoids, we found that
tumor models that are classified as the claudin-low subtype tend
to develop a spiky organoid morphology, whereas those that are

classified as basal-like tend to form more rounded organoids
(Supplementary Fig. 9)66. This correlation of organoid spikiness
with mesenchymal properties may be due to the high motility and
invasiveness of mesenchymal tumor cells in the claudin-low
models. Although both T11 and T12 are classified as claudin-low
tumors, intertumoral heterogeneity exists which can be implied
from the differences in drug response of T11 and T12 cells. For

Fig. 5 Inhibitors targeting class I HDAC and BRD proteins reverse EMT. a Immunoblotting assay of EMT markers in treated T11 cells in 2D culture.

Fimepinostat was applied at 200 nM and all other drugs were applied at 1 μM concentration. Representative images of independent biological triplicates.

b Immunoblotting assay of EMT markers in treated T12 cells in 2D culture. Fimepinostat was applied at 20 nM and all other drugs were applied at 1 μM

concentration. Representative images of independent biological triplicates. KDM histone lysine demethylase, BRD bromodomain, HDAC histone

deacetylase. c qPCR of EMT marker genes in treated T11 cells. Drug concentrations as described in (a). Data are presented relative to Actb and shown as

mean ± s.e.m. of independent biological triplicates. d qPCR of EMT marker genes in treated T12 cells. Drug concentrations as described in (b). Data are

presented relative to Actb and shown as mean ± s.e.m. of independent biological triplicates. ns, not significant. Statistical analysis by unpaired Student

t-tests (two-tailed).

a

c

b

0 5 10 15 20 25 30 35 40
0.0

0.2

0.4

0.6

0.8

1.0

Vehicle (n=5)

AZA/MOC (n=5)

Carboplatin (n=5)

AZA/MOC/Carbo (n=5)

Days of treatment

E
it
h
c
a
l
e
n
d
p
o
in

t
s
u
rv

iv
a
l p

=
0
.0

4
7

p
=

0
.0

0
2

p
=

0
.0

0
2

p
=

0
.0

0
2

p
=

0
.0

0
2

37 kD

150 kD

50 kD

250 kD

37 kD

20 kD
15 kD

Day 0

Fig. 6 Mocetinostat in combination with Azacytidine sensitizes mesenchymal tumors to chemotherapy. a Schematic of treatment schedule. Treatment is
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interference. Carboplatin is injected weekly. b Immunoblotting assay of T12 tumor tissues harvested at the ethical endpoint from mice that were treated
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(Day 0). The log-rank test (two-tailed) was used to test for the significant differences of Kaplan–Meier survival curves between groups. n= 5 for

each group.
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example, the PR50 concentrations for most drugs are lower in T12
than T11 (Fig. 4); BRD inhibitors only inhibited Zeb1 expression
in T12 but not T11 cells, and E-cadherin was more readily induced
by HDACi in T12 cells as compared to T11 (Fig. 5). These data
suggest that different genetic and/or epigenetic landscapes are
present in these two phenotypically similar models.

Over the past decades, multiple epigenetic regulators have been
identified as modulators of the EMT program in various cancer
cell lines in 2D, e.g., HDAC, DNMT, LSD1, KDM6B, PRMT5,
EZH2, and G9a67–76. However, drug effects are highly context-
dependent and mesenchymal cells near the end of EMT spectrum
are especially difficult to be reprogrammed. The fact that none of
the HMT and KDM inhibitors showed up as positive hits in these
screens implied that HMT and KDM may be less important than
class I HDAC and BRD proteins in maintaining the EMT status
of claudin-low cells, and that targeting HMT or KDM may
provide less benefit in improving the chemotherapeutic response
in vivo. As a discovery platform to identify new therapeutics,
additional libraries can be analyzed using this platform besides
the small focused epigenetic drug library employed in this study.
This approach may also be applied to FDA-approved drugs to
facilitate rapid drug repurposing.

