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FRONTIER LETTER Open Access

Morphology and dynamics of daytime mid-
latitude sporadic-E patches revealed by GPS
total electron content observations in Japan
Jun Maeda1,2 and Kosuke Heki1*

Abstract

Morphological characteristics of daytime mid-latitude sporadic-E (Es) patches are studied by two-dimensional total

electron content (TEC) maps drawn using the Japanese dense network of Global Positioning System (GPS) receivers.

By analyzing over 70 cases, we found that their horizontal shapes are characterized by frontal structure typically

elongated in east-west by ~100 km. They are observed to migrate mainly northward in the morning and

southward in the afternoon with speeds of 30–100 m/s. This may reflect the velocities of neutral winds controlled

by the atmospheric tides. Such frontal structures are often found to include smaller scale structures.
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Findings

Introduction

Sporadic-E (Es) is a thin densely ionized plasma patch,

and its occurrence is highly unpredictable. It often ap-

pears in the E region of the ionosphere most frequently

during the local summer in mid-latitude regions (White-

head 1989, and references therein). Microwave signals

from global navigation satellite system (GNSS), such as

Global Positioning System (GPS), satellites penetrate the

ionosphere, and Es sometimes degrades their positioning

performance by exerting anomalous ionospheric delays.

Es also causes unusual long-distance propagation of very

high frequency (VHF) waves.

Since its discovery, the structure of Es has drawn the

attention of investigators. Its two-dimensional (2-D)

horizontal shape, however, has long remained ambiguous

due to the lack of appropriate observation instruments.

GPS radio occultation (GPS-RO) has revealed the spatial

distribution of Es patches at a global scale (Wu et al.

2005; Arras et al. 2008), but its horizontal spatial reso-

lution was not high enough to image individual patches.

With ground-based radar observations, 2-D horizontal

shapes of nighttime Es have been imaged (Hysell et al.

2002, 2004; Larsen et al. 2007). For example, Hysell

et al. (2009) used a coherent scatter radar (CSR) at St.

Croix, US Virgin Islands, the Caribbean Sea, to observe

Es. They revealed horizontal structures of field-aligned

irregularities (FAIs) possibly embedded in Es. These

structures are elongated in E-W and/or NW-SE and drift

perpendicular to the elongation azimuth. In recent years,

Kurihara et al. (2010) have revealed the 2-D image of an

Es patch by the magnesium ion imager on board a

rocket flying over southwestern Japan. The patch had a

horizontal dimension of 30 × 10 km and showed elong-

ation in NW-SE. Recently, Maeda and Heki (2014) suc-

ceeded in the 2-D imaging of daytime mid-latitude Es

with total electron content (TEC) observations from a

dense network of GPS receivers in Japan. They showed

several images of clear frontal structures extending in E-

W over 100 km.

Numerical simulations suggested that Es patches are

preferably aligned in NW-SE and propagate southwest-

ward in the Northern Hemisphere (Cosgrove and Tsunoda

2002, 2004; Yokoyama et al. 2009). However, there have

not been a sufficient enough number of observations of

the horizontal structures, temporal evolution, and drifts of

Es to substantiate such simulation results.

Widely accepted generation mechanisms of Es under the

presence of vertical shear of zonal winds include atmos-

pheric gravity waves (Woodman et al. 1991; Didebulidze
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and Lomidze 2010; Chu et al. 2011; Liu et al. 2014), shear

instability (Larsen 2000; Bernhardt 2002; Larsen et al. 2007;

Hysell et al. 2009), and the Es-layer instability (Cosgrove

and Tsunoda 2002, 2004). At the moment, it is difficult to

tell which mechanism is dominant because of the scarcity

of observed cases. Hence, studies of morphology and dy-

namics of Es, e.g., horizontal shapes and movements, are

indispensable to discuss their generation mechanisms.

