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ABSTRACT 24 

Pyramidal neurons are covered by thousands of dendritic spines receiving excitatory 25 

synaptic inputs. The ultrastructure of dendritic spines shapes signal compartmentalization 26 

but ultrastructural diversity is rarely taken into account in computational models of synaptic 27 

integration. Here, we developed a 3D correlative light-electron microscopy (3D-CLEM) 28 

approach allowing the analysis of specific populations of synapses in genetically defined 29 

neuronal types in intact brain circuits. We used it to reconstruct segments of basal dendrites 30 

of layer 2/3 pyramidal neurons of adult mouse somatosensory cortex and quantify spine 31 

ultrastructural diversity. We found that 10% of spines were dually-innervated and 38% of 32 

inhibitory synapses localized to spines. Using our morphometric data to constrain a model of 33 

synaptic signal compartmentalization, we assessed the impact of spinous versus dendritic 34 

shaft inhibition. Our results indicate that spinous inhibition is locally more efficient than shaft 35 

inhibition and that it can decouple voltage and calcium signaling, potentially impacting 36 

synaptic plasticity. 37 

 38 

INTRODUCTION 39 

In the mammalian cortex, the vast majority of excitatory synapses are formed on dendritic 40 

spines, small membrane protrusions that decorate the dendrites of pyramidal neurons (PNs) 41 

[1–3]. Dendritic spines are composed of a bulbous head connected to the dendritic shaft by 42 

a narrow neck [4,5]. They exist in a large variety of shapes and sizes along individual 43 

dendrites. Spine head volume can vary between 3 orders of magnitude (0.01-1.5 μm3), neck 44 

length between 0.2 µm and 3 µm, and minimal neck diameter between 20 and 500 nm [6]. 45 

Spine heads are typically contacted by an excitatory synaptic input and harbor an excitatory 46 

postsynaptic density (ePSD) that contains glutamatergic α-amino-3-hydroxy-5-methyl-4-47 

isoxazolepropionic acid (AMPA) and N-Methyl-D-aspartate (NMDA) neurotransmitter 48 

receptors, scaffolding proteins, adhesion molecules and a complex machinery of proteins 49 

undertaking the transduction of synaptic signals. The size of the spine head correlates with 50 

the size of the ePSD and the strength of synaptic transmission [7–11]. In addition to the 51 
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ePSD, spines contain ribosomes, which mediate local protein synthesis, and endosomes, 52 

which play a critical role in membrane and receptor trafficking [12,13]. The largest spines 53 

often contain a spine apparatus (SA), which contributes to calcium signaling and synaptic 54 

plasticity [12,14], and some spines, especially in the upper layers of the cortex, also house 55 

an inhibitory postsynaptic specialization [15]. Spine necks are diffusional barriers that 56 

biochemically isolate spine heads from their parent dendrite [16–19]. In addition, they can 57 

filter the electrical component of synaptic signals and amplify spine head depolarization [20–58 

22] (but see [23–25]). Both spine heads and spine necks are remodeled depending on 59 

neuronal activity [9,26,27] and in pathology [28,29]. While the relationship between spine 60 

morphology and spine function is widely acknowledged, and although dendritic spines are 61 

known to participate in different neural circuits depending on their location in the dendritic 62 

tree [30], the extent of synaptic ultrastructural diversity along individual identified dendrites 63 

has not been quantified, and the consequences of this variability on signal 64 

compartmentalization and dendritic integration remain to be investigated. 65 

Dendritic signaling can be modeled based on anatomical and biophysical parameters 66 

[31] using “realistic” multi-compartment models [32]. These models were pioneered by 67 

Wilfrid Rall following the seminal works of Hodgkin and Huxley [33,34]. They have provided 68 

a powerful theoretical framework for understanding dendritic integration [35], spine function 69 

[36], inhibitory signaling [37,38] and electrical compartmentalization in spines [22,39,40]. 70 

However, spines and synapses are usually modeled with ad hoc or averaged biophysical 71 

parameters, which limits the accuracy of the prediction [41]. Modeling the actual behavior of 72 

dendritic spines requires an accurate description of their ultrastructural heterogeneity with a 73 

cell type and dendritic type resolution. To acquire such data, it is necessary to combine the 74 

nanometer resolution of electron microscopy (EM) with an approach that allows the 75 

identification of the origin of dendritic spines (i.e. location on the dendrite, type of dendrite 76 

and type of neuron) without obscuring the intracellular content. This task is arduous: 1 mm3 77 

of mouse cortex contains over 50,000 of neurons, each of which establishes approximately 78 

8,000 synaptic connections with neighboring neurons, and these synapses are highly 79 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 14, 2020. ; https://doi.org/10.1101/2020.08.06.230722doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.06.230722


 4

specific, connecting multiple neuronal subtypes from various brain regions [42–45]. 80 

Reconstructing selected dendritic spines and synaptic contacts along dendritic trees requires 81 

either enormous volumes of 3D-EM acquisitions using resource-consuming approaches 82 

adapted from connectomics [46–49], or combining EM with a lower-scale imaging modality, 83 

such as confocal or 2-photon light microscopy (LM), to guide 3D-EM image acquisitions to 84 

the region of interest (ROI) [50–52]. While very powerful in vitro [50,53,54], correlative light-85 

electron microscopy (CLEM) is difficult to implement in brain tissues [55–57]. New protocols 86 

are required to facilitate the in situ identification of targeted dendrites and synapses in 87 

different imaging modalities and to make 3D-CLEM more accessible to the neuroscientific 88 

community. 89 

Here, we have developed a CLEM workflow combining confocal light microscopy with 90 

serial block-face scanning EM (SBEM) and targeted photo-precipitation of 3,3-91 

diaminobenzidine (DAB) to facilitate ROI recovery. We applied this workflow to reconstruct 92 

dendritic spines located exclusively on the basal dendrites of genetically-labelled PNs in 93 

layers 2/3 (L2/3) of the somatosensory cortex (SSC) of adult mice. We analyzed the 94 

variability of their ultrastructure and estimated the electrical resistance of their neck. We also 95 

examined the distribution and the morphology of inhibitory synapses. We specifically 96 

examined dendritic spines receiving both excitatory and inhibitory inputs, which represented 97 

10% of all spines along basal dendrites. These dually-innervated spines (DiSs) exhibited 98 

wider heads and larger ePSDs than singly-innervated spines (SiSs), and they were more 99 

electrically isolated from the dendritic shaft than SiSs of comparable head size. We then 100 

used our measurements to constrain a multi-compartment model of synaptic signaling and 101 

compartmentalization in dendrites. We assessed the effects of individual excitatory and 102 

inhibitory signals on membrane voltage and calcium concentration depending on inhibitory 103 

synapse placement (i.e. on a spine head or on the dendritic shaft) and input timing. Our 104 

results challenge the view that spinous inhibition strictly vetoes single excitatory inputs and 105 

rather suggest that it fine-tunes calcium levels in DiSs. Our simulations indicate that a single 106 

inhibitory postsynaptic potential (IPSP) evoked in a DiS within 10 ms after an excitatory 107 
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postsynaptic potential (EPSP) can curtail the local increase of calcium concentration without 108 

affecting the amplitude of membrane depolarization. This decoupling effect could impact 109 

long-term synaptic plasticity in cortical circuits. 110 

  111 

RESULTS 112 

Combining light and electron microscopy to access the ultrastructure of targeted 113 

populations of dendritic spines in brain slices 114 

In the cortex, the morphology and distribution of dendritic spines vary depending on cortical 115 

area and layer in which the cell body is located [5,35,58,59], and dendritic spines are 116 

differently regulated depending on their location within dendritic trees — e.g. basal or apical 117 

dendrites [30,49,60–62]. Therefore, it is critical to take into account both the cellular and 118 

dendritic context to characterize the diversity of spine ultrastructure. To that aim, we 119 

developed a 3D-CLEM workflow allowing the ultrastructural characterization of dendritic 120 

spines on genetically-defined neuronal cell types and along identified types of dendrites in 121 

intact cortical circuits. In order to label specific subtypes of neurons, we used cortex-directed 122 

in utero electroporation (IUE) in mice. We electroporated neuronal progenitors generating 123 

layer 2/3 cortical PNs at embryonic day (E)15.5 with a plasmid expressing the fluorescent 124 

cytosolic filler tdTomato, granting access to the morphology of electroporated neurons, their 125 

dendrites and their dendritic spines in LM. We perfused adult mice with aldehyde fixatives, 126 

and collected vibratome sections of the electroporated area. To facilitate sample handling, 127 

we designed custom-made chambers allowing sample immersion in different solutions 128 

during confocal imaging and subsequent retrieval of the sample before EM preparation steps 129 

(S1 Fig). We enclosed 10-20 mm2 fragments of brain sections in these chambers and 130 

acquired images of optically isolated basal dendrites of bright electroporated neurons with 131 

confocal microscopy (Fig 1A). 132 

A major challenge of CLEM in brain tissue is to recover the ROI in EM after imaging 133 

in LM. Several methods have been proposed to facilitate ROI recovery [50–52], but they 134 

come with caveats: (1) using only intrinsic landmarks has a low throughput [57,63]; (2) filling 135 
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target neurons with 3,3-diaminobenzidine (DAB) masks intracellular ultrastructure [64]; (3) 136 

scarring the tissue with an infra-red laser to generate extrinsic landmarks, a.k.a. "NIRB" for 137 

