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ABSTRACT

Structuring element decomposition is used to reduce
computation time in performing morphological
image processing operations by breaking down a
structuring element into simpler components. This
paper classifies decomposition algorithms into two
broad categories, namely morphological
combination and set theoretic combination classes.
Two important structuring element decomposition
methods, the tree search and arbitrary shape
decomposition algorithms, are discussed and their
performances are compared using a series of
different structuring element shapes.  We found that
the tree search decomposition algorithm is restricted
to mainly symmetric and convex structuring
elements, and its computation time for performing a
morphological operation grows exponentially with
the size of the element used, whereas the arbitrary
shape decomposition algorithm performs the same
operation in linear time, and can deal with any
structuring element shape.

1 INTRODUCTION

There are a variety of structuring element
decomposition (SED) methods in the literature, see
for example [1-6].  Generally, SED algorithms can
be broadly divided into two classes according to the
manner in which their resulting series of structuring
elements are applied to the subject image.  The first
class combines the output decomposed components
morphologically and the second class does the same
but set theoretically.  The morphological
combination class relies on the chain rule’s
applicability to erosion and dilation.  This implies
that if a structuring element (SE) can be generated
by dilating a single point at the origin consecutively
by a  series of shapes, then applying the same series
of operations to an image will have the same effect
as applying the original SE.

In the set theoretic combination class, addition
or dilation can be represented as an ORing together
of a series of translates of the subject image, where
each translate represents a member of, or a pixel in,
the structuring element set.  Similarly, subtraction
or erosion can be represented as an ANDing
together of a series of translates of the image.  The
structuring element is represented by a series of
decomposed elements that can be ORed together to
produce the original element.  This set theoretic
decomposition will not reduce the number of pixels
required to perform the operation, and it could even
require more pixels due to overlapping members of
the decomposition.  The approach, however, can be
used to simplify the set of shapes that must be
applied to the image structuring elements.  It can be
tailored to breaking the SEs down into simple
shapes which are easily decomposable by another
algorithm or shapes for which an improved
implementation is available.  This is how this set
theoretic decomposition produces a performance
improvement.

Two important algorithms, one from each class,
based on tree search decomposition and arbitrary
shape decomposition are discussed and
implemented.  Experimental results are presented
and compared with a brute force approach, which
implements directly a morphological operation
without using any decomposition.

2 TREE SEARCH DECOMPOSITION

The tree search algorithm (TSA), which belongs to
the morphological combination class, is based on
the work reported in [2].  In this algorithm, an
element S is decomposed into a series of shift and
OR operations which are equivalent to dilating by
SEs containing two members, one at the origin and
the other at the location that defines the translation.
The decomposition of S is found by a combinatorial
search process that constructs a tree of possible shift



and add operations from a start node.  The search is
recursive.  There is a partial decomposition at each
node, and the child nodes add one more translation
such that the result of morphologically combining
the members of the decomposition still remains
within the confines of the SE to be decomposed.  A
forward checking mechanism is applied to improve
the efficiency of the algorithm by identifying
translations that cannot produce valid children and
thus excluding them from the search.

3 ARBITRARY SHAPE DECOMPOSITION

The arbitrary shape decomposition (ASD)
algorithm, which belongs to the set theoretic
combination class, is based on and extends the work
reported in [5].  This algorithm decomposes an
structuring element S into a series of basis shapes
which, when appropriately scaled and translated,
can be ORed together to produce the original S.
Each element of the decomposition is a triple
holding the basis shape (square, diamond or
octagon), its size and location.  A list of triples is
generated by finding those triples which have
maximal disks, each disk being one of the basis
shapes, within the boundaries of the SE, S. Once an
initial list of triples has been generated, the
algorithm creates an optimal list of triples by
successively removing the best one from the list and
adding it to the optimal list.  The best triple is the
one remaining in the list which covers up the most
new pixels whilst taking the least time to
implement.  The process ends when no triple can be
found which is more efficient than using the brute
force method for the new pixels covered.  Once the
list of triples is generated, it is applied to the image.
This requires the implementation of procedures to
perform the morphological primitives on an image
using a series of triples and then combining the
translated results of each operation.

4 RESULTS AND DISCUSSION

The tree search decomposition algorithm was
implemented and tested using a series of structuring
element shapes.  Despite its theoretical elegance, we
found that the completion time for this algorithm
increased exponentially with the size of the
structuring element.  This was because the forward
checking algorithm was unable to prevent the
number of nodes in the tree rising exponentially
with the number of pixels in the structuring
element.  Also the SE shapes that could be

decomposed generally had to be symmetric and
convex.  A limited group of more complex shapes
could be decomposed, where the shapes were
constructed by successively shifting and ORing the
current shape onto itself.  The speed of performing
morphological operations using the decompositions
was considerably improved over the use of
undecomposed SEs.  The times to perform
morphological operations were found to be
generally proportional to the number of shift and
add operations, which is approximately log2 of the
lengths of the edges of half the structuring element.
These results are shown in Figures 1 and 2.

The arbitrary shape decomposition algorithm
was implemented using a simplified method of
identifying the initial list of triples. The median
positions within the structuring element were
identified in the four scanning directions and a
distance transform was used to find the largest size
of each shape that could be placed in the location.
The approach we used to optimise the list of triples
is similar to that in [5].  The implementation of the
morphological operations was performed using
logarithmic decomposition as well as our own fast
morphological transform (FMT) algorithm [7].
FMT is a windowing algorithm and allows 1D
erosion and dilation operations to be performed in
constant  time with respect to the structuring
element width.  FMT can be applied in 4 directions
allowing very fast implementation of squares,
diamonds and octagons.

We found that ASD algorithm operates in linear
time with respect to the number of pixels in the
structuring element, and it could decompose any SE
shape. This algorithm is considerably faster than
TSA and is also more flexible in dealing with
different shapes. One slight problem with ASD
algorithm was that all the triples had to have a
centre pixel, and therefore had to be an odd number
of pixels wide and tall.  The CPU times taken to
perform dilation were variable as shown in Figure
4, although the windowing and logarithmic
methods produced average speedups of two to three
times over the brute force method for a selection of
30 by 30 pixel SEs.  The CPU times taken to
perform erosions were found to be more variable
(see Figure 5), including several decompositions for
which the brute force method was faster.  These
results were obtained on images with approximately
even numbers of black and white pixels.  On



completely black images we found that erosion by
the brute force method was considerably slower than
the two decompositions, frequently by a factor of 4
to 8.  The speedup produced by ASD algorithm was
maximised when the decomposition included a few

large triples as opposed to a large number of small
triples.  We found that the structuring elements
shapes 2, 4, 5, 9 and 10 (see Figure 3) produce the
most efficient decompositions as shown in Figures 4
and 5.

Figure 1.  Time taken to decompose a square structuring element by the tree
search algorithm.
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Figure 2.  Dilation of a 256 by 256 image using versions of the structuring
elements decomposed by the tree search algorithm.
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Figure 3.  The structuring elements used for the tests on the image, each structuring element bitmap is 30 pixels square.
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Figure 4.   Time to perform dilation on 256 by 256 binary image using the
arbitrary shape decomposition algorithm.
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Figure 5.  Graph of time to erode using the decompositions on an 864 pixel
square image using the arbitrary shape decomposition algorithm .
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