There have been no observations of FAIs in daytime Es

with ground-based radars. Thus, their observations are es-

pecially valuable. In this paper, we discuss large-scale struc-

tures (horizontal scales of tens to several hundreds of

kilometers) of daytime mid-latitude Es patches. Over ~70

Es events during 2010, with a few additional events in 2011

and 2013, are analyzed based on GPS-TEC observations to

characterize their morphology and dynamics.

GNSS data analyses

The electron density in intensely ionized Es patches, e.g.,

those with critical frequency of the Es layer (foEs) over

16 MHz, can exceed the peak density in the F region of

the ionosphere. It causes extra ionospheric delays of mi-

crowaves and can be detected with TEC observations

with dual-frequency GNSS receivers (Maeda and Heki

2014). In this study, we analyzed the data from the

GNSS Earth Observation Network (GEONET), com-

posed of ~1200 continuously operating receivers in

Japan. GEONET is operated by the Geospatial Informa-

tion Authority of Japan, and the raw data are available

online for registered users (terras.gsi.go.jp). Spatial reso-

lution of a TEC map is 15–25 km as a result of horizon-

tal separations of GNSS stations (Fig. 1). The time

resolution is 30 s.

In this study, we used only GPS (the American GNSS)

data because most GEONET receivers tracked only GPS

satellites in 2010. GPS satellites transmit two microwave

carriers, i.e., ~1.5 GHz (L1) and ~1.2 GHz (L2). We cal-

culated the phase differences between L1 and L2

expressed in length, with which we can monitor changes

of TEC along the line of sight (LOS); this is called slant

Fig. 1 Vertical TEC anomaly maps showing Es patches that appeared in three different latitude regions, a Wakkanai ~45 N, b Kokubunji ~35 N,

and c Yamagawa ~30 N. Frontal structures are commonly seen although their lengths range from 100−500 km. A typical example of frontal

structure movement perpendicular to the elongation, north-northeastward in this case, is shown in (d). Local time (LT) in Japan is ahead of the

universal time (UT) by 9 h
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TEC (STEC). In STEC time series, Es patches are recog-

nized as short positive pulses (Maeda and Heki 2014).

They are clearly recognizable during daytime (Fig. 2a).

During nighttime, however, medium-scale traveling

ionospheric disturbances (MSTIDs) frequently occur

and often make it difficult to identify such Es signatures.

We therefore treat only daytime Es in this study.

We modeled the long-period changes of STEC assum-

ing that the vertical TEC (VTEC) obeys a cubic polyno-

mial of time and estimated their coefficients together

with phase ambiguities following the method of Ozeki

and Heki (2010). The residuals are converted to VTEC

(we call them VTEC anomalies) by multiplying with the

cosine of the incident angle of LOS with a thin layer at

the ionospheric E-region altitude (100 km). The coordi-

nates of the ionospheric pierce points (IPPs) were also

calculated assuming a thin layer as high as 100 km. To

image horizontal structures of Es, we plotted the VTEC

anomalies on their sub-ionospheric points (SIPs), ground

projections of IPPs (Fig. 1).

Altitudes of anomalies are confirmed to be in the E re-

gion of the ionosphere by matching the images of Es

patches drawn with multiple satellites (see Fig. 3 in

Maeda and Heki 2014). After these processes, we studied

morphological characteristics of horizontal structures,

i.e., length, width, elongation azimuth, and their migra-

tion velocities, read by eye using 5 min snapshots like

those shown in Fig. 3. We consider that they include

reading errors approximately 25 km and 10° for length

and azimuth of the Es patches, respectively.

Observation results

2-D horizontal structures

Figure 1a–c shows VTEC anomaly maps with Es patches

in three areas of different geographic latitudes, namely

(a) Wakkanai, ~45 N, (b) Kokubunji, ~35 N, and (c)

Yamagawa, ~30 N. There the National Institute of Infor-

mation and Communications Technology has been oper-

ating ionosondes for decades. We first searched intense

Es (foEs > 16 MHz) in their foEs data sets in order to

make up a list of events to be studied with the GPS-TEC

method.