"near-infrared branding" [56,65–68], produces landmarks with low pixel intensity in EM and 138 

can damage ultrastructure [63,69]. To facilitate ultrastructural measurements in non-139 

obscured identified dendrites, we took advantage of the photo-oxidability of DAB [70,71]. We 140 

immersed the samples in DAB solution and applied focalized UV light at user-defined 141 

positions (Fig 1A) to imprint osmiophilic DAB landmarks around targeted dendrites (see 142 

panels B-E in S1 Fig) and pattern the tissue with localized electron-dense DAB precipitates 143 

(Fig 1B). After sample retrieval (see panel F in S1 Fig), tissue sections were processed for 144 

SBEM and embedded in minimal amounts of epoxy resin in order to maximize sample 145 

conductivity and SBEM image quality (see Methods). In 3D-EM stacks, ROIs were 146 

recovered within the complex environment of brain tissues using both intrinsic landmarks 147 

such as blood vessels (Fig 1B) and high-contrast DAB precipitates (Fig 1C; see also panel G 148 

in S1 Fig). We then segmented and reconstructed targeted dendrites in 3D, and registered 149 

whole portions of dendrites in both LM and EM to identify each dendritic spine unequivocally 150 

using neighboring spines as dependable topographic landmarks (Fig 1D). CLEM-based 3D-151 

reconstruction enabled the identification of dendritic spines that were not visible in LM or EM 152 

alone. In LM, the limited axial resolution prevents the identification of axially oriented spines, 153 

which are easily detected in 3D-EM [49] (Fig 1D). On the other hand, spines with the longest 154 

and thinnest necks are conspicuous in LM stacks, but can be difficult to find in 3D-EM 155 

datasets without the cues provided by LM. The proportion of spines recovered with CLEM 156 

versus LM alone could amount to up to 30% per ROI, and 5% per ROI versus EM alone, 157 

highlighting the advantage of CLEM over unimodal microscopy approaches. 158 

 159 

Spine ultrastructure along the basal dendrites of L2/3 cortical pyramidal neurons. 160 

We used our CLEM workflow to quantify the full extent of the ultrastructural diversity of 161 

dendritic spines along the basal dendrites of layer 2/3 PNs of the SSC of three adult mice. 162 

We exhaustively segmented 254 µm of the basal dendritic arborization of four neurons and 163 
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we reconstructed a total of 390 individual spines (S1 Table). As spine distance to the soma 164 

spanned from 20 to 140 µm, with basal dendrites extending up to 150 µm [72–75], our 165 

dataset can be considered representative of the whole spine population on these dendrites. 166 

The average linear density of dendritic spines was 1.5 ± 0.3 spine.µm-1. We then quantified 167 

the following parameters for each spine: neck length, neck diameter, head volume, head 168 

longitudinal diameter (referred to as “head length”), head orthogonal diameter (referred to as 169 

“head diameter”), number of PSDs, and PSD area (Fig 2A; S2 Table). In agreement with 170 

previous reports in both basal and apical dendrites of mouse cortical and hippocampal 171 

neurons [4,6,76,77], we found that ePSD area correlates linearly with the volume of the 172 

spine head (Fig 2B). We also observed a non-linear correlation between the length of the 173 

spine neck and its diameter (Fig 2C): long spines (neck length > 2 µm) always had thin 174 

necks (neck diameter < 0.2 µm), although short necks could also be thin. Furthermore, in 175 

spines with long necks, spine heads were always stretched longitudinally with respect to the 176 

neck (i.e. prolate) whereas they could also be stretched orthogonally (i.e. oblate) in shorter 177 

spines (Fig 2D), with a possible impact on nanoscale ion flows [78]. By contrast, there was 178 

no correlation between the position of the spine or the inter-spine distance and any of the 179 

morphological parameters we measured (S2 Fig). There was also no correlation between 180 

the length or the diameter of the neck and the morphometry of the spine head or ePSD (S1 181 

Data), which is consistent with previous EM studies of L2/3 PNs of mouse neocortex [4,72] 182 

(but see [40,79] for different conclusions in other brain areas). 183 

Since our CLEM approach grants access to the cytosolic content of spines (Fig 3A), 184 

we quantified the occurrence of SA, a complex stacked-membrane specialization of smooth 185 

endoplasmic reticulum (SER) which contributes to calcium signaling, integral membrane 186 

protein trafficking, local protein synthesis, and synaptic plasticity [12–14,80,81]. In basal 187 

dendrites, about 54% of spines contained a SA (Fig 3B), which is substantially higher than 188 

previous reports in the mature hippocampus [12,82]. These spines were randomly 189 

distributed along the dendrites. They had larger heads (Fig 3C), larger ePSDs (Fig 3D) and 190 

wider necks than spines devoid of SA (Fig 3E), consistent with previous morphological 191 
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studies of CA1 PNs [12,82,83]. The probability that a spine contained a SA depending on 192 

spine head volume followed a sigmoid model (Fig 3F), predicting that all spines with a head 193 

diameter larger than 1.1 µm (21% spines in our reconstructions) contain a SA. 194 

Next, we used our ultrastructural data to estimate the electrical resistance of spine 195 

necks using Rneck = ρ Wneck , where ρ is the cytosolic resistivity (set to 300 Ω.cm [84,85]) and 196 

Wneck is the diffusional neck resistance that restricts the diffusion of molecules and charges 197 

between spine heads and dendritic shafts [23]. To quantify Wneck, for each spine we 198 

measured a series of orthogonal cross-sections of the neck along its principal axis and 199 

integrated       Wneck = ∫ dℓ / A(ℓ) , where A(ℓ) is the neck cross-section area at the abscissa ℓ 200 

along the neck axis. Wneck ranged from 2 µm-1 to 480 µm-1 and Rneck from 8 MΩ to 1450 MΩ, 201 

with a median value of 188MΩ. These values are consistent with previous estimations based 202 

on EM reconstructions and STED super-resolutive light microscopy [17,86], and with direct 203 

electrophysiological recordings [87]. It has been proposed that the spine apparatus, which 204 

may occupy some of the spine neck volume, could increase Wneck [13,80,88]. Therefore, we 205 

subtracted SA cross-section from A(ℓ) when computing Wneck in SA+ spines (see Methods). 206 

This correction increased Wneck by 13% ± 2% in SA+ spines (S3 Fig). However, because of 207 

their wider necks, Wneck of SA+ spines was still lower (59% in average) than Wneck of spines 208 

devoid of SA (Fig 3G). These results suggest that, in addition to supplying large dendritic 209 

spines with essential resources, the SA may adjust Wneck and influence spine 210 

compartmentalization [12,13,82]. 211 

 212 

Excitatory and inhibitory synapses in dually-innervated spines. 213 

We noticed that a small proportion of dendritic spines were contacted by two distinct pre-214 

synaptic boutons (DiSs). DiSs have long been described in the literature as receiving both 215 

an excitatory and an inhibitory synaptic contact [89–92]. In the somato-sensory cortex, DiSs 216 

are contacted by VGLUT2-positive thalamocortical inputs [15] and they are sensitive to 217 

sensory experiences. The number of DiSs increases in response to sensory stimulation and 218 

decreases in response to sensory deprivation [73,93–95], suggesting their importance in 219 
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synaptic integration and sensory processing. However, their scarcity in the cortex has been 220 

an obstacle to their ultrastructural and functional characterization. We took advantage of our 221 

CLEM approach and the molecular signature of this population of spines (i.e. the presence 222 

of a cluster of gephyrin, the core protein of inhibitory postsynaptic scaffolds [96,97]) to 223 

examine their morphological properties. To label inhibitory synapses in cortical PNs (Fig 4A), 224 

we co-expressed tdTomato with small amounts of GFP-tagged gephyrin (GFP-GPHN) 225 

[73,95,98,99]. We identified in LM spines containing a gephyrin cluster (Fig 4B) and we 226 

ascertained their dual-innervation in EM after back-correlating spine identity between LM 227 

and SBEM acquisitions. To do so, we aligned reconstructed dendrites on LM images (Fig 228 

4C) and matched individual spines in both modalities (lettered in Fig 4B and Fig 4C). While 229 

ePSDs look asymmetrical and more electron-dense than inhibitory PSDs (iPSDs) in 230 

transmission EM [100,101], the anisotropic resolution of SBEM does not allow the distinction 231 

of ePSDs and iPSDs in most DiSs [49]. Therefore, we identified iPSDs on DiSs based on 232 

GFP-GPHN cluster position in LM images. In 89% of DiSs (33/37), the excitatory (GFP-233 

GPHN-negative) PSD and the inhibitory (GFP-GPHN-positive) PSD could be clearly 234 

discriminated. However, in 11% of DiSs (4/37 DiSs), distinguishing ePSD from iPSD was not 235 

obvious due to the coarse axial resolution of LM imaging. To resolve ambiguities, we 236 

reconstructed the axons innervating the DiSs and determined their identity based on their 237 

other targets in the neuropil, either soma and dendritic shaft for inhibitory axons [2,102,103], 238 

or other dendritic spines for excitatory axons [49] (Fig 4D). As a result, we could 239 

unequivocally determine the excitatory or inhibitory nature of each synaptic contact on 240 

electroporated neurons, within ~105 µm3 3D-EM acquisition volume. 241 

In CLEM, we measured an average density of 1.4 ± 0.5 iPSDs per 10 µm of dendrite 242 

on DiSs and 2.1 ± 1.2 iPSDs per 10 µm of dendrite on the dendritic shaft— amounting to 3.5 243 