Methods
Establishment of primary Trp53-null mammary tumor cell lines. The Trp53-
null GEM models were previously established by transplantation of Trp53-deleted
donor mammary epithelium into syngeneic BALB/c hosts, which gave rise to a
bank of heterogenous mammary tumors41,42. The genetic engineering event that
led to the deletion of Trp53 alleles brought in a neomycin resistance gene, which
facilitated the isolation of tumor cell lines by G418 selection. Primary tumor cells
were isolated by digesting tumor tissues in 1 mg/ml Collagenase A (#11088793001,
Sigma-Aldrich) for 2 h at 37 °C with 125 rpm rotation and cultured in medium
containing 50 μg/ml of G418 (#10131035, Thermo Fisher) for 2 weeks. All estab-
lished cell lines were tested free of mycoplasma contaminants using the Universal
Mycoplasma detection kit (#30-1012 K, ATCC).

Cell and organoid culture. All primary cells were cultured in DMEM/F-12
medium (#11330032, Thermo Fisher) supplemented with 10% fetal bovine serum
(FBS, #F0900-050, GenDEPOT), 5 µg/ml insulin (#I-5500, Sigma), 1 µg/ml
hydrocortisone (#H0888, Sigma), 10 ng/ml epidermal growth factor (EGF,
#SRP3196, Sigma), and 1X Antibiotic-Antimycotic (#15240062, Thermo Fisher).
The lentiviral plasmid pINDUCER13 miR-200c-141 (#81020, Addgene) was used
to generate T11 and T12-TetOn-miR-200c inducible cell lines. The Z-cad reporter
plasmids FUGW-d2GFP-ZEB1 3′UTR (#79601, Addgene) and pHAGE-E-
cadherin-RFP (#79603, Addgene) were used to generate the T11-TetOn-miR-200c-
Z-cad cell line. For organoid culture, cell culture plates were first coated with 5 µl of
Growth Factor Reduced Matrigel (#354230, Corning) to avoid cell settlement to the
bottom of the plate. Next, the coating was allowed to solidify at 37 °C for 15 min.
Then a 40 µl droplet of Matrigel containing 1000 trypsinized tumor cells was plated
and solidified at 37 °C for 30 min before the culture medium was added. Organoid
formation was monitored daily with medium changes every 2–3 days. For miR-200
induction or drug treatment, doxycycline (1 µg/ml) or drugs were added to culture
medium 2 days after cell seeding. For qPCR and immunoblotting assays, organoids
were retrieved with Cell Recovery Solution (#354253, Corning) and washed with
PBS prior to lysis. For analyzing CDH1 promoter-driven RFP reporter activities,
cells were treated with drugs for 48 h and subjected to flow cytometry. Flow data
were analyzed with FlowJo software (version 10.6).

Immunofluorescence (IF) and immunohistochemistry (IHC). Organoids were
fixed in fresh 4% paraformaldehyde (PFA) for 10 min and embedded in HistoGel
(#HG-4000-012, Thermo Fisher) before paraffinization and embedding. Tumor
tissue specimens were fixed in 4% PFA for 24 h and stored in 70% ethanol until
paraffin embedding. Organoid and tissue sections were deparaffinized, rehydrated,
and subjected to antigen retrieval in Tris-EDTA (pH 9.0) buffer for 20 min in a
steamer. Slides were incubated with primary antibodies overnight at 4 °C and
secondary antibodies for 1 h at room temperature. Antibodies and concentrations
were: Keratin 8 (IF 1:250, #TROMA-1, Developmental Studies Hybridoma Bank),
E-cadherin (IF 1:200, #610182, BD Biosciences), and pan cytokeratin (IHC, 1:500,
#ab9377, Abcam).

F-actin staining of whole-mount organoids. Organoids cultured on chamber
slides (#C7182, Thermo Fisher) were fixed in 4% PFA for 15 min and permeabi-
lized in 0.1% Triton X-100 in PBS for 15 min. Then samples were incubated with
Alexa Fluor 488 Phalloidin (#A12379, Thermo Fisher) for 30 min at room

temperature and counterstained with DAPI (#R37606, Thermo Fisher). Images
were taken using a confocal laser scanning microscope with 20X objective (Nikon
A1-Rs) and movies were generated through Z-stack imaging.