In each panel of Fig. 1, three satellites or more are

used to realize extensive and dense spatial coverage of

SIP. Red dots represent positive VTEC anomalies and

possibly show 2-D horizontal structures of Es patches.

Figure 1a–c suggests that the frontal structure is com-

monly seen for intensely ionized daytime Es patches in

this latitude range. The Es patch in Fig. 1b is elongated

in E-W by ~500 km with a gentle curvature. The other

two cases (Fig. 1a, c) show lengths of 150–200 km. Their

N-S widths are in the range of 10–30 km. Maeda and

Heki (2014) estimated the thickness of the layer with

peak electron density by comparing the amplitudes of

the VTEC anomaly and foEs. In the cases shown in

Fig. 1, they are ~1 km (Fig. 1a–c) and ~2 km (Fig. 1d).

Fig. 2 a STEC time series showing dominant TEC anomalies accompanied by several small positive peaks (indicated by red arrows). Because this

Es patch was moving southward, the period earlier than 01:15 UT represents the front side of the structure. b VTEC anomaly map at 01:15 UT,

showing a patchy frontal structure elongated in E-W. c SIP positions with satellite 12 and the three GPS stations at 01:15 UT. Satellite 12 moved

northward across the Es in the time window of a
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Small-scale sub-structure

Smaller scale structures with horizontal-scale size of a

few kilometers are also found by examining raw STEC

time series. We here examine the case shown in Fig. 1a

(northern Japan). Figure 2a shows STEC time series ob-

tained by satellite 12 and three GPS stations. There we

can see a large positive anomaly around 01:15 universal

time (UT) (vertical gray line) at each GPS station. At this

moment, a clear E-W elongated frontal structure was

drifting southward (Fig. 2b) while IPP of satellite 12 was

moving northward (Fig. 2c). Hence, the STEC changes

in Fig. 2a show the structure in the N-S cross section of

the frontal structure, and the changes before and after

the peak at 01:15 UT reflect the structures at front and

rear sides, respectively.

In addition to the main anomaly at 01:15 UT, quasi-

periodic (QP) TEC enhancements can be seen as smaller

positive peaks (red arrows). They are mainly seen at the

rear side of the primary structure. The QP TEC signa-

tures are clearer at stations 0778 and 0849 than at 0102,

suggesting further development of internal structure in

the central and eastern part of the Es front. The

horizontal size and spacing of small plasma patches

within the frontal structure are ~4 km and 20–25 km,

respectively.

Migration and rapid change in shape

Figure 1d shows snapshots at four time epochs and the

movement of an Es patch with typical frontal structure.

Although its eastern and western ends are out of the

GEONET coverage, its northward migration can be seen.

Such movements perpendicular to the elongation are

often observed.

Figure 3a shows snapshots of a VTEC anomaly map

taken every 5 min during 08:00–08:35 UT. Two separate

frontal structures, labeled as A and B in the third snap-

shot, are seen above the southwestern and central Japan,

respectively. Their elongation directions at 08:10 UT are

different, i.e., the structure A extends in E-W while the

structure B extends in NE-SW. Structure A is the lon-

gest (~200 km) at 08:03 UT (Fig. 3b) while structure B is

the longest (~400 km) at 08:12 UT (Fig. 3c).

The two structures show rather rapid changes in shape.

During 08:00–08:10 UT, they behave in a seesaw manner,

i.e., structure A becomes obscure while structure B be-

comes clearer and vice versa. Structure A repeats cycles of

appearance and decay, e.g., it is clear at 08:00–08:10 UT

but becomes obscure 5 min later (08:15 UT). The elong-

ation azimuth of structure A changed from E-W to NW-

SE around 08:20 UT and then to WNW-ESE during

08:30–08:35 UT. After 08:35 UT, it became obscure.

Fig. 3 a 5 min snapshots of vertical TEC anomaly map in the period 08:00–08:35 UT (LT = UT + 9). Simultaneous occurrence of two frontal

structures can be seen over the southwestern and central part of Japan, which are labeled as A and B in the snapshot at 08:10 UT, respectively.