± 1.1 iPSDs per 10 µm of dendrite. iPSDs were homogeneously distributed either on spines 244 

or shaft from 24 µm away from the soma to the dendritic tip, which contrasts with apical 245 

dendrites where spinous inhibitory synapses are distally enriched [73]. Along the basal 246 

dendrites of L2/3 cortical PNs, 38% of inhibitory contacts occurred on dendritic spines, which 247 
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is higher than previously estimated using LM only [73,99]. DiSs represented 10% ± 3% of all 248 

spines (Fig 5A). They had larger heads than SiSs (Fig 5B), in line with previous reports 249 

[15,104], and 86% ± 13% of them contained a SA (Fig 5C). DiSs also differed in terms of 250 

neck morphology. They had longer necks than SiSs of comparable head volume (Vhead > 251 

0.05 µm3), although neck length distribution was similar in the whole populations of SiSs and 252 

DiSs (Fig 5D). DiSs also had lower Dneck/Vhead ratio than SiSs (Fig 5E), although Dneck 253 

distribution was similar between SiSs and DiSs (S4 Fig), suggesting that excitatory signals 254 

generated in DiSs are more compartmentalized than signals of similar amplitude generated 255 

in SiSs. Accordingly, DiSs had a higher Wneck than SiSs of comparable head size (52% 256 

larger in average) (Fig 5F). In spine heads, ePSDs on DiSs were larger than ePSDs on SiSs 257 

(174% ± 113% of ePSD area) (Fig 5G), consistent with the larger head size of DiSs. By 258 

contrast, iPSDs on DiSs were smaller than shaft iPSDs (53% ± 15% of shaft iPSD area) (Fig 259 

5H). The area of iPSDs on DiSs did not correlate with spine head volume (S5 Fig). In 95% of 260 

DiSs, iPSDs were smaller than ePSDs (half the area, in average) (Fig 5I). Together, these 261 

results indicate that DiSs represent a specific population of dendritic spines with distinctive 262 

ultrastructural features that could impact their functional properties. 263 

 264 

Morphologically constrained model of synaptic signaling  265 

Next, we wanted to assess the impact of spine diversity on synaptic signals. We used a 266 

computational approach based on a multi-compartment “ball-and-stick” model of the 267 

neuronal membrane [40,105]. This model comprises an isopotential soma and two dendritic 268 

compartments structured as cables featuring passive resistor-capacitor (RC) circuits and 269 

conductance-based synapses. The two dendritic compartments correspond to the dendrite 270 

receiving the synaptic inputs and to the remainder of the dendritic tree (Fig 6A1) [106,107]. 271 

We constrained this model with morphological parameters measured in CLEM (i.e. distance 272 

between spine and soma, neck resistance, head volume, head membrane area, ePSD area 273 

and iPSD area for 390 spines, and dendritic diameter), taking into account the structural 274 

shrinkage resulting from chemical fixation (S6 Fig). Excitatory and inhibitory synaptic 275 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 14, 2020. ; https://doi.org/10.1101/2020.08.06.230722doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.06.230722


 11

conductances were modeled as bi-exponential functions of time, with their rise and decay 276 

times tuned to the kinetics of different receptor types: AMPA and NMDA receptors at ePSDs, 277 

and type A γ-aminobutyric acid (GABAA) receptors at iPSDs (Fig 6A2; see Methods). 278 

Individual synaptic conductances were scaled proportionally to PSD areas [9,77,108]. 279 

Voltage-dependent calcium channels (VDCCs) in spine heads were modeled using 280 

Goldman–Hodgkin–Katz equations [109] and their conductance was scaled proportionally to 281 

spine head areas. We adjusted excitatory synaptic conductivity so that average amplitudes 282 

of both synaptic currents and somatic depolarizations evoked by individual excitatory 283 

postsynaptic potentials (EPSPs) fitted published electrophysiological values [110–113] (see 284 

Methods). After calibration of excitatory synapses, maximal synaptic conductance (g) ranged 285 

from 0.04 nS to 3.13 nS for gAMPA (0.456 ± 0.434 nS) and from 0.04 nS to 3.42 nS for gNMDA 286 

(0.498 ± 0.474 nS), in line with the literature [114]. We then adjusted inhibitory synaptic 287 

conductivity to set the mean conductance of dendritic inhibitory synapses to 1 nS 288 

[37,115,116]. As a result, gGABA ranged from 0.33 nS to 3.36 nS (1.00 ± 0.577 nS) for 289 

synapses located on the shaft, and from 0.19 nS to 1.56 nS (0.528 ± 0.277 nS) for inhibitory 290 

synapses located on spines. 291 

We first examined the propagation of simulated EPSPs. We compared the evoked 292 

depolarization amplitude ∆Vmax in three different compartments: in the spine head in which 293 

the EPSP was elicited, in the dendritic shaft close to the spine, and in the soma (Fig 6B). 294 

∆Vmax followed a log-normal distribution, reflecting the morphological variability of spines (Fig 295 

6B). Due to the passive attenuation of electrical signals along dendritic processes, ∆Vmax 296 

was sharply attenuated between the head of the spine and the dendritic shaft (51% 297 

attenuation in average) and about 5% of ∆Vmax reached the soma (Fig 6B), in line with 298 

measurements performed in basal dendrites of L5 cortical PNs using voltage dyes, 299 

electrophysiology and glutamate uncaging [25,117]. ∆Vmax scaled with ePSD area in all 300 

compartments (Fig 6C). To determine the contribution of morphological parameters to the 301 

variance of ∆Vmax, we used a generalized linear model (GLM) [118]. We analyzed the 302 

contribution of the volume, diameter and resistance of spine necks and heads as well as the 303 
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contribution of ePSD area and distance between spine and soma (Ldend) to the amplitude of 304 

the signals in the soma and in spine heads. In the soma, ∆Vmax was mainly determined by 305 

AePSD, which accounted for 89% of its variance when EPSPs were elicited in SiSs (77% 306 

when they came from DiSs). The second determinant was Ldend, which accounted for 6.4% of 307 

the variance of ∆Vmax for EPSPs generated in SiSs (14.7% in DiSs). The contribution of Rneck 308 

to the variance of ∆Vmax in the soma was comparatively negligible (S3 Table), indicating that 309 

the passive attenuation of EPSPs along dendrites dominates the contribution of Rneck to 310 

somatic depolarizations evoked in spines. In the heads of SiSs, AePSD and Rneck accounted 311 

for 60% and 19% of the variance of ∆Vmax, respectively (also see S7 Fig for the dependence 312 

of ∆Vmax on Rneck). In the heads of DiSs, the contribution of Rneck to ∆Vmax was much higher, 313 

reaching 38% of the variance, while AePSD contribution dropped to 47% (S3 Table). In 56% of 314 

dendritic spines, Rneck was large enough (>145MΩ) to attenuate EPSP amplitude by >50% 315 

across the spine neck, and more than 90% of spine necks attenuated the signal by at least 316 

10% (Fig 6D), suggesting that most spine necks constitutively compartmentalize electrical 317 

signals in the head of spines. 318 

We also estimated the elevation of calcium ion concentration (∆[Ca2+]) in spine heads 319 

induced by an EPSP. ∆[Ca2+] was similar in SiSs and DiSs and varied non-linearly with AePSD 320 

(Fig 6E). AePSD was the main determinant of ∆[Ca2+], accounting for 30% of the variance in 321 

SiSs (45% in DiSs), followed by Rneck (9%; S3 Table). As a single EPSP is not sufficient to 322 

elicit a Ca2+ spike, we did not model Ca2+ transients outside of spine heads. Overall, our 323 

model provides quantitative insights into the variability of EPSP amplitude originating from 324 

spine diversity and highlights differences in the contribution of morphological parameters to 325 

spine depolarization and calcium signals in DiSs and SiSs. 326 

 327 

Spatial interplay of excitatory and inhibitory signals 328 

We used our model to compare the effects of spinous and dendritic shaft inhibition. In vitro 329 

uncaging experiments have shown that inhibitory contacts located on DiSs could weaken 330 

local calcium signals [119], but the consequences on synaptic excitation are still unclear 331 
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[75,120]. To understand how spine ultrastructure and iPSD location influence synaptic 332 

integration, we modeled the interaction between one IPSP and one EPSP under the 333 

constraint of our morphological measurements. Assessing the extent of signal variability 334 

originating from spine morphological heterogeneity requires a large number of simulations 335 

(N≥1000). Therefore, we used a bootstrapping method [121] (see Methods) to derive 336 

N≥1000 sets of parameters from our dataset of 390 spines and 62 shaft iPSDs (S1 Data), 337 

and provide unbiased estimations of the mean and variance of the signals. Importantly, the 338 

strength of inhibition depends on the reversal potential of chloride ions (ECl-). In healthy 339 

mature layer 2/3 cortical PNs, ECl- typically varies between the resting membrane potential, 340 

Vrest = -70 mV, and hyperpolarized values (-80 mV) [122]. When ECl- = -70 mV, active 341 

inhibitory synapses generate a local increase of membrane conductance, which “shunts” 342 

membrane depolarization induced by concomitant EPSPs. When ECl- < -70 mV, the driving 343 

force of Cl- ions is stronger, GABAergic inputs can hyperpolarize the cell membrane and 344 

