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Morphologically-filtered power-normalized

cochleograms as robust, biologically inspired

features for ASR
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Ascensión Gallardo-Antolı́n, and Carmen Peláez-Moreno, Member, IEEE

Abstract—In this paper we present advances in the modeling
of the masking behavior of the Human Auditory System (HAS)
to enhance the robustness of the feature extraction stage in Auto-
matic Speech Recognition (ASR). The solution adopted is based
on a non-linear filtering of a spectro-temporal representation
applied simultaneously to both frequency and time domains—as
if it were an image—using mathematical morphology operations.

A particularly important component of this architecture is
the so-called Structuring Element (SE) that in the present
contribution is designed as a single three-dimensional pattern
using physiological facts, in such a way that closely resembles
the masking phenomena taking place in the cochlea. A proper
choice of spectro-temporal representation lends validity to the
model throughout the whole frequency spectrum and intensity
spans assuming the variability of the masking properties of the
HAS in these two domains. The best results were achieved with
the representation introduced as part of the Power Normalized
Cepstral Coefficients (PNCC) together with a spectral subtraction
step.

This method has been tested on Aurora 2, Wall Street Journal
and ISOLET databases including both classical Hidden Markov
Model (HMM) and hybrid Artificial Neural Networks (ANN)-
HMM back-ends. In these, the proposed front-end analysis
provides substantial and significant improvements compared to
baseline techniques: up to 39.5% relative improvement compared
to MFCC, and 18.7% compared to PNCC in the Aurora 2
database.

Index Terms—Spectro-temporal processing, Cochlear masking
models, Morphological filtering, Automatic speech recognition,
Auditory-based features, PNCC.

I. INTRODUCTION

THE remarkable ability of humans in speech recognition

tasks under noisy conditions is still far above that of

machines. In this context, several researchers have proposed

that modeling the Human Auditory System (HAS) may be an

adequate strategy to reduce the gap in performance.

It is well established that feature extraction methods for

ASR need to take into account properties of the HAS to a

certain extent: the well-known Mel-Frequency Cepstral Co-

efficients (MFCC) [1], for example, result from non-linear

transformations of the frequency domain that mimic Fletcher’s

psychophysical transfer function [2], and include a triangular

Fernando de-la-Calle-Silos, Ascensión Gallardo-Antolı́n, and
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filterbank that emulates critical bands in the cochlea. Some

other aspects, like the non-linear perception of sound intensity,

are also incorporated by means of a logarithmic transformation

of the spectrum.

Also widespread, Perceptually-based Linear Prediction

(PLP) [3] is a pragmatic approach to model the auditory pe-

riphery that includes: resampling for frequency warping, bark-

scale filter-bank, limited frequency resolution, pre-emphasis

according to the threshold of hearing, amplitude compression

and smoothing using linear prediction. The computational

complexity of PLP feature extraction is similar to MFCC and

sometimes provides better recognition accuracy.

There are plenty of other feature extraction methods that

take into account the HAS, such as zero crossing peak

amplitude (ZCPA) [4], average localized synchrony detec-

tion (ALSD) [5], perceptual minimum variance distortionless

response (PMVDR) [6], invariant-integration features (IIF)

[7], amplitude modulation spectrogram [8], sparse auditory

reproducing kernel (SPARK) [9] or the well-known RelA-

tive SpecTrAl processing (RASTA) [10] that exploits the

insensibility of human hearing to slowing varying stimuli by

modeling the trend of the auditory periphery to emphasize the

transient portions of incoming signals.

On the other hand, a number of detailed physiological

models were proposed in the 1980s such as Seneff’s auditory

model [11] that mimics the nominal auditory-nerve frequency

by employing 40 recursive linear filters implemented in cas-

cade and also models the nonlinear transduction from the

motion of the basilar membrane to the mean rate of auditory-

nerve spike discharges, Ghitza’s Ensemble Interval Histogram

(EIH) model [12] uses the peripheral auditory model proposed

by Allen [13] to describe the transformation of sound pressure

into the neural rate of firing and focused on the mechanism

used to interpret the neural firing rates, or Lyon’s model [14],

[15] where nonlinear compression, lateral suppression, tempo-

ral effects and correlograms are included.

Although these models do not generally provide improved

performance on clean speech, they obtain better results than

conventional feature extraction methods when speech is de-

graded, for example, with added noise or reverberation. How-

ever, a usually higher computational cost and complexity (with

a large number of parameters to be tuned) have prevented a

more widespread adoption.

PNCCs [16], [17] have been proposed as an alternative to

capture the essentials of the HAS without the complexity of
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full psychoacoustical models. They include the use of a power-

law non-linearity that replaces the traditional logarithmic non-

linearity used in MFCC coefficients and provides a better fit

to the onset portion of the rate-intensity curve developed by

the model of [18], a noise-suppression algorithm based on

asymmetric filtering that suppresses background excitation and

a module that carries out a temporal masking by placing a peak

for each frequency channel and suppressing the instantaneous

power if it falls below that of the envelope. As explained

later in the paper, these features provide dramatic performance

improvements over conventional MFCCs and their spectro-

temporal representation—or cochleogram—will be the base

for our developments.