The enlarged images of the structures A and B at their maximum lengths are shown in b and c, respectively
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Structure B was more stable during 08:05–08:25 UT.

Its elongation azimuth remained ENE-WSW, and its

length hardly changed. After 08:30 UT, however, struc-

ture B dissolved into small patches. At 08:35 UT, it split

into two small frontal structures (boundary ~138 E) run-

ning parallel with each other.

Statistical characteristics

Figure 4 shows the distributions of (a) elongation azi-

muth, (b) length, and (c) speed of elongation-normal mi-

gration of 71 Es patches with frontal structures found in

2010. The rose diagram (Fig. 4a) shows a preferred

elongation in E-W. The histogram (Fig. 4b) shows that

the lengths of the frontal structures range from 50 to

500 km with the average of ~160 km. The median is

~100 km, and smaller distribution peaks exist at ~250

and ~450 km.

Figure 4c shows the migration speed normal to the

elongation azimuths. There we neglected the movements

in the elongation direction because they cannot be

clearly distinguished from the temporal growth of Es

patches in the elongation direction. Because the struc-

tures are elongated preferably in E-W, their migration

directions are either northward or southward. Figure 4c

suggests that the speeds range from 30 to 100 m/s with

the average of ~60 m/s for both directions.

Preferred time of occurrences and migration directions

Figure 5 shows local time dependence of the number of

Es frontal structures observed in 2010 and their elong-

ation-normal movements (classified simply as northward

or southward). Numbers of northward- and southward-

moving Es patches are shown by orange and gray colors,

respectively. Here, we exclude Es observed in the north-

ern and southern Japan, and discuss 24 cases observed

over the central part of Japan where a larger latitudinal

coverage of densely distributed GNSS stations allows de-

tailed analyses of the migration of Es patches (Fig. 1b).

There we also show the hourly occurrence rates of

strong Es (foEs > 10 MHz) observed by the Kokubunji

ionosonde during 2010 and during 2003–2012. The

Kokubunji ionosonde (35.71 N, 139.49 E) is also in the

central part of Japan.

The histogram in Fig. 5 suggests that Es patches move

mainly northward in 10–14 local time (LT) and mainly

southward in 17–19 LT. The Es occurrence rates from

Fig. 4 Histograms showing the distributions of a elongation azimuth, b length, and c migration speed of Es patches with frontal structures observed

in 2010. They are typically elongated in E-W with the median length of ~100 km b. In c, N-S components of the migration velocities are shown. They

are distributed in the range of 30–100 m/s with the average of 60 m/s
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the ionosonde during 2003–2012 show maxima around

10 and 17 LT and a minimum of 13–15 LT. The peak in

northward moving Es from GPS-TEC lags behind the

morning peak of the Es occurrence rate from the iono-

sonde by ~2 h. The same is true for the minimum oc-

currence hour in the afternoon. The peak of southward

movement from GPS-TEC coincides with that of the oc-

currence rate from the ionosonde. The distribution of

the occurrence hour from the ionosonde during 2010,

the same period as the GPS-TEC study, shows morning

peaks at 10 and 12 LT followed by a drop of 13–15 LT

and the evening peak at 17 LT. The peaks of northward

and southward drifts coincide with those of the morning

and evening peaks of the Es occurrence hours in 2010.

Discussion

Horizontal shapes and dynamics of Es patches

By mapping VTEC anomalies from a dense network of

continuous GNSS receivers, we found that Es patches

have frontal structures elongated in E-W over the entire

latitude range studied here (Fig. 1a–c). In fact, no frontal

structures elongated in N-S have been observed (Fig. 4a).

As already described in the ‘Introduction’ section, 2-D

horizontal images of nighttime Es patches have been

studied by CSR and rocket experiments, and Larsen

et al. (2007) showed 30–100 km-scale banded structures

aligned typically in E-W and/or NW-SE. They also ana-

lyzed the motions of these Es patches by consecutive

radar images and found dominant north- and southward

movements. Their observations are consistent with our

results on the large-scale structure (Fig. 4c).