Immunoblotting assay. Tumors that reached ethical endpoint were snap-frozen
upon harvest and homogenized in lysis buffer (Tris-HCl pH 6.8, 62.5 mM; SDS,
2%) using zirconium beads (#D1132-30, Benchmark Scientific) and a bead
homogenizer. Protein concentrations were measured with BCA Protein Assay Kit
(#23227, Thermo Fisher). Whole-cell extracts were separated by SDS-
polyacrylamide gels and transferred to polyvinylidene difluoride membranes
(#IPVH00010, Millipore). Antibodies and dilutions were E-cadherin (1:1000,
#3195, Cell Signaling Technology (CST)), Keratin 8 (1:1000, #TROMA-1, Devel-
opmental Studies Hybridoma Bank), Zeb1 (1:1000, #3396, CST), GAPDH (1:3000,
#2118, CST), Slug (1:1000, #9585, CST), AcH3 (1:2000, #06-599, Upstate), and
AcH4 (1:2000, #06-598, Upstate). Uncropped scans of all the blots are provided in
the Source data file.

Quantitative real-time PCR (qPCR). Total RNA was extracted using TRIzol
reagent (#15596026, Thermo Fisher) following the manufacturer’s instructions.
Reverse transcription for miRNAs was carried out using the Taqman microRNA
Reverse Transcription kit (#4366596, Thermo Fisher) with corresponding TaqMan
Small RNA Assays. TaqMan Universal Master Mix (#4440040, Thermo Fisher
Scientific) was utilized for miRNA qPCR reactions. The TaqMan RT primers and
qPCR probes and primers used in this study were U6 snRNA (assay ID 001973,
Thermo Fisher) and miR-200c (assay ID 002300, Thermo Fisher). For qPCR ana-
lysis of mRNA, 1 µg of total RNA was converted to cDNA using the High-Capacity
cDNA Reverse Transcription Kit (#4368814, Thermo Fisher). mRNA levels were
detected using amfisure qGreen Q-PCR Master Mix (#Q5602, GenDEPOT). Actb
was used as an internal reference. The levels of target genes were normalized to the
levels of internal reference gene to permit the calculation of the 2−ΔΔCt value. The
sequences of all primers are listed in Supplementary Data 3.

Preparation of 384-well organoid plates. For the primary screening and sec-
ondary validation assays, Matrigel (with 9–10 mg/ml protein concentration) was
first diluted with culture medium to result in a final dilution factor of 60% (v/v) for
coating purpose. Next, 10 µl of the 60% Matrigel (with 5–6 mg/ml protein con-
centration) was added to 384-well uClear plates (#781091, Greiner) using a Mul-
tidrop liquid dispenser (Thermo) and was allowed to solidify at 37 °C for at least
30 min. Single-cell suspensions were then counted using the TC20 (Bio-Rad)
automated cell counter with Trypan Blue staining as described in the manu-
facturer’s instructions. The single-cell suspensions were then diluted with media to
a concentration of 8.5 × 104 cells/ml and further mixed with Matrigel to a final
dilution of 50% (v/v, with 4–4.5 mg/ml Matrigel protein concentration). A total of
12 µl of cell-containing Matrigel was overlaid into the pre-coated 384-well plates
using a chilled Multidrop liquid dispenser, resulting in a seeding density of 500
cells/well. Seeded plates were then incubated at 37 °C for 30 min, after which 80 μl
of cell culture medium was added to the top of the well. After allowing cells to
recover for two days, plates were treated with pre-arrayed drug libraries using a
pin-transfer (Tecan).

Drug addition for screening and validation assays. A pre-arrayed epigenetic
drug library was provided by the Institute for Applied Cancer Science (IACS) at MD
Anderson Cancer Center. All drugs were suspended in 100% DMSO to a con-
centration of 10mM in 96-well source plate. For dose–response curves, serial dilu-
tions were made in DMSO in half-log steps (3.3X) into separate 96-well plates. Then
100 nl of material was transferred from the drug plates into the assay plates using a
Pin tool (Tecan). Measurements were performed in technical quadruplicate in 10
doses and replicate AUC values were highly correlated. For doxycycline control
wells, 10mg/ml stock solution was diluted 100X and 10 µl was added into the well to
reach a final 10 µg/ml concentration. At the end of the imaging assay, a CellTiter-Glo
assay was performed according to the manufacture’s instructions. Briefly, CellTiter-
Glo 3D (#G9682, Promega) was overlaid into wells using a 1:1 (v/v) with media. The
plates were then incubated at room temperature for 30min, after which lumines-
cence was read using a Tecan Infinite M1000 plate reader.