Other methods also include procedures that emulate HAS

masking: in contrast with PNCC that only includes temporal

masking, simultaneous or frequency masking is considered in

[19] where a frequency-dependent masking threshold is com-

puted, or [20] that performs an estimation of the clean signal

taking into account masking effects. In [21] both temporal

and simultaneous masking are incorporated performing a time-

frequency noise spectral subtraction.

Though most of the algorithms described above include

spectro-temporal notions, these are incorporated in separate

stages of the processing pipeline. The idea of simultaneously

performing temporal and spectral analysis to yield so-called

spectro-temporal features has lately emerged, e.g. spectro-

temporal Gabor features [22], [23], [24], HIerarchical Spectro-

Temporal (HIST) [25], spectro-temporal derivative features

[26] or sparse spectro-temporal features [27]. Auditory-

inspired representations in these domains are reviewed in [28].

Finally, noise robustness techniques are pervasive in ASR,

some of them based on the (partial) suppression of back-

ground noise from the speech signal in a preprocessing stage.

Most of these methods operate on the frequency-domain—

like the already mentioned SS [29], Wiener filtering [30] or

the minimum mean-square error short-time spectral amplitude

estimator [31]—and attempt to enhance the speech signal

without extensive modeling of the HAS properties.

As in these previously mentioned works, we also hypothe-

size that mimicking the Human Auditory System (HAS) may

contribute to improve the performance of ASR systems in

noisy conditions. Specifically, in this paper we model the

masking behavior of the HAS to enhance the robustness of the

feature extraction stage in ASR. Despite ingrained intuitions

that masking deteriorates signal quality, we propound that it

smooths away some noise and artifacts.

The three cornerstones of our procedure are first, the

use of mathematical morphology operations to emulate the

masking processing of the cochlea, second, the design of a

single auditory-inspired three-dimensional mask independent

of frequency and intensity and third, the use of an adequate

underlying spectro-temporal representation of speech such

that the non-linearities in frequency and intensity observed in

the auditory masking phenomena are significantly equalized

licensing a biologically meaningful application of the two

previously mentioned elements.

In particular, our model filters a cochleogram—a spectro-

temporal representation of speech—as if it were an image,

allowing for the simultaneous processing of both dimensions,

time and frequency. The morphological filtering procedure we

propose aims to reproduce the masking properties of the HAS.

For that purpose, the mask—or in mathematical morphology

terminology, the structuring element (SE)—reproduces the

spectro-temporal masking behavior as induced from well-

known empirical measurements. Thus, the design of the SE

is the crux of our approach.

Note that these empirical measurements were either carried

out in the spectral or the temporal domains separately, but

we need to extrapolate this to both dimensions. In this paper,

we present various structuring element designs that aim at

closely resembling the auditory masking phenomena taking

place in the cochlea and we also refine our hypothesis that

morphological filtering produces a smoothing of the spectro-

temporal envelope that better models the masking behavior of

the cochlea.

In [32], [33] we presented some evidence of this using Mor-

phological Filtering of speech spectrograms with a roughly-

approximated SE. Such rough modeling already yielded an

enhancement of the filtered speech both in terms of objective

quality measures and ASR performance. Note that, although

some work has been carried out in the field of morphological

processing of speech spectrograms using dilation across spec-

tral lines to reduce spectral fluctuations [34], such efforts did

not take into account the properties of the HAS.

Finally and for simplicity’s sake, we employ a single mask

across all frequencies and intensities despite the fact that

the masking properties are frequency- and sound intensity-

dependent [35], relying on the underlying spectro-temporal

representation to accommodate these effects. The proper

choice of this representation is essential in our feature ex-

traction method. We have selected the one recently proposed

in [16], [17] as part of the Power-Normalized Cepstral Co-

efficients (PNCC) in combination with conventional Spectral

Subtraction (SS).

In summary, our contribution in this work is the simultane-

ous spectro-temporal emulation of the HAS masking phenom-

ena by Morphological Filtering (MF) operations maintaining a

low computational cost and complexity with very few tuning

parameters. A key aspect is the design of a single bio-inspired

three-dimensional SE that is used across the board unlike

other spectro-temporal techniques that need larger numbers

of different bases as in [22], [23], [24], for example, where a

reduced set of temporal, spectral and spectro-temporal filters

need to be chosen to make it feasible. For this single SE

to remain invariant in frequency and intensity we rely on

an underlying spectro-temporal representation that already

accounts for that variability. In particular, we have borrowed

that of PNCC—even improving the temporal masking there

included—while maintaining a low computational complexity

with respect to the PNCC baseline.

Regarding our previous works, on the one hand, the highly

promising results on the Aurora 2 database noisy continuous

digits task presented in [36] are now illustrated with a greater

detail and, on the other hand, the performance of the proposed

front-end on other different tasks, such as the Wall Street

Journal and ISOLET databases, is also shown. The use of both
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conventional Hidden Markov Model (HMM) systems in the

first two databases and an Artificial Neural Network/Hidden

Markov Model (ANN/HMM) hybrid one on the third database,

underlies the remarkable improvements of this feature extrac-

tion method across different domains and back-ends.