The mechanisms responsible for such structures are

not clear, but zonal winds may be related to the elong-

ation azimuths. Es layers in mid-latitude regions are

considered to be formed under vertical wind shear

(Whitehead 1989). Vertical shear of zonal winds drives

upward and downward ion motions from layers below

and above the Es height, respectively (Larsen et al. 1998;

Larsen 2002; Haldoupis 2012). The E-W elongation of

frontal structures may reflect the shape of the region

where vertical shear of zonal winds exist.

Small-scale structures

Frontal structures are inhabited by several kinds of

smaller scale irregularities, e.g., plasma blobs with meter

to kilometer scales (Maruyama et al. 2000; Hysell et al.

2013). In Fig. 2, we showed that such small-scale plasma

blobs do exist within a frontal structure. Kurihara et al.

(2010) showed that the frontal shape of plasma blobs

aligned in NW-SE with a horizontal scale of 30 × 10 km.

Three-dimensional structures of QP echoes associated

with mid-latitude Es are observed by MU radar (Saito

et al. 2006). The sizes of the frontal structures shown by

these studies correspond to only a few colored circles in

our TEC maps. Hence, large-scale frontal structures pre-

sented in this study may consist of tiny blobs that also

have small-scale frontal structures.

Such small-scale (kilometer-scale or less) structures

are often observed as QP echoes in the backscatter radar

observations (Yamamoto et al. 1991, 1992, 1994). QP

scintillations found in the VHF radio wave signals from

a geostationary satellite have been attributed to the elec-

tron density gradient in small-scale Es blobs (Maruyama

1991). Their waveforms are morphologically in good

agreement with the QP echoes (Maruyama et al. 2000).

Figure 2a suggests that TEC changes more quickly in

the rear side of the structure (e.g., 0778), and this is

consistent with the QP scintillation events reported by

Maruyama (1991, 1995).

The horizontal scale of small plasma blobs as seen in

the daytime case shown in Fig. 2 is ~4 km, and they are

separated in N-S by 20–25 km. These properties are

similar to those reported by nighttime backscatter radar

observations in QP echo events (Tsunoda et al. 2000;

Hysell et al. 2004; Saito et al. 2005). Local time depend-

ence of the morphological properties of such QP signa-

tures would be an important future issue to be studied

with more daytime Es observations.

Numerical simulations predict southwestward propa-

gation of Es patches aligned in NW-SE (Cosgrove and

Tsunoda 2002, 2004; Yokoyama et al. 2009) during

nighttime, while Es patches observed in this study during

daytime showed preferred elongation in E-W. Es-layer

Fig. 5 Local time dependence of the directions of N-S drifts of Es

patches observed in 2010 (histogram). We only show observations

made in central Japan where GPS-TEC data have a better spatial

coverage and resolution. In the histogram, orange and gray represent the

numbers of northward and southward drifting Es patches, respectively.

Curves show occurrence rates of Es from foEs data during 2003–2012

(dashed) and 2010 (solid) by the Kokubunji ionosonde (we show

only the cases with foEs > 10 MHz)
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instability may not work during daytime because

polarization electric fields generated by the instability

could be shorted out under the presence of relatively high

density of the ambient E-region plasma. Thus, it seems

natural that the daytime Es shows different directional

preference in its horizontal elongation. Other instabilities,

e.g., Kelvin-Helmholtz instability, which has no directional

preference, may play a key role in the formation of small-

scale QP structures observed in the present study.

Larsen et al. (2007) reported complex propagation of

multiple small-scale structures within a banded struc-

ture, e.g., one structure moved toward N-NW while an-

other structure moved eastward simultaneously. The

spatial resolution of our TEC anomaly maps (15–25 km)

is not high enough to image such small-scale plasma

blobs. Enhanced spatial resolution should be pursued in

the future taking advantage of increasing the number of

GNSS other than GPS.