Image acquisition and analysis. A z-stack of 18 bright-field images sampled at
100 µm interval were acquired using 4X Nikon Plan APO (NA= 0.2) objective on
ImageXpress Microconfocal (Molecular Devices) with software MetaXpress (version
6.5.4.532) to ensure that the full volume of Matrigel was acquired. Images were pre-
processed using an ImageJ (version 1.48e) macro77,78. In brief, the image stack was
first inverted. Next, a rolling ball background subtraction was performed using a
radius of 10 pixels. The stack focuser plugin79 was then used to project the corrected
z-stack images into a single z-plane. To scale up the analysis, the ImageJ macro was
parallelized using Pipeline Pilot 2018 golden server edition (Dassault Systems).
Projected images were then read into python 3.8.5 environment and converted into
RGB images using numpy (version 1.9.2) to fit the requirements used by the
RESNET architecture. The pre-weighted RESNET-18 was downloaded using
PyTorch 1.7.1 interface and image embedding generated using methods adapted
from https://github.com/christiansafka/img2vec. This resulted in a 512-dimensional
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vector that was saved into a CSV file and subsequently read back into Pipeline Pilot
where it was merged with other plate metadata (positions of control/drug-treated
wells, concentrations, etc). The data were then randomly split in half for each
control category and a k-NN model was trained using the 6 nearest neighbors with
the knn3 function in the caret (version 6.0-86) package80 built for R (version 3.6.2).
Series of models were trained from data within and across assay batches to evaluate
the potential influence of batch effects. For models trained at the batch level, 8
images per control were used for training and 8 images per control were used for
testing. The only exception to this was in the T11 Run2 where the media control was
excluded because that region of the plate was seeded with cells. For cumulative
models, 16 images per control were used for training and 16 images per control
were used for testing. For all models, the performance was determined by calcu-
lating the accuracy of the trained model on the withheld test set which are the values
that are reported.

Tumor transplantation and treatment. The animal study was performed in
compliance with the rules of the Guide for the Care and Use of Laboratory Animals
of the NIH. All mice were maintained and sacrificed according to guidelines of
IACUC at Baylor College of Medicine (Protocol AN-504). Mice were maintained in
a room with a 14-h light/10-h dark cycle and a temperature of 68–72 °F with
30–70% humidity. T12 tumors were dissociated into single tumor cells using col-
lagenase as reported previously66. Tumor cells (25,000) were transplanted to the
mammary fat pad of 6–8-week-old female BALB/c mice (Envigo). After 9 days of
transplantation, tumors became palpable with an average size of 50 mm3 using a
calculation of ½ length × width2. Treatment then was initiated with the following
drugs and dosages: Azacytidine (#A2385, Sigma, 0.5 mg/kg), Mocetinostat
(#M2433, LC Laboratories, 5 mg/kg), and Carboplatin (#C2538, Sigma, 50 mg/kg
dosed weekly). All three drugs were delivered via intraperitoneal injection. The
ethical endpoint was reached when tumors reached a 1.5-cm diameter.

Statistical analysis. Q-PCR data were presented as the mean ± standard error of
the mean (s.e.m.). Unpaired two-tailed Student’s t-tests were performed to com-
pare the differences between two groups. For the AUC values calculated in Fig. 3,
support vector regression was used to provide a robust curve fit of the probability
scores produced by the k-NN model across the tested concentrations. To achieve
this, a two-fold cross-validated SVM regression model with a radial kernel was
trained on data using the formula “Class probability ~ Concentration” of the svm
function found in the R package e1071 (version 1.7-6)81. This effectively results in
generation of a non-linear hyperplane that is analogous to a fitted dose–response
curve50. The curves presented in Fig. 4 are constructed using a constrained 4-
parameter logistic model where the top and bottom are limited to be between 0 and
1 using Prism (GraphPad, version 8.4.3). The log-rank test was used to test for the
significant differences of Kaplan–Meier survival curves between groups.

Reporting summary. Further information on research design is available in the Nature

Research Reporting Summary linked to this article.

Data availability
All the data generated in this study are available within the article and its supplementary

information and from the corresponding author upon reasonable request. A reporting

summary for this article is available as a Supplementary Information file. Source data are

provided with this paper.

Code availability
Code, raw, and processed data are available at https://github.com/ReidTPowell/

Organoid-analysis. Workflows generated with Pipeline Pilot will require access to a

Pipeline Pilot 2018 server and professional client.
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