The rest of this paper is organized as follows: Section II

introduces the theory and modeling alternatives for the under-

lying spectro-temporal representation, Section III explains the

theoretical and empirical basis of cochlear masking, Section IV

describes our three-dimensional model of this phenomenon in-

troducing the basic terminology of Mathematical Morphology

and the design of our biologically inspired SE. Finally Section

V presents the results obtained in various datasets followed by

some conclusions and further lines of research in Section VI.

II. SPECTRO-TEMPORAL REPRESENTATION

As highlighted before, the underlying spectro-temporal

representation—the cochleogram—where the morphological

filtering will be applied needs to adopt the necessary frequency

scaling and intensity normalization to allow for a single SE

to be valid across the full spectrum and intensity range.

Since our models have been tested in two different auditory-

motivated frequency-scaled cochleograms S(f, t) known as

Mel-frequency and Power Normalized based spectro-temporal

representations, respectively, next follows a detailed review of

the possible alternatives.

It is widely accepted that the cochlea carries out a log-

arithmic compression of the auditory range whereby higher

frequency intervals are represented with less detail than lower

frequency ranges. This realization stems from experiments to

detect critical bands, the frequency bandwidth around a center

frequency whose components affect the sound level and pitch

perception of the center frequency.

In this light, the notion of an auditory filter-bank relates

three concepts:

• A discretization of a frequency range into N bands.

• A choice of the center of the bands to be related to special

frequencies or frequency ranges in the inner ear, which

entails the definition of a frequency scale.

• A choice of the bandwidths and shapes of the different

filters that takes into consideration the notion of critical

bands.

The use of logarithmic frequency scales eases the conceptu-

alization of phenomena like masking, and we will consider

several scales of logarithmic frequency: Bark, Mel and the

Equivalent Rectangular Bandwidth-induced (ERB) scale.

All of them use methods to calculate the critical bandwidths

at different center frequencies and at the same time define

scales of equal difference in perception of pitches/levels re-

lated to those center frequencies.

1) Critical band and critical-band rate scale: The Bark

scale was first defined by [37]:

Fz(f) =
26.8

1 + 1960
f

− 0.53, (1)

where Fz is in bark units and f in Hz. The cochlear masking

models described in Section III, which are derived from a set

of psychoacoustic experiments, are defined in terms of the

Bark scale.

2) The MEL scale: The Mel scale [38] is a very well-known

logarithmic transformation of the frequency scale:

Fm(f) = 2595 log10

(

1 +
f

700

)

, (2)

where Fm is in mel units and f in Hz. This frequency

transformation is in the core of the most popular ASR feature

extraction procedure, the MFCC, where a filterbank of trian-

gular overlapping filters uniformly distributed in the mel scale

is usually employed. This is one of our choices for testing our

thesis as explained in Section V.

3) ERB and ERB-rate: The ERB was defined in [39], [40]

as a more adjusted measurement of the critical band:

BWERB(f) = 6.23 · f2 +93.39 · f +28.52 (f in kHz). (3)

Based upon these bands a new logarithmic scale may be

defined, the ERB-rate [41]

FERB(f) = 11.17 · log
∣

∣

∣

f+0.312
f+14.675

∣

∣

∣
+ 43.0 (f in kHz), (4)

or the ERB number, [39], [40]:

ERBN (f) = 21.4 log(4.37f + 1). (5)

Alternatively, a filterbank can also be defined in the time

domain by its impulse response, e.g. [42]:

hfc(t) = ktn−1exp(−2πBt)cos(2πfct+ φ), (6)

where k defines the output gain, n is the order of the filter—in

the range 3-5 the filter is a good approximation of the human

auditory filter—, B defines the bandwidth, fc is the filter’s

central frequency and φ is the phase.

This scaling is at the base of the Gammatone filter-bank

used in PNCC, among others, an alternative to the one

employed in MFCC that we will compare in our experiments

(see Section V). According to [43], the impulse response

of the Gammatone function provides an excellent fit to the

human auditory filter shapes allowing a better modeling of

the masking phenomena. Besides, PNCC [16] incorporate a

medium-duration power bias subtraction and a power function

nonlinearity to obtain the cochleogram, S(f, t).
Dashed boxes in Figure 1 contain the block diagrams of the

two spectro-temporal representations considered in this work:

Mel-frequency (left) and Power Normalized (right). The out-

puts of both submodules are the corresponding cochleograms

S(f, t) on which further processing with morphological filters

is applied as explained in subsection IV-C. Note that spectral

subtraction (shadow block after STFT) is not part of the

original mel-frequency and power-normalized representations

computations, but it is included here as a basic denoising

technique (see subsection IV-C).

III. COCHLEAR MASKING EMPIRICAL RESULTS AND

MODELS

The cochlea is the organ that converts the mechanical

vibrations in the middle ear to neural impulses. The basilar
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Fig. 1. Structure of the proposed front-end algorithm for the two spectro-
temporal representations; the dashed boxes contain the submodules corre-
sponding to the mel-frequency (left) and power-normalized (right) repre-
sentations; the shaded blocks (Spectral Subtraction (SS) and Morphological
Filtering (MF)) indicate the differences regarding conventional MFCC-based
and PNCC-based feature extraction.

membrane—the sensing structure that runs the length of the

cochlea—has a particular frequency and time response [44].