IPSPs counter EPSPs. These two situations are respectively termed “shunting inhibition” 345 

and “hyperpolarizing inhibition” [37,122].  346 

We first assessed the impact of “shunting” IPSPs elicited in the dendritic shaft on 347 

individual EPSPs depending on the inter-synaptic distance (Fig 7A). For each iteration of the 348 

model (i.e. N=3700 sets of realistic morphological values for spine size, and iPSD location 349 

and size), we varied the distance ∆x between a spine receiving an EPSP and a shaft iPSD 350 

activated simultaneously. For ∆x > 0, the iPSD was located between the spine and the soma 351 

(i.e. “on-path” inhibition, from the viewpoint of the soma), and for ∆x < 0, the iPSD was 352 

located distally to the spine (i.e. “off-path” inhibition). To quantify inhibition, we compared the 353 

amplitude of individual EPSPs in the absence (∆Vmax,E) or presence (∆Vmax,E+I) of inhibition, 354 

and computed the drop in depolarization amplitude inhV = 1 – ∆Vmax,E+I / ∆Vmax,E . inhV = 0 355 

indicates that the electrical signal was not affected, inhV = 1 indicates that it was completely 356 

inhibited. Importantly, due to the electrical properties of the cell membrane, inhV depends on 357 

where the signal is measured. In the soma, inhV was maximal (20% in average) when the 358 

iPSD was located on-path and it decreased exponentially with ∆x when the iPSD was 359 
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located off-path (exponential decay length: Lsoma,off = 30 �m) (Fig 7B), highlighting the impact 360 

of proximal inhibitory synapses on distal excitatory inputs [37,123]. In the spine where the 361 

EPSP was elicited, inhV decayed exponentially with ∆x for both on-path and off-path 362 

inhibition (Fig 7C), with respective decay lengths Lspine,on = 30 µm and Lspine,off = 11 µm (also 363 

see S8 Fig for the dependence of decay lengths on the dendritic cross-section). Therefore, 364 

shaft inhibition could affect excitatory signals within 40 µm, which corresponds to 365 

approximately 50 spines considering the spine density and dendritic diameter that we 366 

measured in basal dendrites of L2/3 cortical PN. 367 

Next, we focused on DiSs. We modeled N=3700 DiSs and shaft iPSDs (∆x = 0) at 368 

random locations on the dendrite, and we compared two configurations per iteration of the 369 

model: (1) the ePSD of the DiS and the shaft iPSD were activated simultaneously (Fig 8A1); 370 

(2) both the ePSD and the iPSD of the DiS were activated simultaneously (Fig 8A2). In the 371 

soma, the effect of shaft and spinous inhibition was comparable: inhV was centered on 17%, 372 

and reached up to 50% (Fig 8B), in line with somatic recordings following coincident 373 

uncaging of glutamate and GABA in acute brain slices [119]. By contrast, in the head of all 374 

DiSs, spinous inhibition was more efficient than shaft inhibition despite the smaller size of 375 

spinous iPSDs compared to shaft iPSDs. Spinous inhV was centered on 10% and reached 376 

up to 35%, whereas dendritic inhV was centered on 3% and did not reach more than 23% 377 

(Fig 8C). These results support the notion that the placement of inhibitory synapses 378 

structures the detection and integration of excitatory signals [103,124,125], and highlight the 379 

role of spinous inhibition in local synaptic signaling. 380 

We then run the simulations with a lower chloride reversal potential (ECl- = -80 mV) 381 

for which GABAergic inputs can hyperpolarize the cell membrane. In numerous simulations, 382 

we observed that hyperpolarization could take over depolarization (i.e. inhV > 1) (see panel A 383 

in S9 Fig). This was the case in the soma for 37% of simulations, and in the spine where the 384 

EPSP was generated for 10% of simulations. With ECl- = -80 mV, the median inhV imposed 385 

by spinous inhibition in spine heads was 45%, in line with a previous morphologically 386 

constrained model [75] and with the fact that a hyperpolarizing IPSP may block multiple 387 
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EPSPs depending on iPSD placement [103]. Interestingly, lowering ECl- affected spinous 388 

and shaft inhibition differently. In the soma, shaft inhibition became more efficient than 389 

spinous inhibition (see panel B in S9 Fig) due to the larger area of shaft iPSDs. However, in 390 

the heads of most DiSs, spinous inhibition remained more efficient than shaft inhibition (see 391 

panels C-F in S9 Fig). Altogether, our results indicate that spinous inhibition is stronger than 392 

shaft inhibition in DiSs, and that their relative weight is modulated by the driving force of 393 

chloride ions. 394 

 395 

Temporal interplay of excitatory and inhibitory signals 396 

Since the efficacy of inhibition depends on the membrane potential at the onset of the IPSP 397 

[36,38,123,126], we addressed the effect of input timing on inhibition efficacy in DiSs. We 398 

simulated the interaction of one EPSP and one IPSP generated with a time difference of ∆t 399 

(Fig 9A). For ∆t < 0 (IPSP before EPSP), IPSPs decreased ∆Vmax (Fig 9B1). For ∆t > 0 (IPSP 400 

after EPSP), IPSPs had no effect on ∆Vmax but abruptly decreased the tail of the EPSPs 401 

[126] (Fig 9B2). We first compared how spinous and shaft inhibition reduced EPSP duration 402 

by comparing the 80-to-20% decay time of the summed signals (�E+I) to that of uninhibited 403 

EPSPs (�E). Decay times were minimal at ∆t = +4 ms and decreased by 64% and 78% with 404 

spinous and shaft inhibition respectively (Fig 9C), which could shorten the integration 405 

window of EPSPs and increase the temporal precision of synaptic transmission [127]. The 406 

variance of �E was mainly determined by the area of iPSDs (S4 Table). We then quantified 407 

how the timing of inhibition affected EPSP amplitude using inhV (∆t) = 1 – ∆Vmax,E+I / ∆Vmax,E . 408 

In spine heads, inhV was an asymmetrical function of ∆t [36,126] and it was maximal at ∆t = -409 

4 ms for spinous inhibition, and at ∆t = -6 ms for dendritic shaft inhibition. Overall, spinous 410 

inhibition was stronger than shaft inhibition, decreasing ∆Vmax by 26.3% and 16.2%, 411 

respectively (median values in Fig 9D; see also panel A in S10 Fig for inhV (∆t) with higher 412 

ECl-). Interestingly, Rneck had a negligible contribution to the variance of inhV in the case of 413 
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hyperpolarizing inhibition, but a major one (37%) in the case of shunting inhibition (S4 414 

Table), suggesting that spine necks compartmentalize IPSPs differently depending on ECl-.  415 

Then, we examined the effect of timed inhibition on calcium signaling in spines, using  416 

inh[Ca2+] (∆t) = 1 – [Ca2+]max,E+I / [Ca2+]max,E . We observed that inh[Ca2+] peaked at ∆t = 0 417 

ms for both spinous and shaft inhibition. More precisely, spinous inhibition reduced calcium 418 

transient amplitude by 10% in average, reaching >36% in the top 10% simulations, while 419 

shaft inhibition reduced it by 8.6% in average and >28% in the top 10% simulations (Fig 9E). 420 

These values are in the range of inh[Ca2+] measured with double uncaging experiments [119]. 421 

Importantly, IPSPs could decrease the amplitude of calcium transients, within a short time-422 

window (∆t between 0 and +10 ms) in which depolarization amplitude was not affected (Fig 423 

9D-E), thereby decoupling calcium signalling from electrical activity in DiSs. 424 

 425 

DISCUSSION 426 

In the present study, we developed a novel 3D-CLEM workflow allowing the ultrastructural 427 

characterization of specific populations of dendritic spines in genetically defined types of 428 

neurons. We used this workflow to exhaustively reconstruct spines and synaptic contacts 429 

along the basal dendrites of fluorescently labelled L2/3 cortical PNs of the SSC and to 430 

provide a quantitative description of their diversity. We input our measurements in a 431 

computational model to analyze the variability of electrical and calcium synaptic signals 432 

originating from spine ultrastructural diversity, and to characterize the spatio-temporal 433 

integration of excitatory and inhibitory inputs. Our results shed light on unique properties of 434 

DiSs, which represent 10% of all spines and 38% of all inhibitory synapses along the basal 435 

dendrites of L2/3 cortical PNs. We show that while individual inhibitory synapses distributed 436 

along dendritic shafts can be powerful enough to block several EPSPs, spinous inhibitory 437 

synapses affect excitatory signals more efficiently in DiSs. We also show that the activation 438 

of a spinous inhibitory synapse within a few milliseconds after an EPSP can decouple 439 

voltage and calcium signals in DiSs, which could impact calcium-dependent signaling 440 

cascades that drive spine plasticity. 441 
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The molecular composition of synapses and their biophysical properties are 442 

reportedly heterogeneous along dendrites and across dendritic trees [35,39,128,129]. 443 

However, most computational models so far have used ad hoc or averaged values as 444 

parameters for dendritic spines and excitatory synapses [130–132], and considered that all 445 

inhibitory synapses were located along the dendritic shaft [133]. The correlative approach we 446 

propose provides an accessible solution for detailed quantification of synaptic diversity 447 

beyond the µm scale in intact brain circuits, which may help improve the accuracy of 448 

computational models. Our workflow is applicable to any type of tissue and allows 449 

anatomical measurements of any kind of genetically labelled cells and organelles. One 450 

technical limitation is the need for chemical fixation, which may distort tissue morphology 451 

