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Abstract. We present a new approach based on Partial Differential Equations 
(PDEs) for image enhancement in generalized “Gaussian Blur (GB) + Additive 
White Gaussian Noise (AWGN)” scenarios. The inability of the classic shock 
filter to successfully process noisy images is overcome by the introduction of a 
complex shock filter framework. Furthermore, the proposed method allows for 
better control and anisotropic, contour-driven, shock filtering via its control 
functions f1 and f2. The main advantages of our method consist in the ability of 
successfully enhancing GB+AWGN images while preserving a stable-
convergent time behavior.   
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1   Introduction 

The reasoning behind our approach has as starting point the limitations presented by 
the classic shock filter model described in [1] as well as on its subsequent 
developments, such as the one presented in [5]. The main drawback of the classic 
model consists in the fact that in the presence of AWGN the filtering is minimal, at 
best. This minimal filtering effect is mainly due to the numerical scheme based on the 
minmod function defined in [1] and used in computing the gradient norm in each 
point of the image function. Its role is to restrict large value variations in neighboring 
pixels, such being the case of noise-corrupted images. Another important drawback of 
the classic shock filter model resides in its edge detector, based on the 2nd order 
directional derivative that, in GB+AWGN scenarios, fails to correctly detect edges 
and contours, thus blocking the shock filter’s natural time evolution. 

By knowing these a priori limitations of the classic model, a series of steps 
towards improving its overall performance were taken over time. Noteworthy results 
were described in [2], [4] and [8], the edge detector and its robustness being their 
main focus, somehow neglecting the global GB+AWGN scenario. This generalized 
scenario was approached in [3] and [5] where the useful signal, affected by both GB 
and AWGN was part of the problem’s statement. 
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The starting point of our approach is represented by the work described in [5] that 
contains a series of innovative ideas at the level of contour detection as well as image-
definition domain. Nevertheless, handling both contamination sources at the same 
time implies a series of compromises either processing quality wise, noise removal 
wise or edge enhancement wise. In the case of the method described in [5], in order to 
surmount the inherent classic edge detector’s limitations, a new approach was 
proposed: an approximation of the 2nd order directional derivative given by the 
imaginary part of the image function. In order to accomplish this, the image definition 
domain needs to be changed from the real one to the more general domain, the 
complex one, thus adding a new dimension to the work space. The major 
improvement brought by this edge detector consists in its robustness to noise, even 
when dealing with low signal-to-noise ratio (SNR) images. On the other hand, this 
edge detector presents a noticeable drawback as well, due to the fact that the edge 
detector will continuously evolve over time, leading to a divergent effect of the 
filtered result instead of reaching a steady-state solution, as in the case of the classic 
shock filter. 

2   Shock Filter Theory Review 

As previously stated, the main limitation of traditional shock filters is the presence of 
AWGN as contamination source of the useful signal. Since traditional shock filters 
were initially designed to deal exclusively with GB signal corruption, the more 
general scenario, GB+AWGN, proves to be too complex for a classic shock filter like 
the one described in [1]. The GB+AWGN scenario represents a complex perturbation, 
difficult to filter using traditional methods, requiring either complex processing 
models or successive filtering for removing each distortion at a time.  

The qualitative level of the filtering also depends, to a great extent, on the 
discretization method used for the mathematical model. An alternative discretization 
scheme, described in [4], allows the classic shock filter to perform well even in 
AWGN scenarios, but only for large SNR values, i.e. small AWGN signal corruption.   

When dealing with just AWGN perturbations, the usual PDEs framework approach 
is the use of diffusion filters; this type of filters performs a controlled GB filtering 
based on the principle of heat dissipation, described in Physics. The controlled GB 
filtering is behaviorally similar to the GB distortion, hence it can be inferred that the 
noise removal GB filtering in the AWGN scenario can be approximated to the GB 
distortion in the GB perturbation scenario. Therefore, in the case of the generalized 
scenario of GB+AWGN the separate filtering of each distortion is performed with 
filters opposite in nature, leading to a complex problem. This problem is discussed in 
[3] and [5], leading to an elegant solution by defining a series of connecting terms 
between the filtered image and the input image in order to preserve coherence and 
avoid the filtered image’s divergence (absence of a steady-state solution) induced by 
the opposite nature of the two filtering processes.  