Cochlear masking is the phenomenon whereby the percep-

tion of some frequency at a particular time instant, the masked

frequency, is affected by the sound level of another, the masker

frequency—possibly at a different time instant—, to the extent

that masked frequencies may disappear from perception.

A masking tone will be defined as

s(F, t) = Lmδ(F − Fm, t− Tm), (7)

where F is in any of the transformed frequency scales intro-

duced in the previous section, Lm is the sound pressure level

of the tone, Fm and Tm are the masker frequency and time

instant and δ represents the Dirac delta function.

Cochlear masking has been studied as the effect of a

masker on simultaneously masked frequencies, simultaneous

masking, and as the phenomenon whereby a masker affects

non-simultaneous frequencies, temporal masking. Classical

masking experiments concentrated in determining the amount

of masking in either of these directions—frequency or time—

in isolation. But it is important to notice that a given (masked)

frequency is always being masked by maskers at differ-

ent time instants—both from earlier and later maskers—and

frequencies—both from lower and higher frequency maskers.

A. Simultaneous masking

Simultaneous masking is defined as the minimum sound

pressure level of a test sound, probe or signal—normally a

pure tone—that is audible in the presence of a masker. By

varying the frequency of the probe throughout the spectrum,

a masking pattern may be obtained. An experimental fact is

that the shape and sound pressure level Lm of the masker

is quite determinant of the masking pattern. Regarding the

change of masking with masker parameters, [45] noticed that

simultaneous masking is better represented in logarithmic

scales where the spacing and the masker frequency slopes

extend more regularly to either side of the spectrum.

A simultaneous masking model can be extracted from

Fig. 6.14 of [35] by fitting slopes for Lm = 60 dB in the Bark

scale. We assume a constant Lm across all frequencies and

intensities, relying on the underlying spectro-temporal repre-

sentation to accommodate the frequency-intensity dependency

of the masking properties.

B. Temporal masking

Temporal masking has methodologically been treated as two

separate processes: premasking occurs before the appearance

of the masker while postmasking manifests itself after the

masker is no longer present. It is well agreed-upon that pre-

masking is noticeable about 20ms prior to the masker, while

the duration of postmasking extends well beyond 200ms,

perhaps as far as 500ms [32].

Thus, premasking can be modeled as a constant slope of

+25 dB/ms, starting 20ms before the masker. Postmasking can

be modeled with the fitted model for single masker-induced

postmasking presented in [46],

M (t− Tm, Lm) = a
(

b− log (t− Tm)
)(

Lm − c
)

(8)

where M is the amount of masking, t is measured in ms, Lm

is the masker level in dB SPL, and a, b and c are parameters

obtained by fitting the curve to the data. In particular,

• a is related to the slope of the time course of masking.

• b is the logarithmic of the probe-masker delay intercept.

• c is the intercept when masker level is expressed in dBL.

4



C. Smoothed masking responses

As suggested by the previous sections, an idealized masking

model for a masker at (Fm, Tm) could be a cone with the ap-

propriate decays in the (logarithmically-)scaled frequency and

time coordinates. But findings consistently suggest a masking

model that is smooth around (Fm, Tm), with sublinear decays

close to this point and superlinear decays further away [35]:

a sort of apex-smoothed cone.

At this point, it is worth mentioning that it seems that the

masking capabilities of the cochlea co-evolved in the presence

of a noise that has the peculiarity of raising masking thresholds

uniformly, that is, giving a flat frequency response [35].

We hypothesize that at the level of granularity at which

the cochlear response is being observed this phenomenon

is also present, and the masking response of a particu-

lar tone (Fm, Tm) must be the non-linear aggregation of

many masking responses of other neighboring masking tones

(Fm + ∆F, Tm + ∆T ) with ∆T << Tm, ∆F << Fm

which account for the smooth sublinear decay. This would

manifest as a smoothness constraint for models of the masking

response in the neighborhood of (Fm, Tm). This will be used

in Section IV-B to constraint the SE.

IV. A THREE-DIMENSIONAL MODEL OF COCHLEAR

MASKING

A. An overview of morphological processing

Mathematical Morphology is a theory for the analysis of

spatial structures [47] whose main application domain is in

Image Processing as a tool for thinning, pruning, structure

enhancement, object marking, segmentation and noise filter-

ing [48]. It may be used on both binary and grey-scale images.

To perform MF operations, we first convolve the image

with a structuring element and then select the output value

depending on the thresholded result of the convolution. In this

paper, we apply MF on cochleograms, our underlying spectro-

temporal representation, that will be processed as if they were

images. This spectro-temporal representation is explained on

Section II.

With the proper choice of SE, morphological operations

on the cochleogram reproduce the phenomenon of auditory

masking where the most prominent or salient elements of the

cochleogram mask their surroundings in both the temporal and

frequency domain.

Erosion and dilation are the basic morphological operations.