[134,135]. Therefore, it may be necessary to correct for tissue shrinkage based on a 452 

morphological comparison with physically fixed tissues (see panel B3 in S6 Fig) in order to 453 

reliably depict in vivo situations. Future development of aldehyde-free cryo-CLEM methods 454 

will be important to grant access to cellular and synaptic ultrastructure in close-to-native 455 

environments. 456 

Applying 3D-CLEM to the basal dendrites of L2/3 cortical PNs allowed us to 457 

quantitatively describe the landscape of synaptic diversity and to characterize the 458 

ultrastructural features of a scarce population of dendritic spines receiving both excitatory 459 

and inhibitory synaptic inputs (DiSs). In the cortex, DiSs are mostly contacted by VGluT2-460 

positive excitatory thalamo-cortical inputs [15] and they receive inhibition from somatostatin-461 

expressing and parvalbumin-expressing interneurons [119,136], which are the two main 462 

sources of inhibitory inputs to the basal dendrites of layer 2/3 cortical PNs [137,138]. In vivo 463 

2-photon imaging experiments have shown that DiSs are among the most stable spines 464 

along the dendrites of layer 2/3 PNs [104]. The inhibitory synapse in DiSs is smaller and 465 

more labile than inhibitory synapses along dendritic shafts, and it is very sensitive to sensory 466 

experience [73,94,95,104]. Whisker stimulation induces a lasting increase in the occurrence 467 

of iPDSs in spines of the barrel cortex [94] and monocular deprivation destabilizes iPSDs 468 

housed in spines of the visual cortex [73,95,104], suggesting their role in experience-469 
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dependent plasticity. Our morphological and computational analysis provides new insights 470 

into the biophysical properties of DiSs. We show that DiSs have larger heads and larger 471 

ePSDs than SiSs, and most often contain a spine apparatus. However, the ratio between 472 

mean spine neck diameter and spine head volume (or ePSD area) was smaller in DiSs than 473 

in SiSs, and DiSs had longer necks than SiSs of comparable head volume, so that EPSPs of 474 

similar amplitudes encounter a higher neck resistance in DiSs than in SiSs. Thus, DiSs are 475 

uniquely compartmentalized by their ultrastructural features and the presence of an inhibitory 476 

synapse. 477 

Our model predicts that IPSPs occurring in DiSs within milliseconds after an EPSP 478 

can curtail calcium transients without affecting depolarization, thereby locally decoupling 479 

voltage and calcium signaling. This is expected to impact the induction of long-term forms of 480 

synaptic plasticity, such as long-term potentiation (LTP) or long-term depression (LTD), 481 

which underlie learning and memory [80,139–141]. The induction of LTP versus LTD is 482 

determined by the magnitude and time course of calcium flux, with brief, high calcium 483 

elevation generating LTP, sustained moderate calcium elevation generating LTD, and low 484 

calcium level inducing no plasticity [142–144]. Therefore, a small reduction in the amplitude 485 

of calcium transients may limit spine potentiation, or even cause depression [120,145,146]. 486 

In the cortex, thalamocortical inputs may contact DiSs on the basal dendrites of L2/3 both 487 

directly (excitatory connection) and indirectly through feed-forward inhibition via 488 

parvalbumin-expressing fast-spiking interneurons [127,147]. The delay between thalamo-489 

cortical excitatory and feed-forward inhibitory signals is typically +1 ms to +3 ms [127], within 490 

the 10 ms time window for voltage-calcium decoupling in DiSs. Therefore, the presence of 491 

inhibitory synapses in DiSs could prevent synaptic potentiation and thereby increase the 492 

temporal precision of cortical response to sensory stimulation [94,127,148]. On the contrary, 493 

the removal of spine inhibitory synapses could favor synaptic potentiation during experience-494 

dependent plasticity such as monocular deprivation to strengthen inputs from the non-495 

deprived eye [73,95,149]. 496 
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Our understanding of synaptic and dendritic computations is intimately linked to the 497 

quantitative description of synaptic distribution, ultrastructure, nano-organization, activity and 498 

diversity in neural circuits. The CLEM workflow we propose opens new avenues for the 499 

ultrastructural characterization of synapses with defined molecular signature characterizing 500 

their identity or activation profile in response to certain stimuli or behaviors. Another 501 

milestone to better model the biophysics of synaptic integration will be to combine EM and 502 

quantitative super-resolution LM to measure the density and nano-organization of molecular 503 

species (e.g. AMPARs, NMDARs, voltage-dependent calcium channels) in specific 504 

populations of synapses in intact brain circuits. Combining circuit and super-resolution 505 

approaches through CLEM will be critical to refine large-scale circuit models [74,133,150] 506 

(but see [32]) and bridge the gap between molecular, system and computational 507 

neurosciences. 508 

 509 

MATERIALS AND METHODS 510 

Animals and in utero cortical electroporation 511 

All animals were handled according to French and EU regulations (APAFIS#1530-512 

2015082611508691v3). In utero cortical electroporation was performed as described 513 

previously [151]. Briefly, pregnant Swiss female mice at E15.5 (Janvier Labs, France) were 514 

anesthetized with isoflurane (3.5% for induction, 2% during the surgery) and subcutaneously 515 

injected with 0.1 mg/kg of buprenorphine for analgesia. The uterine horns were exposed 516 

after laparotomy. Electroporation was performed using a square wave electroporator (ECM 517 

830, BTX) and tweezer-type platinum disc electrodes (5mm-diameter, Sonidel). The 518 

electroporation settings were: 4 pulses of 40 V for 50 ms with 500 ms interval. Endotoxin-519 

free DNA was injected using a glass pipette into one ventricle of the mouse embryos at the 520 

following concentrations: pH1SCV2 TdTomato: 0.5 µg/µL and pCAG EGFP-GPHN: 0.3 521 

µg/µL. All constructs have been described before [98]. 522 

 523 

Cortical slice preparation 524 
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Electroporated animals aged between postnatal day P84 and P129 were anesthetized with 525 

ketamin 100 mg/kg and xylazin 10 mg/kg, and intracardiacally perfused with first 0.1 mL of 526 

heparin (5000 U.I/mL, SANOFI), then an aqueous solution of 4% w/v paraformaldehyde 527 

(PFA) (Clinisciences) and 0.5% glutaraldehyde (GA) (Clinisciences) in 0.1 M phosphate-528 

buffered saline (PBS). The fixative solution was made extemporaneously, and kept at ice-529 

cold temperature throughout the perfusion. The perfusion was gravity-driven at a flow rate of 530 

about 0.2 ml/s, and the total perfused volume was about 100 ml per animal. Brains were 531 

collected and post-fixed overnight at 4°C in a 4% PFA solution. 30 µm-thick coronal brain 532 

sections were obtained using a vibrating microtome (Leica VT1200S). 533 

 534 

Fluorescence microscopy of fixed tissue 535 

Slices containing electroporated neurons were trimmed to small (5-10 mm2) pieces centered 536 

on a relatively isolated fluorescent neuron, then mounted in a custom-made chamber on 537 

#1.5 glass coverslips. The mounting procedure consisted in enclosing the slices between 538 

the glass coverslip and the bottom of a cell culture insert (Falcon, ref. 353095) adapted to 539 

the flat surface with a silicon O-ring gasket (Leica) and fixed with fast-curing silicon glue 540 

(see panel A in S1 Fig). Volumes of GFP and tdTomato signals were acquired in 12 bits 541 

mode (1024x1024 pixels) with z-steps of 400 nm using an inverted Leica TCS SP8 confocal 542 

laser scanning microscope equipped with a tunable white laser and hybrid detectors and 543 

controlled by the LAF AS software. The objective lenses were a 10X PlanApo, NA 0.45 lens 544 

for identifying electroporated neurons and a 100X HC-PL APO, NA 1.44 CORR CS lens 545 

(Leica) for higher magnification images. GFP-GPHN puncta with a peak signal intensity at 546 

least four times above shot noise background levels were considered for CLEM.  547 

 548 

Placement of DAB fiducial landmarks 549 

Following confocal imaging, slices were immersed in a solution of 1 mg/mL 3,3'-550 

diaminobenzidine tetrahydrochloride (DAB, Sigma Aldrich) in Tris buffer (0.05 M, pH 7.4). 551 

The plugin “LAS X FRAP” (Leica) was used to focus the pulsed laser in the tissue in custom 552 
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patterns of 10-to-20 points using 100% power in 4 wavelengths (470 to 494nm) for 30s-60s 553 

per point at 3 different depths: the top of the slice, the depth of the targeted soma, then the 554 

bottom of the slice (surface closest to the objective). DAB precipitates were imaged in 555 

transmitted light mode. Slices were subsequently rinsed twice in Tris buffer and prepared for 556 

electron microscopy.  557 

 558 

Tissue preparation for serial block-face scanning electron microscopy (SBEM) 559 

Using a scalpel blade under a M165FC stereomicroscope (Leica), imaged tissue slices were 560 

cut to ~1mm2 asymmetrical pieces of tissue centered on the ROI, and then kept in plastic 561 

baskets (Leica) through the osmification and dehydration steps. Samples were treated using 562 

an osmium bridging technique adapted from the NCMIR protocol (OTO) [152]. The samples 563 

were washed 3 times in ddH2O and immersed for 1
hour in a reduced osmium solution 564 

containing 2% osmium tetroxide and 1.5% potassium ferrocyanide in ddH2O. Samples were 565 

then immersed for 20
minutes in a 1% thiocarbohydrazide (TCH) solution (Electron 566 