The novelty of the idea described in [5] arises from the purpose of the method: to 
use a shock filter for processing AWGN-corrupted images not just GB-corrupted 
ones. In order to attain this desideratum the edge detector needs to be rethought, since 
the classic edge detector is not adequate in handling AWGN-corrupted signals, as 
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previously stated. The solution given in [5] consists in redefining the definition 
domain of the image function, from the real one to the complex one. By doing so, the 
use of the imaginary part of the image function as an edge detector proves to be an 
elegant and efficient solution in overcoming the classic edge detector’s problem. 
The general shock filter 1D equation is the following: 
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By choosing )()( ssignsF =  one obtains the classic shock filter expression: 
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When dealing with images, we generally work in a 2D or higher framework. For the 
2D case, (3) becomes: 
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η represents the gradient vector’s direction. 
An important role in the discretization of (4) is played by the way in which the 

gradient norm | I∇ | is computed, in order to avoid the algorithm’s instability caused 
by the approximation of the 1st order derivatives when computing the gradient vector. 
A way around this problem is described in [1] where the gradient norm | I∇ | is 
computed using a slope limiter minmod function in order to minimize the sudden 
signal variations.   

The classic shock filter model from (4) combined with its discretization using the 
minmod function is extremely sensitive to AWGN perturbations, as stated in [1]. The 
filtering of a GB-corrupted signal with overlaid AWGN or just of an AWGN-
corrupted one using the shock filter (4), will amplify the AWGN instead of 
successfully processing it. If we consider the image function over a continuous 
domain, the noise amplification can lead to an infinite number of inflexion points, 
thus resulting in the image function’s rapid divergence from a steady-state solution.  

Another way to address the AWGN problem is to consider a more complex 
approach of the shock filter formalism. Such an approach would combine a deblurring 
method with a noise removal method: for the isotropic regions of the image, a noise 
removal will take care of the AWGN distortion; as for the anisotropic regions, such as 
edges and contours, a local, image geometry-driven deblurring will take care of the 
GB distortion.  

Such an approach is presented in [2] and consists in coupling a diffusion filter with 
a shock filter: 

 
.)( ξξηησ cIIIGsignIt +∇⋅∗−=                                      (5) 



22 C. Ludusan et al. 

σ is the standard deviation of the Gaussian kernel G and c is a positive constant; ξ 
defines the direction orthogonal to the gradient vector. A more complex mathematical 
model is described in [3]: 
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In order to improve the filtering capacity, [5] firstly suggests changing the sign 
function F described by (2), to allow taking into account not only the 2nd order 
derivative’s direction but also its magnitude. This way the inflexion points (the 
regions close to contours/edges where the 2nd order derivative has a higher magnitude) 
will not have equal weights, which translates into a higher deblurring speed near 
edges and contours than in the isotropic regions of the image. The new sign function 
is expressed as follows: 
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In (7) a is the parameter that controls the steepness of the 2nd order derivative’s slope 
near 0. 

Finally, [5] proposes a complex shock filter model that employs the sign function 
(7), having the following expression: 
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Where θλ ire=  is a complex scalar, λ~  is a real scalar and )2,2( ππθ −∈ .  

For small values of θ ( 0→θ ), the imaginary part can be regarded as a smoothed 
2nd order derivative of the initial signal factored by θ and the time t, as it was 
mathematically proven in [6]. The implementation of (8) is done by the same standard 
discrete approximations used in [1], except that all computations are performed in the 
complex domain. 

3   The Hybrid Shock Filter Model 

Although the complex shock filter described in [5] proves to be a viable alternative to 
the classic one in circumventing the noise problem in the generalized scenario of 
GB+AWGN interference, it presents at the same time a series of shortcomings, the 
most important of them being its numerical implementation, which becomes unstable 
after a sufficiently large number of iterations. This translates into the method’s 
dependency on the human supervised control, the algorithm’s stopping criterion being 
tied to its input parameters and sensitive to the nature of the input image. 

These shortcomings along with the ones presented by the classic model represent 
the premises of our hybrid shock filter model. Our goal is to combine the advantages 
of both models without preserving any of their disadvantages. So far our hybrid 
model solves the inability to efficiently process AWGN of the classic shock filter as 
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well as the divergent character of the complex one, thus resulting a shock filter 
capable of image enhancement in GB+AWGN scenarios that is both efficient and 
stable. Another advantage of this method resides in its modularity, allowing the use of 
multiple sets of functions, useful in the filter’s behavioral analysis over a large variety 
of input images.  

The mathematical expression of the hybrid shock filter is the following:   
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The parameters of (9) have the following significance: 

• a is the parameter that controls the slope of the edge detector’s sign function 
(arctan). 

• θ∈(-π/2,π/2) is an input parameter. When θ→0, θ)Im(I  can be approximated 

to the 2nd order directional derivative of the image function I. 
• | I∇ | represents the gradient norm of function I computed using the minmod 

function as defined in [1]. 
• θλ ire=  is a complex scalar parameter, computed as a function of θ. 