Erosion is used to reduce objects, while dilation produces an

enlargement and fills in small holes. Let S be the underlying

spectro-temporal representation and M the three-dimensional

structuring element, erosion is defined as: S⊖M and dilation:

S ⊕M .

Erosion and dilation with a general structuring element

require relatively simple algorithms and there are fast imple-

mentations that allow us to perform such operations efficiently.

For gray-scale images, erosion is the minimum over the

structuring element and dilation the maximum, respectively.

For a pixel at (n, k) where n is the frequency bin and k the

time step these operations can be defined as follows:

(S ⊖M)(n, k) = min
(φ,τ)∈R2

{S(n, k)−M(n− φ, k − τ)}

(S ⊕M)(n, k) = max
(φ,τ)∈R2

{S(n, k) +M(n− φ, k − τ)},

where (φ, τ) ranges over the domain of definition of M .

There are two possible operators generated by the combina-

tion of erosion and dilation using the same structuring element

for both operations: opening (S ◦M ) and closing (S •M ). The

first one is an erosion followed by a dilation and the second,

a dilation followed by an erosion. Mathematically it can be

expressed as:

S ◦M = (S ⊖M)⊕M, (9)

S •M = (S ⊕M)⊖M. (10)

The opening operator tends to remove the outer tiny leaks

and round shapes, whereas the closing operator preserves the

regions that have a similar shape as the structuring element.

Previous experiments [32] show that closing performs better

for ASR than opening.

For producing the final masked cochleogram S′, first the

closing operator is applied on the original (possibly de-

noised) spectro-temporal representation S using the structuring

element M and the result is subsequently added on S:

S′ = λS + (1− λ)S •M. (11)

where λ is a configuration parameter that weights both con-

tributions and that has been set to 0.5 in our experiments

(λ = 1 indicates no morphological filtering and corresponds

with our baseline system). From this enhanced cochleogram

S′, mel-frequency or power-normalized based coefficients are

computed following the procedure explained in subsection

IV-C and represented in Figure 1.

B. Structuring element

In this section we describe auditorily motivated structuring

elements that try to emulate the complex phenomenon of

cochlear masking when used in combination with MF. The

SE acts as the cochlea’s response to tone maskers, and the

morphological filtering mechanism reproduces the masking

itself. Three different structuring elements are presented, the

piecewise-linear, piecewise-paraboloid and piecewise-convex

models.

The basic piecewise-linear model for masking can be ob-

served in Figure 2.(a) (continuous blue line). This SE is built

with linear slopes for the simultaneous masking model and the

logarithmic model of Equation 8 for the temporal masking. In

this model, referred to as the idealized model of masking in

Section III-C, the SE for a single frequency-time point at (n, k)
is not smooth.

To be consistent with the smoothness constraint we created

two new SE based in 3D quadrics, built by aggregating 4

asymmetric quadric quadrants of different parameters centered

at (n, k) fitted to the empirical models in Sections III-A

and III-B.

The piecewise-paraboloid model is built by aggregating

paraboloid quadrants and the piecewise-convex model using
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(a) Simultaneous masking (b) Temporal masking

Fig. 2. Comparison between the piecewise-linear, piecewise-paraboloid and
piecewise-convex models in both frequency (left) and time (right) axes.

Fig. 3. Three-dimensional representation of the piece-wise convex SE. Color
represents the weight of each pixel in the morphological operations. Note how
temporal and simultaneous masking are interpolated by the quadrics over the
parameters suggested by the pure temporal and frequency models mentioned
in in Section III. The asymmetry in the slopes towards higher and lower
frequencies—already used in [32]—reflects the choice of different parameters
to define the hyperboloids in each quadrant. This effect is more evident in the
post-masking than in the pre-masking part of the SE’s skirt.

hyperboloid quadrants. A comparison of the masking response

of these models with the piecewise-linear model projected

onto the time and frequency coordinates can be observed in

Figure 2.

As confirmed by the results in Section V, filtering with the

piecewise-convex obtains the best performance. Different sizes

in both frequency and time scale were tested, and the best per-

formance was obtained by taking 10ms of premasking, 150ms

of postmasking, and 6 bands (in Bark scale) in frequency. The

3D shape of this structuring element can be seen in Figure 3.

Since the cochlear masking model is defined in terms of the

Bark scale but the spectro-temporal representations considered

in this work are related to the Mel (MFCC) or ERB (PNCC)

scales, the appropriate transformations between scales are

applied before the morphological processing. Finally, a nor-

malization between zero and one was applied on the intensity

dimension and the SE was padded with zeros in the negative

time region to center it in the mask around the pixel in which

the morphological closing operation is to be performed.

The SE finally chosen can be seen at the upper left of

Figure 4(a) at scale, along with examples of the output of

some of the processing steps leading to the final cochleogram.

C. Morphological filtering-based front-ends

In this subsection, we describe how the morphological

filtering is embedded in the whole feature extraction process

(a) Noisy Spectrogram S compared with the SE (upper left) .

(b) Spectrogram after morphological filtering, S •M .

(c) Final cochleogram S′ with λ = 0.5 .

Fig. 4. Choice spectrograms output by each step of the architecture.

for automatic speech recognition.