Microscopy Science) prepared in ddH2O at room temperature. The samples were then post-567 

fixed with 2% OsO4 in ddH2O for 30
minutes at room temperature and colored en bloc with 568 

1% aqueous uranyl acetate at 4
°C during 12
hours. Post-fixed samples were subjected to 569 

Walton’s en bloc lead aspartate staining at 60
°C for 30
minutes (Walton, 1979). After 570 

dehydration in graded concentrations of ice-cold ethanol solutions (20%, 50%, 70%, 90% 571 

and twice 100%, 5 minutes per step) the samples were rinsed twice for 10
minutes in ice-572 

cold anhydrous acetone. Samples were then infiltrated at room temperature with graded 573 

concentrations of Durcupan (EMS) prepared without plastifier (components A, B, C only). In 574 

detail, blocks were infiltrated with 25% Durcupan for 30 minutes, 50% Durcupan for 30 575 

minutes, 75% Durcupan for 2 hours, 100% Durcupan overnight, and 100% fresh Durcupan 576 

for 2 hours before being polymerized in a minimal amount of resin in a flat orientation in a 577 

sandwich of ACLAR® 33C Films (EMS) at 60 °C for 48 hours. Samples were mounted on 578 

aluminum pins using conductive colloidal silver glue (EMS). Before curing, tissue blocks 579 

were pressed parallel to the pin surface using a modified glass knife with 0° clearance angle 580 
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on an ultramicrotome (Ultracut UC7, Leica), in order to minimize the angular mismatch 581 

between LM and SEM imaging planes. Pins then cured overnight at 60°C. Samples were 582 

then trimmed around the ROI with the help of fluorescent overviews of the ROI within their 583 

asymmetrical shape. Minimal surfacing ensured that superficial DAB landmarks were 584 

detected at the SBEM before block-facing. 585 

 586 

SBEM acquisition  587 

SBEM imaging was performed with a Teneo VS microscope (FEI) on the ImagoSeine 588 

imaging platform at Institut Jacques Monod, Paris. The software MAPS (Thermo Fisher 589 

Scientific) was used to acquire SEM images of targeted volumes at various magnifications. 590 

Acquisition parameters were: 1,7830 kV, 500 ns/px, 100 pA, 40 nm-thick sectioning and 591 

8200x8200 pixels resolution with either 2.5 nm or 25 nm pixel size for high- and low-592 

magnification images, respectively. Placing an electromagnetic trap above the diamond 593 

knife to catch discarded tissue sections during days-long imaging sessions was instrumental 594 

to achieve continuous 3DEM acquisitions. 595 

 596 

Image segmentation 597 

Dendrites were segmented from SBEM stacks using the software Microscopy Image 598 

Browser (MIB) [153]. 3D reconstruction was performed with the software IMOD [154] 599 

(http://bio3d.colorado.edu/imod/). 3D spine models were imported in the software Blender 600 

(www.blender.org) for subsampling and the quantification of spine section areas along their 601 

main axis was done with in-house python scripts. Other measurements were performed 602 

using IMOD and in-house python scripts. 603 

 604 

Tissue preparation for tissue shrinkage estimation 605 

Two female mice (21 days postnatal) were used for the analysis of tissue shrinkage induced 606 

by chemical fixation. Mice were decapitated and their brains were rapidly removed. The 607 

brains were transferred to an ice-cold dissection medium, containing (in mM): KCl, 2.5; 608 
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NaHCO3, 25; NaH2PO4, 1; MgSO4, 8; glucose, 10, at pH 7.4. A mix of 95% O2 and 5% CO2 609 

was bubbled through the medium for 30 min before use. 300-µm-thick coronal brain 610 

sections were obtained using a vibrating microtome (Leica VT1200S). Small fragments of 611 

the SSC were cut from those slices and fixed either by immersion in an ice-cold PBS 612 

solution containing 4% PFA and 0.5% GA, or in frozen with liquid nitrogen under a pressure 613 

of 2100 bars using a high pressure freezing system (HPM100, Leica). For HPF-frozen 614 

samples, the interval between removal of the brain and vitrification was about 7 min. Cryo-615 

substitution and tissue embedding were performed in a Reichert AFS apparatus (Leica). 616 

Cryo-substitution was performed in acetone containing 0.1% tannic acid at -90°C for 4 days 617 

with one change of solution, then in acetone containing 2% osmium during the last 7h at -618 

90°C. Samples were thawed slowly (5°C/h) to -20°C and maintained at -20°C for 16 619 

additional hours, then thawed to 4°C (10°C/h). At 4°C the slices were immediately washed 620 

in pure acetone. Samples were rinsed several times in acetone, then warmed to room 621 

temperature and incubated in 50% acetone-50% araldite epoxy resin for 1h, followed by 622 

10% acetone-90% araldite for 2h. Samples were then incubated twice in araldite for 2h 623 

before hardening at 60°C for 48h. As for chemically fixed sections, they were post-fixed for 624 

30 min in ice-cold 2% osmium solution, rinsed in PBS buffer, dehydrated in graded ice-cold 625 

ethanol solutions and rinsed twice in ice-cold acetone, before undergoing the same resin 626 

infiltration and embedding steps as HPF-frozen samples. After embedding, ultrathin sections 627 

were cut in L2/3 of the SSC, orthogonally to the apical dendrites of pyramidal neurons, 200-628 

300 µm from the pial surface using an ultramicrotome (Ultracut UC7, Leica). Ultra-thin (pale 629 

yellow) sections were collected on formwar-coated nickel slot grids, then counterstained with 630 

5% uranyl acetate in 70% methanol for 10 min, washed in distilled water and air dried before 631 

observation on a Philips TECNAI 12 electron microscope (Thermo Fisher Scientific). 632 

 633 

Measurement of shrinkage correction factors 634 

Ultra-thin sections of both HPF-frozen tissues and chemically-fixed tissues were observed 635 

using a Philips TECNAI 12 electron microscope (Thermo Fisher Scientific). Cellular 636 
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compartments contacted by a pre-synaptic bouton containing synaptic vesicles and 637 

exhibiting a visible electron-dense PSD at the contact site, but no mitochondrion within their 638 

cytosol were identified as dendritic spine heads. Cross-section areas of random spine heads 639 

and the curvilinear lengths of their PSD were quantified in both conditions using the 640 

softwares MIB and IMOD. N = 277 spine head sections were segmented in HPF-frozen 641 

cortical slices from two female mice, and N = 371 spine head sections were segmented in 642 

chemically fixed cortical slices originating from the same two mice. Chi-square minimization 643 

was used between spine head cross-section area distributions in HPF or OTO conditions to 644 

compute average volume shrinkage and correction factors. PSD areas were not corrected as 645 

they exhibited no shrinkage. 646 

 647 

Computation of the diffusional neck resistance 648 

The diffusional resistance of spine necks Wneck was measured as follows. Using IMOD, we 649 

first modeled in 3D the principal axis of each spine neck as an open contour of total length 650 

Laxis connecting the base of the neck to the base of the spine head. Using Blender, we 651 

interpolated each spine neck path linearly with 100 points. We named P(ℓ) the plane that 652 

bisected the spine neck model orthogonally to the path at the abscissa ℓ, and A(ℓ) the spine 653 

neck cross-section within P(ℓ). In spines containing a spine apparatus (SA), we corrected 654 

A(ℓ) by a scaling factor β(ℓ) = 1 – (DSA/Dspine)
2(ℓ), where DSA/Dspine(ℓ) is the local ratio of SA 655 

and neck diameter. We measured DSA/Dspine orthogonally to the neck path in 10 SA+ spines 656 

and in three different locations per spine on SBEM images: at the spine stem (ℓ/Laxis = 0.1), 657 

at the center of the spine neck (ℓ/Laxis = 0.5), and at the stem of the head (ℓ/Laxis = 0.9). 658 

DSA/Dspine was 44% ± 11%, 31% ± 8% and 37% ± 8% respectively, and fluctuations were not 659 

statistically significant. We then divided each SA+ spine neck in thirds and scaled their neck 660 

cross-section areas along neck axis ASA+(ℓ) = β(ℓ)A(ℓ) before computing Wneck = ∫ dℓ / A(ℓ) for 661 

all spines, using Simpson’s integration rule. 662 

 663 

Multi-compartment electrical model 664 
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All simulations were implemented in Python using NEURON libraries [155] and in-house 665 

scripts. Ordinary differential equations were solved with NEURON-default backward Euler 666 

method, with Δt = 0.05 ms. Scripts and model definition files are available in a GitHub 667 

repository: https://github.com/pabloserna/SpineModel. Biophysical constants were taken 668 

from the literature as follows: membrane capacitance Cm = 1µF/cm2 [38]; cytosolic resistivity               669 