• λ~ is a real scalar input parameter.  
• 

1f  and 
2f  are two complementary functions that represent the core of the hybrid 

shock filter formulation (9). Their purpose is to control the nature of the hybrid 
shock filter, i.e. to control the transition rate of the filter’s behavior from an 
exclusively complex one to an exclusively real one. These functions are defined 
as follows: 
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N represents the number of iterations, correlated with the mathematical model’s 
time parameter t (t = dt·N). 

2211 ,,, SISI TTTT  are threshold parameters used to  

define the complementary behavior of f1 and f2; f1,f2 : [0;N-1]→[0;1] as exemplified 
in Fig. 1:  
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Fig. 1. Graphical representation of f1 and f2 (10) for: TI1 = 200; TS1 = 500 / TI2 = 100; TS2 = 700 - 
left and TI1 = 100; TS1 = 700 / TI2 = 400; TS2 = 900 - right 

The hybrid shock filter has a combined behavior, weighted by its control functions 
f1 and f2 that could be summarized as follows: 

• When f1=1 and f2=0 the filter behaves exclusively as a complex shock filter 
(described in [5]). This behavior is required in order to effectively deal with the 
AWGN perturbation that can be approached using the complex shock filter 
paradigm. Thus, the hybrid shock filter relies on its edge detector (imaginary part 
of the image function I) in correctly detecting edges and contours in GB+AWGN 
conditions. 

• Following its time evolution, after a certain number of iterations the AWGN will 
be filtered enough to use the classic shock filter component of the hybrid shock 
filter. This is the case when f1∈[0;1) and f2∈[0;1), translating into a simultaneous 
evolution of both hybrid shock filter’s components. 

• Finally, at the end of the filtering process, f1=0 and f2=1 allowing the hybrid 
shock filter to properly act as an edge enhancement filter (filtering the GB 
perturbation) through its classic shock filter component.       

4   Experimental Results  

In order to carry out the performance analysis, as well as the comparative study of the 
hybrid shock filter, we first need to define the experimental setting: a test image 
distorted with a GB+AWGN-type distortion (Fig. 2b) with the following parameters: 
GB with σ = 5 and AWGN of amplitude A = 30. The comparative analysis between 
the three types of shock filters (classic, complex and hybrid respectively) will be 
performed using as an objective quality assessor the Root-Mean-Square-Error 
(RMSE) measurement and as a subjective quality assessor the visual comparison 
between the unaltered test image and the filtered results. Fig. 2 represents the 
experimental setting as well as the filtered results. 

For the above test scenario: the test parameters were the following: θ = 0.00001, 

5.0
~ =λ , a = 0.5, 5.0=λ  dt = 0.1 and N = 1000 leading to a theoretical evolution 

time of t = 100 seconds. It needs to be emphasized that the classic shock filter only 
uses two parameters (dt and N) while the complex and hybrid shock filters use the 
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                                    a)                                                                           b) 

                  
                                     c)                                                                           d) 

 
                            e) 

Fig. 2. Experimental setting: a) Original test image; b) Distorted test image; c) Classic shock 
filter result; d) Complex shock filter result; e) Hybrid shock filter result 

same parameters with the remark that for the hybrid shock filter the function set (10) 
was used with the following parameters: TI1 =300;TS1 = 350 / TI2 = 320;TS2 = 900. 

Fig. 3 represents the RMSE/time evolution of the three filters, according to the 
experimental setting described by Fig. 2. The RMSE measurement was performed 
between the unaltered image (Fig. 2a) and each of the three filtered results (Fig. 2c-
2e). As it can be noted, the hybrid shock filter possesses the advantages of both the 
classic shock filter (stable time evolution, steady-state solution) and the complex one 
(efficient AWGN filtering as well as GB deblurring). Since any output image is 
considered to be information and according to the definition of information, it 
represents an entity about which we do not possess any prior knowledge, it is 
impossible to a priori know the minimum value of the RMSE obtained by filtering. 
Thus, the complex shock filter lacks the ability of maintaining a stable behavior (that 
leads to a steady-state solution) long enough to ensure that its time evolution has 
reached the minimum RMSE value before diverging.   
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Fig. 3. RMSE comparison between the three shock filters 

5   Conclusions 

While still a work in progress, the hybrid shock filter model has proven so far a step 
forward in shock filter theory, turning out to be a viable alternative to the classic 
methods in both GB, AWGN and GB+AWGN scenarios. The mathematical model 
allows further improvements, from minor tweaks in control function definition to 
increasing the filtering capacity as well as the convergence speed towards a steady-
state RMSE value. 

The experimental results and comparative analysis were promising, establishing 
the premises for future shock filter theory paradigms. 
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