Figure 1 represents the block diagram of the two complete

proposed front-ends based on Mel-frequency (left) and Power

Normalized (right) spectro-temporal representations where the

shadow blocks are our additions to, respectively, conventional

MFCC and PNCC feature extraction: MF and SS. What we

call a masked cochleogram, S′(f, t), is obtained by performing

morphological filtering on S(f, t) using one of the single

structuring elements described in subsection IV-B. As for the

spectral subtraction block, we found synergies with MF under

the MFCC framework in our previous work [32], [33], [49]

that we also confirm in this paper for PNCC (see Section

V). The last two blocks in both schemes carry out the usual

procedure, to de-correlate the resulting filter-bank energies by

means of the Discrete Cosine Transform (DCT), followed by

a Mean and Variance Normalization (MVN).

V. EXPERIMENTAL RESULTS

In this section we present the experiments carried out

on three different datasets: Aurora 2, ISOLET and a noisy

contaminated version of Wall Street Journal.

A. Feature extraction

As mentioned before, two different spectro-temporal rep-

resentations were considered: mel-frequency and power-

normalized cochleograms (see Section II). For either type,
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Fig. 5. Recognition results in terms of WER[%] and 95% confidence intervals using the AURORA 2 dataset (averaged over all sets).

Fig. 6. Recognition results in terms of WER[%] and 95% confidence intervals
using the AURORA 2 dataset (average over all the sets) for the different
structuring elements in combination with spectral subtraction (SS).

speech was analysed using a frame length of 25 ms and a frame

shift of 10 ms. After preemphasis and Hamming windowing an

auditory filter bank analysis was applied over the spectrogram

computed by using the Short-Time Fourier Transform (STFT).

In particular, in the case of the mel-frequency representation,

a set of triangular mel-scaled filters were used, whereas, for

power-normalized cochleograms a bank of 40 gammatone-

shaped filters whose center frequencies are linearly spaced

in the ERB scale between 200 Hz and 4000 Hz was applied,

followed by the PNCC [16] medium-duration power bias

subtraction and power function nonlinearity. In both cases,

in order to decorrelate the filterbank log-energies obtained in

the previous stage, a DCT was computed over them. Cepstral

coefficients C0 to C12 were retained together with their

corresponding delta (∆) and acceleration (∆∆) coefficients

to yield feature vectors of 39 components. Mean and variance

normalizations were applied on each of the components.

When indicated, a conventional SS was employed over the

noisy signal in order to emphasise speech over noise and

MF applied over the corresponding enhanced cochleograms.

Samples of the features files for the different datasets, and

the scripts to replicate the results on the Aurora 2 dataset are

available at [50].

B. AURORA 2 dataset

We used the AURORA 2 dataset [51], to test our model,

and to select the best structuring element. In particular, the

proposed front-ends were tested in mismatched conditions.

AURORA 2 consists of a set of connected digits spoken by

American English speakers and recorded at a sample rate of

8 KHz. The database was contaminated with a selection of

8 different real-world noises (subway, babble, car, exhibition

hall, restaurant, street, airport and train station) at different

Signal-to-Noise Ratios (SNR). In particular, SNRs from 0 dB

to 20 dB with 5 dB step were considered for our experimen-

tation. The recognizer was based on HTK (Hidden Markov

Model Toolkit) software package [52] with the configuration

included in the standard experimental protocol of the database

described in [51], where a standard Gaussian Mixture Model

(GMM)-HMM system with a 16-state word-based HMM and

a 5-state silence model was adopted. As our system was tested

in mismatched conditions, acoustic models were obtained

from the clean training set of the database, whereas test files

correspond to the complete test sets A, B and C.

Recognition results in terms of Word Error Rate (WER)

and their 95% confidence intervals are shown in Figure 5.

These results correspond to several experiments carried out to

study the impact of MF with the SE described in Section IV

applied in isolation or in combination with SS and employing

mel-frequency or power-normalized based spectro-temporal

representations (labeled respectively, as MFCC and PNCC).

We consider first the influence of MF in ASR system

performance with different SEs. From Figure 5, applying

MF only in the frequency domain to simulate simultaneous

masking (results labeled as Simultaneous Model) produces

better results than applying MF only in the temporal domain

(results labeled as Temporal Model). The comparison between

the three three-dimensional SE considered (piecewise-linear,

piecewise-paraboloid and piecewise-convex) indicates that the

last one outperforms the other 3D models as well as the base-

line and the simultaneous and the temporal models for both

spectro-temporal representations and therefore was chosen for

the subsequent experiments. In particular, the application of

MF with the piecewise-convex SE over noisy spectrograms

produces relative error reductions of 16.5% for MFCC and

9.7% for PNCC with respect to the corresponding baselines,

both statistically significant. This suggests that the proposed

model is suitable for representing the robust behavior of the

HAS in the presence of noise.

Furthermore, Figure 6 presents the results obtained em-

ploying the different proposed SE in combination with SS:

the piecewise-convex SE obtained the best performace using
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Fig. 8. Recognition results obtained under different convolutive noise
conditions in terms of ACC[%] using the AURORA 2 dataset.

either MFCC or PNCC. For these reasons, from now on in

this paper, MF will refer to morphology filtering with the

piecewise-convex SE.