ρ = 300 Ω.cm [85,156]; synaptic conductivities were modeled as bi-exponential functions      670 

g(t) = A gmax (e- t / t
 

2 – e- t / t
 

1) where A is a normalizing constant and (t1, t2) define the kinetics of 671 

the synapses: GABAergic conductance (t1, t2) = (0.5, 15) ms, AMPAR-dependent 672 

conductance (t1, t2) = (0.1, 1.8) ms, NMDAR-dependent conductance (t1, t2) = (0.5, 17.0) ms 673 

(ModelDB: https://senselab.med.yale.edu/ModelDB/). The magnesium block of NMDA 674 

receptors was modeled by a voltage-dependent factor [157]. Remaining free parameters 675 

comprised: the leaking conductivity gm (or, equivalently, the membrane time constant Tm); 676 

the peak synaptic conductance per area: gAMPA, gNMDA, gGABA; the total membrane area of the 677 

modeled neuron. These parameters were adjusted so that signal distributions fitted 678 

published electrophysiological recordings [110,113,116,158,159]. In more detail, we first set 679 

up one “ball-and-stick” model per segmented spine (N = 390). The dendrite hosting the 680 

modeled spine was generated as a tube of diameter ddendrite = 0.87 µm, and length Ldendrite = 681 

140 µm. This dendrite is split in three parts, the 2 µm-long middle one harboring the modeled 682 

spine. To account for the passive electrical effects of neighboring spines, the membrane 683 

surfaces of both the proximal and distal sections of the studied dendrite were scaled by a 684 

correction factor                  γ = 1 + <Aspine> dspine / π ddendrite = 3.34, with the density dspine = 685 

1.63 spine.µm-1 and the average spine membrane area <Aspine> = 3.89 µm2 . We calibrated 686 

synaptic conductances type by type, by fitting the signals generated in the whole distribution 687 

of 390 models to published electrophysiological recordings. The AMPA conductances of all 688 

excitatory synapses were set proportional to ePSD area and scaled by the free parameter 689 

gA. In each model, we activated the AMPAR component of excitatory synapses and 690 

monitored the amplitude of resulting EPSCs in the soma. The average EPSC amplitude was 691 

adjusted to 58 pA [110,158], yielding a scaling factor gA = 3.15 nS/μm2, which takes into 692 
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account the average number of excitatory contacts per axon per PN in L2/3 of mouse SSC: 693 

NePSD/axon = 2.8 [110]. The average AMPA synaptic conductance was 0.42 nS. The leakage 694 

resistance was fitted to 65 MΩ [114], yielding a total membrane surface of the modeled 695 

neurons: Amb,total = 18550 µm2. The NMDA conductances of all excitatory synapses were set 696 

proportional to ePSD area and scaled by the free parameter gN. In each model, we activated 697 

both NMDA and AMPA components of excitatory synapses and fitted the amplitude ratio 698 

between the average AMPA+NMDA and AMPA-only responses to 1.05 [158], yielding gN = 699 

3.4 nS/μm2. The GABA conductances of all inhibitory synapses were set proportional to 700 

iPSD area and scaled by the free parameter gG. In this case, we set the neuron to a holding 701 

potential of 0 mV and the reversal potential of chloride ions (ECl-) to -80 mV. Then, we 702 

activated shaft inhibitory synapses and monitored the amplitude of resulting IPSCs in the 703 

soma. The amplitude of the average GABAergic conductance was set to 1 nS [38,114,115], 704 

yielding a scaling factor gG = 5.9 nS/μm2, which takes into account the average number of 705 

inhibitory contacts per axon per PN in L2/3 of mouse SSC: NiPSD/axon = 6 [114]. Considering 706 

inhibition, since ECl- is regulated on timescales exceeding 100 ms [160] and we modeled 707 

signals in the 10 ms timescale, we could set ECl- as a constant parameter of our steady state 708 

model. Calcium influxes were modeled in spines as a result of the opening of NMDARs and 709 

voltage-dependent calcium channels (VDCCs). Since we simulated signals that remained 710 

below the threshold for eliciting dendritic spikes [35,74], we did not include VDCCs in 711 

dendrites, and monitored calcium transients exclusively in spine heads. The dynamics of L-, 712 

N- and Q-type VDCCs were obtained from ModelDB (accession n°: 151458), and their 713 

conductivities were scaled to the head membrane area of each spine, Ahead, excluding 714 

synaptic area(s). VDCC-type ratios and calcium conductivities were adjusted by fitting the 715 

average amplitude of calcium concentration transients to 20% of the NMDA conductance 716 

[161]. Calcium uptake from cytosolic buffers was set to 95% to yield an average amplitude of 717 

Ca2+ concentration transients of 0.7 µM [162]. 718 

 719 

Bootstrapping 720 
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To simulate a large number of spine-spine interactions with limited redundancy, our 721 

distribution of spines was expanded using a "smooth" bootstrapping method [121]. 722 

Specifically, the dataset (i.e. a matrix of dimensions N x Nf) was re-sampled to generate a 723 

new matrix of dimension M x Nf, where N is the number of spines, Nf is the number of 724 

selected features, and M is the final number of synthetic spines. M rows were randomly 725 

selected in the original dataset and zero-centered, feature-dependent Gaussian noise was 726 

added to each element of the matrix (excluding absolute quantities, e.g. number of PSDs or 727 

presence of SA). To determine appropriate noise amplitude for each parameter, a synthetic 728 

set of M=500 spines was generated from the original dataset, including Gaussian noise with 729 

an arbitrary amplitude σ, on one selected parameter. This new feature distribution was 730 

compared to the original distribution using a 2-sample Kolmogorov-Smirnov test (KS-test), 731 

and this procedure was repeated 1000 times for each set value of σ. A conservative noise 732 

level (σ = 10%) was sufficient to smear parameter distributions while the fraction of synthetic 733 

sets that were statistically different from the original set (p < 0.05, KS-test) remained 0 over 734 

1000 iterations. σ = 10% was valid for all relevant features, and we assumed that such a 735 

small noise amplitude would minimally interfere with non-linear correlations in our dataset. 736 

Synthetically generated spines were then used to simulate elementary synaptic signaling 737 

using in-house python scripts. We also used bootstrapping to estimate standard deviations 738 

in our simulations. 739 

 740 

Statistics 741 

No statistical methods were used to predetermine sample size. We used a one-way ANOVA 742 

on our 4 datasets (S1 Table) to test that inter-neuron and inter-mice variability were small 743 

enough to pool all datasets together (S2 Table). We used Kolmogorov-Smirnov test to 744 

determine that all measured morphological parameters followed a log-normal distribution (S2 745 

Table). We used Mann–Whitney U test for statistical analyses of morphological parameters, 746 

except when comparing the probability for SiSs and DiSs to harbor SA, for which we used 747 

Pearson’s χ2 test. All results in the text are mean ± SD. In Fig 6,Fig 7 and Fig 9, we plot 748 
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medians as solid lines, as they better describe where log-normal distributions peak. Shaded 749 

areas represent 68% confidence intervals, which span approximately one standard deviation 750 

on each side of the mean. 751 
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 1226 

FIGURE LEGENDS 1227 

Fig 1. CLEM imaging of identified spines within intact cortical circuits. 1228 

(A) Visualization of basal dendrites of a pyramidal neuron expressing cytosolic TdTomato in 1229 

L2/3 of adult mouse SSC. DAB was photo-precipitated using focused UV light to insert 1230 

correlative landmarks (pink dots in yellow circles). 1231 

(B) Transmitted light image of the same field of view after DAB photo-precipitation. DAB 1232 

precipitates are highlighted with yellow circles. Blood vessels are outlined with purple 1233 

dashed lines. 1234 

(C) Composite scanning EM (SEM) image displaying DAB patterning at the depth of the 1235 

neuron of interest (yellow circles). Slight mismatch between LM and SEM observation planes 1236 

resulted in DAB landmarks appearing in different z-planes during block-facing; the white line 1237 

represents stitching between z-shifted images. In C1, landmarks are arranged as in B. C2 is 1238 

a close-up on the soma of the electroporated neuron, labelled with three DAB landmarks 1239 

(arrowheads). C3 corresponds to an orthogonal (x,z) view of the SEM stack along the green 1240 

dashed line in C2. The superficial DAB layer enabled ROI targeting, and the deeper layer 1241 

enabled retrospective identification of the target neuron. 1242 

(D) 3D-reconstruction of dendrites of interest from the overview SEM stack. DAB landmarks 1243 

are reconstructed in blue (in yellow circles). The red rectangle outlines the portion of dendrite 1244 

represented in E and F. 1245 

(E) Z-projection of the confocal stack corresponding to the portion of dendrite reconstructed 1246 

in D. Letters identify individual spines. 1247 

(F) 3D-EM reconstruction. Individual dendritic spines are manually segmented and randomly 1248 

colored. Spines that were detected in EM but not in LM are labelled in red.  1249 

Scale bars: A, B, C1, D: 10 µm; C2, C3: 5 µm; E, F: 2 µm. 1250 

 1251 
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Fig 2. Spine morphometry along basal dendrites of layer 2/3 cortical pyramidal 1252 

neurons.  1253 

(A) 3D-reconstruction of a dendritic spine from a SBEM stack. Dendritic shaft is in light 1254 

green, spine neck in turquoise, spine head in blue and PSD surface in red. The following 1255 

parameters were measured : PSD area, head diameter, neck diameter and neck length. 1256 