Secondly, we also investigated combinations of SS and MF.

As expected, for both spectro-temporal representations, SS

with no MF clearly outperforms the corresponding baselines.

For both, MFCC and PNCC, the joint use of SS and MF im-

proves the recognition rates obtained with SS in a statistically

significant manner. In particular, for MFCC the relative error

reduction achieved by MF+SS with respect to SS is 10.7%

and 24.9% with respect to the baseline. The relative error

reduction obtained with PNCC is 6.2% and 18.7% related to

using only SS and the baseline, respectively. These results

show that a positive synergy exists between the SS and MF

techniques. Other spectral suppression methods like MMSE

[31] and Wiener [30] filtering were also initially tested but

yielded worse results than SS in conjunction with PNCC.

Third, the comparison of both spectro-temporal representa-

tions shows that the different versions of features based on

PNCC (baseline, SS, MF, SS+MF) achieve in all cases better

recognition rates than the corresponding features based on

MFCC. The best combination of PNCC (MF+SS) produces

a relative error reduction of 19.4% with respect to the best

combination of MFCC (MF+SS) and of 39.5% with respect

to the MFCC baseline. Also, it is worth noting that even PNCC

in isolation obtains similar results than the best combination

of MFCC-based features (MF+SS).

Figure 7 and Figure 8 show the recognition Accuracy

(ACC) for each type of noise and SNR. For brevity’s sake,

only the results obtained by the baselines and MF+SS are

shown in these figures. It can be observed that the PNCC

(MF+SS) method achieves the best performance in almost

every noise and SNR conditions. In some cases the MFCC

method (MF+SS) achieves similar results to PNCC as can be

gleaned from Figures 7 (d), (f), (h) and Figure 8 (b). Results

in the presence of convolutional noise as in Figure 8 show no

degradation compared to the results obtained in the presence

of additive noise only.

To conclude, we have achieved a better relative error re-

duction in the AURORA 2 database than some other state-

of-the-art techniques; for instance, 2D-Gabor features based

on power-normalized spectrograms achieve a relative error

reduction of only 7.04% compared to PNCC using a HMM

back-end [23].

Fig. 9. Recognition results in terms of WER[%] and 95% confidence intervals
using the ISOLET dataset (average over all the noises and SNR, tested in
mismatched conditions).

C. ISOLET dataset

In this section, we present the experiments carried out on

the ISOLET database [53]. This database consists of 7 800

English alphabet spoken letters (two productions of each letter

per each of the 150 speakers) at a sample rate of 16 KHz.

Specifically, we used a version of this database called noisy-

ISOLET [54] where the original ISOLET was contaminated

with 8 different noise types from the NOISEX database at

several SNRs (clean, 0, 5, 10, 15 and 20 dB). The noise types

are: speech babble, factory noises 1 and 2, car, pink, F-16

cockpit, destroyer operations room and military vehicle noise.

The experiments were performed using the ISOLET testbed

described in [54]. In particular, we trained a hybrid MultiLayer

Perceptron (MLP)-HMM system [55] using a context of 5

frames to yield an MLP input dimension of 195 and only one

hidden layer is employed. We employed the Quicknet multi-

layer perceptron (MLP) package for acoustic modeling [56].

This system was tested in mismatched conditions where

the system is trained using clean speech and the test set

consists of speech contaminated with a balanced combination

of the previously mentioned noises at several SNRs. A 5-fold

leave-one-out procedure was used to improve the statistical

significance of the results. The corresponding recognition

results in terms of WER and their 95% confidence intervals

are shown in Figure 9.

We obtained similar results to those using the AURORA

2 dataset, as can be seen in Figure 9 where, first, SS alone

(without MF) clearly outperforms the corresponding baselines

for both types of spectro-temporal representation (MFCC and

PNCC-based). Second, the application of MF increases the

recognition rates with respect to the corresponding baselines

for both representations. Third, the joint use of SS and MF im-

proves the recognition rates obtained with SS in a statistically

significant manner. And last, the PNCC features (baseline, SS,

MF, SS+MF) achieve in all cases better recognition rates than

the corresponding features based on MFCC.

With this set of experiments we have shown that the

proposed front-ends achieve also good results in hybrid ASR

systems. Besides, in comparison with our previous work over

the ISOLET database [32], it can be observed that we have

successfully improved the design of the three-dimensional SE

by means of the incorporation of perceptual facts, yielding

better results.
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Fig. 7. Recognition results obtained under different additive noise conditions in terms of ACC[%] using the AURORA 2 dataset.

D. WSJ0 dataset

In this section, we present the experiments carried out on the

Wall Street Journal (WSJ) database, consisting of read speech

from a machine-readable corpus of WSJ news text [57]. The

experiments were performed using the Hidden Markov Model

Toolkit (HTK) recipe described in [58], employing a tri-gram

language model with 5k vocabulary size and the Carnegie

Mellon University (CMU) pronunciation dictionary.