Scale bar: 300 nm. 1257 

(B) Linear correlation of PSD area and spine head volume. R2=0.82. 1258 

(C) Plot of the minimal spine neck diameter as a function of spine neck length. Spearman 1259 

correlation coefficient is -0.58. 1260 

(D) Neck length as a function of spine head orientation, as quantified by the ratio of spine 1261 

head diameter (Dhead) over its length (Lhead). Dhead/Lhead < 1 corresponds to a prolate spine 1262 

head, which shape is stretched longitudinally with respect to the neck. Dhead/Lhead > 1 1263 

characterizes an oblate spine head, oriented orthogonally to the neck. The dashed line 1264 

corresponds to Dhead/Lhead = 1. We did not observe any oblate spine with a long neck (non-1265 

existent spine morphology). 1266 

 1267 

Fig 3. Ultrastructural comparison of spines with and without a spine apparatus. 1268 

(A) TEM images of spines either devoid of spine apparatus (SA-, left) or containing a spine 1269 

apparatus (SA+, right, yellow arrowhead). Scale bars: 500nm. 1270 

(B) Proportion of SA- and SA+ spines. Histogram represents mean ± SD, from 390 spines in 1271 

N=8 dendrites. 1272 

(C) Distribution of mean head diameter for SA- and SA+ spines. N=179 and 221, 1273 

respectively (p < 10-38). 1274 

(D) Distribution of ePSD area. (p < 10-40) 1275 

(E) Distribution of mean neck diameter. (p < 10-12) 1276 

(F) Probability of harboring a SA as a function of spine head volume. Blue: experimental 1277 

data. Orange: sigmoid fit. 1278 

(G) Distribution of the diffusional resistance of the spine neck (Wneck) calculated based on 1279 
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neck morphology. (p < 10-5). 1280 

 ***p < 0.001 calculated using Mann-Whitney test. 1281 

 1282 

Fig 4. Identification of excitatory and inhibitory synapse on DiSs using CLEM. 1283 

(A) Confocal image of basal dendrites of a cortical L2/3 PN that was electroporated with 1284 

cytosolic TdTomato and GFP-GPHN to label inhibitory synapses. The magenta rectangle 1285 

outlines the region enlarged in B. 1286 

(B) Enlargement of a portion of the dendrite in A harboring several dendritic spine (lettered). 1287 

Spine “e” contains a cluster of GFP-GPHN (asterisk) and corresponds to a putative dually-1288 

innervated spine (DiS). 1289 

(C) 3D-EM reconstruction of the same dendritic fragment as in B. Dendritic shaft is colored in 1290 

purple; individual spines and PSDs are colored randomly. Spines visible in EM but not in LM 1291 

are labelled in red. The inhibitory PSD (colored in green) on spine “e” is identified based on 1292 

the position of the GFP-GPHN cluster (asterisk in B and C). GFP-GPHN-negative PSDs are 1293 

defined as excitatory. 1294 

(D) 3D-EM reconstruction of spine "e" (yellow) with its presynaptic partners (magenta and 1295 

green). As the “green” axon also targets a neighboring dendritic shaft (blue), it is defined as 1296 

inhibitory. Scale bars: A: 10 µm; B, C, D: 1 µm. 1297 

 1298 

Fig 5. Anatomical properties of DiSs. 1299 

(A) Proportion of spines harboring 0, 1 or 2 synaptic contacts, quantified with CLEM. 1300 

Histograms represent mean ± SD, from 390 spines in N=8 dendrites. 1301 

(B) Quantification of mean spine head diameter for SiSs (blue) and DiSs (red). (p < 10-4). 1302 

(C) Proportion of SiSs and DiSs harboring a SA. (p < 10-10 using Pearson’s χ2 test) 1303 

(D-F) Quantification of neck length (D), the ratio between mean neck diameter and head 1304 

volume (E) and the diffusional neck resistance (Wneck) (F) between SiSs and DiSs (solid 1305 

lines, N=349 and 37, respectively) and between DiSs with SiSs of similar head volume 1306 

(spines with Vhead > 0.05 µm3, dashed lines, N=186 and 34, respectively).  1307 
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(G) Quantification of iPSD area in DiSs and dendritic shafts. N=37 and 62, respectively (p < 1308 

10-6). 1309 

(H) Quantification of ePSD area in SiSs or DiSs. (p < 10-5). 1310 

(I) Plot of iPSD area as a function of ePSD area in individual DiSs. The dashed line (y = x) 1311 

highlights that the ePSD is larger than the iPSD in most of DiSs. N=37. 1312 

p-values were computed using Mann-Whitney test (B, D-H) or Pearson’s χ2 test (C). Only 1313 

significant (p < 0.05) p-values are shown (*p < 0.05; **p < 0.01; ***p < 0.001). 1314 

 1315 

Fig 6. Morphologically-constrained model of synaptic signaling. 1316 

(A) Schematic of the circuit model (A1) and representative time-course of excitatory 1317 

(magenta) and inhibitory (green) conductance based on the kinetics of AMPA, NMDA and 1318 

GABAA receptors (A2). All compartments include passive resistor-capacitor circuits to model 1319 

cell membrane properties and optionally include an active conductance that models voltage-1320 

dependent currents (VDC). All modeled spines feature an excitatory synapse with 1321 

glutamatergic AMPA and NMDA currents. Spines and dendritic compartments can also 1322 

feature an inhibitory synapse with GABAergic currents. All conductances were scaled to 1323 

PSD area (see Methods). 1324 

(B) Simulation of the time-courses of membrane depolarization following an EPSP, taking 1325 

into account spine diversity (i.e. Rneck, ePSD area and distance to soma, as measured in 1326 

CLEM). Membrane voltage is monitored over time in the spine head (blue), in the dendritic 1327 

shaft in front of the spine (orange) and in the soma (green). Median voltage transients are 1328 

plotted as solid lines. Shaded areas represent 68% confidence intervals, which span 1329 

approximately one standard deviation on each side of the mean. 1330 

(C) Amplitude of evoked depolarization (∆Vmax) as a function of ePSD area at three distinct 1331 

locations: head of SiSs (blue) or DiSs (magenta) where the EPSP was elicited, dendritic 1332 

shaft 1 µm from the spine (orange) or soma (green). 1333 
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(D) Attenuation of the amplitude of depolarization between the spine head and the dendrite 1334 

as a function of the resistance of the neck (Rneck). The attenuation was calculated as:                          1335 

α = 1 – ∆Vmax, shaft /∆Vmax, spine. Red cross: mean value of α. 1336 

(E) Estimated amplitude of intracellular calcium concentration transients ∆[Ca2+]max, following 1337 

activation of NMDA receptors and VDCCs as a function of ePSD area. Three spiking outliers 1338 

are not represented. 1339 

 1340 

Fig 7. Effect of the distance between excitatory and inhibitory synapses on the 1341 

integration of coincident EPSPs and IPSPs.  1342 

(A) Sketch: an EPSP was elicited in the spine and an IPSP in the shaft at a distance ∆x from 1343 

the spine. 1344 

(B-C) Voltage inhibition, inhV, calculated in the soma (B) or in the spine head (C) as a 1345 

function of ∆x, for N=3700 iterations of the model. On-path inhibition: ∆x > 0; off-path 1346 

inhibition: ∆x < 0. Solid lines represent medians. Shaded areas represent 68% confidence 1347 

intervals, which span approximately one standard deviation on each side of the mean. 1348 

 1349 

Fig 8. Effect of dendritic and spinous inhibition on EPSPs. 1350 

(A) Sketches: an EPSP (arrow) was elicited in a bootstrapped DiS placed randomly along 1351 

the dendrite, and an IPSP (┬ symbol) was elicited either in the dendritic shaft at ∆x = 0.7 µm 1352 

from the stem of the spine (A1, blue) or directly in the spine head (A2, orange). 1353 

(B-C) Quantification of the inhibitory impact, inhV, in the soma (B) and in the spine head (C) 1354 

for N=3700 iterations of the model. Blue: dendritic inhibition; Orange: spinous inhibition. 1355 

 1356 

Fig 9. Effect of input timing on EPSP and IPSP integration. 1357 

(A) Schematic: excitatory AMPA and NMDA conductances were activated at t=0. The 1358 

inhibitory GABAergic conductance was activated at an interval ∆t before or after the onset of 1359 

excitation. 1360 
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(B) Examples of the time-course of depolarization in the spine head for ∆t = +5 ms (B1) and 1361 

∆t = -5 ms (B2) (purple curves) compared to no inhibition (magenta curves) for ECl- = -80 mV 1362 

and Vrest = -70 mV. Arrows represent the onset of excitatory and inhibitory inputs (magenta 1363 

and green arrows, respectively). �E represents the 80-to-20% decay time (case with no 1364 

inhibition). 1365 

(C) Ratio of 80-to-20% decay time of membrane depolarizations in the presence of inhibition 1366 

(�E+I) over that without inhibition (�E) as a function of ∆t for dendritic (blue) or spinous 1367 

(orange) inhibition. Solid lines represent medians. Shaded areas represent 68% confidence 1368 

intervals, which span approximately one standard deviation on each side of the mean. 1369 

(D) Voltage inhibition in the spine head, inhV, induced by dendritic (blue) or spinous (orange) 1370 

IPSPs as a function of ∆t. 1371 

(E) Inhibition of the calcium influx in the spine head, inh[Ca2+], induced by dendritic (blue) or 1372 

spinous (orange) IPSPs as a function of ∆t.  1373 
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