To test the robustness of the different methods we used

the same four standard testing environments as [17]: (1)

white noise, (2) noise recorded live on urban streets, (3)

single-speaker interference and (4) background music. The

street noise was recorded on streets with steady but moderate

traffic. The masking signal used for single-speaker-interference

experiments consisted of other utterances drawn from the same

database as the target speech, and background music was

selected from music segments from the original Defense Ad-

vanced Research Projects Agency (DARPA) Hub 4 Broadcast

News database.

For training the acoustic models, we used the WSJ0 SI-

84 training set which contains 7 308 clean recordings (14 h).

The different front-ends were tested on noisy versions of the

WSJ0 5K test set, obtained by digitally adding the previously

mentioned noises—white, street, speaker and music—to the

corresponding clean speech at four different SNRs using the

FaNT tool [59] (with G.712 filtering). All the noise tests are

evaluated in mismatched conditions (that is, training on clean

speech and testing on noisy speech).

Recognition results in terms of WER and their 95% confi-

dence intervals are shown in Figure 10. These results corre-

spond to the average over all the noises and SNR conditions

outlined above. The performances of our systems on clean

speech employing the WSJ0 5K test set are: 5.36% WER for

MFCC and 6.67% WER for PNCC.

Figure 11 shows the recognition Accuracy (ACC) for each

type of noise and SNR. For brevity’s sake only the results

Fig. 10. Recognition results in terms of WER[%] and 95% confidence
intervals using a noisy contaminated version of the WSJ0 dataset (average
over all the noises and SNR).

obtained by the baselines and MF+SS are shown in these

figures.

Figure 10 shows that: (1) The PNCC spectral representa-

tion baseline clearly outperforms the corresponding MFCC

baseline; (2) the application of MF improves the baseline

recognition rates but not in a significant way for the PNCC

case; (3) the joint use of SS and MF improves the recog-

nition rates obtained with SS and with the baseline in a

statistically significant manner for both representations; (4)

the PNCC (baseline, SS, MF, SS+MF) achieve in all cases

better recognition rates than the corresponding features based

on MFCC, and (5) the improvements in the WSJ0 dataset are

lower than the AURORA and ISOLET datasets. We suggest

that this reduction is due to the larger size of the database and

the influence of the language models in the acoustic decoding

process.

Note also, from Figure 11, that the PNCC (MF+SS) method

achieves the best performance in every noise and SNR condi-

tions. The improvement in white noise in Figure 11 (a), and

speaker noise in Figure 11 (c) conditions are particularly worth
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Fig. 11. Recognition results obtained under different additive noise conditions in terms of ACC[%] using the WSJ0 dataset

TABLE I
AVERAGE RUNTIME PER UTTERANCE FOR THE DIFFERENT METHODS

OVER ALL TESTING SETS ON THE AURORA 2 DATASET.

Method Time (ms) % from baseline

MFCC Baseline 19.66 –
MFCC + SS 26.98 37.23 %
MFCC + MF 21.84 11.80 %
MFCC + MF + SS 28.82 46.59 %
PNCC Baseline 67.93 –
PNCC+ SS 85.69 26.14 %
PNCC + MF 69.45 2.23 %
PNCC + MF + SS 87.06 28.16 %

noticing, since the proposed method clearly outperforms the

PNCC baseline.

E. Computational complexity

Table I shows a comparison of the runtime for the different

methods under different conditions (clean and noisy speech),

using a workstation with 3.4 GHz Intel Core i7 and 16 GB of

RAM memory. The running times were obtained by averaging

each of the utterances over all testing sets on the AURORA

2 dataset. The extra time added by MF is relatively low for

either MFCC or PNCC. It is worth noting that the time spent

by MFCC + MF + SS is below the PNCC baseline, despite

obtaining similar results in almost every noisy condition.

VI. CONCLUSIONS AND FURTHER WORK

In this paper we present an enhanced, perceptually-

motivated SE for morphological filtering of speech that models

the complexity of HAS masking properties.Well-known empir-

ical data in either temporal or frequency domains were inter-

polated to produce a three-dimensional SE for morphological

filtering. A smoothness constraint was imposed since this is

more suited for our hypothesis that the morphological closing

operation produces a convexification of the spectro-temporal

envelope of speech that models the masking properties of the

HAS.

Despite ingrained intuitions that this imitation of audi-

tory masking degrades the quality of the extracted features

producing a blurring effect, the results we have obtained

indicate that it could be in fact a sophisticated mechanism

for selecting the most important parts of the spectrum from an

intelligibility point of view, taking away irrelevant information

and emphasizing the most robust parts of the spectrum.

The application of morphological processing with this SE

in conjunction with the Power-Normalized spectro-temporal

representation produces a significant increase in recognition

rates in Aurora 2, ISOLET and a noisy contaminated version

of the Wall Street Journal datasets. Also the results show that

our method improves the recognition rates in both hybrid and

traditional HMM based back-ends. To reach these results we

have tested the combination of PNCC, spectral subtraction and

morphological processing.

Future work will focus on the introduction of the depen-

dency of the masker strength into morphological filtering and

its interaction with alternative acoustic models such as those

based on Deep Neural Networks (DNN).
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