Diversity in dynamics

Simultaneous occurrence and different temporal evolu-

tion of the two frontal-structure Es patches as shown in

Fig. 3 revealed diversity of the time evolution of compli-

cated Es structures. There structure A is shorter in

length and lifetime and changed its shape more rapidly

than structure B. The two structures would have been

created by two different wind shear systems, and the

wind shear around structure A may have been more un-

stable. Their horizontal dimensions would reflect those

of the wind shear.

The GPS-TEC technique can also provide a better un-

derstanding of ionosonde data. Records by multiple

ionosondes in Japan separated by more than 1000 km

often show simultaneous occurrences of Es (enhance-

ment of foEs). It is not clear whether they represent the

appearance of a single large Es structure or just a simul-

taneous appearance of multiple Es structures (From and

Whitehead 1986). Comparison of ionosonde records and

2-D TEC maps would enable us to answer these ques-

tions in the future.

Es migration and atmospheric tides

In Fig. 5, northward movements dominate from late

morning to early afternoon, and southward movements

dominate from late afternoon to evening. The reversal

from southward to northward seems to occur during the

night, but the detail is not clear due to the lack of night-

time Es observations. Tanaka (1979) investigated local

time dependence of the movements of Es patches by

radar backscatter observations. He showed that north-

ward and southward movements are dominant during

12–14 LT and 16–21 LT, respectively. This agrees with

our observations.

Between the periods of northward and southward move-

ments, there is a silent period at ~15 LT. This period

would represent the direction transition of meridional

wind from northward to southward. In fact, Tanaka (1979)

found that the Es drift vectors slowly rotate counterclock-

wise in time, i.e., from northward to westward and then to

southward. The westward drift peaks at around 15 LT,

which roughly coincides with the silent period in Fig. 5

(please remember that we neglect elongation-parallel

movements here).

The northward Es migration in the local morning is

consistent with the E-region horizontal wind vectors at

mid-latitudes inferred from diurnal (Sq) geomagnetic

variation (Kato 1956). Such north- and southward Es

movements might be driven by semidiurnal tide (Maeda

1957; Elford 1959), although the tidal winds are gener-

ally slower than the Es migration speeds observed in our

study. The whole wind system, including the vertical

wind shear responsible for Es generation, might move

together with the global-scale atmospheric tidal winds.

Arras et al. (2009) also showed semidiurnal tidal signa-

ture on the variability of Es occurrences from GPS-RO

data.

The foEs data over a 10-year period in Fig. 5 suggest 8

h periodicities in the Es occurrences. According to

Haldoupis and Pancheva (2006), foEs data show peaks at

6- and 8-h periods in the Es occurrence. They found the

8-h periodicity more regular and significant and attrib-

uted it to atmospheric tides. Both the reversal of Es mi-

gration directions and 8-h Es occurrence periodicity in

Fig. 5 suggest that atmospheric tidal winds may govern

the occurrence and drifts of Es patches.

Role of gravity waves

In addition to atmospheric tides, we should consider

internal gravity waves in discussing the evening south-

ward movement of Es patches. Liu et al. (2014) sug-

gested that strong winds and wind shears are produced

by the nonlinear interactions between gravity waves and

tidal backgrounds. Maeda and Heki (2014) reported the

fragmentation of frontal structure associated with

MSTID passage, i.e., E-W-elongated Es patches dissolved

into smaller wave-like pieces aligned in NW-SE. The

horizontal separation of the pieces is ~40 km, and they

moved southwestward by ~80 m/s in the local evening.

These observations indicate possible interaction of gravity

waves in the destruction of large-scale frontal structure

and following southward migration of small Es pieces.

As shown in Fig. 4c, speeds of Es frontal structure

movements are similar to those of neutral winds and

gravity waves observed in the E region (somewhat faster

than those driven by semidiurnal tides). Further investi-

gations of Es movements are needed to reveal the dy-

namics of the E-region neutral atmosphere. For that
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purpose, we would need simultaneous measurements of

E-region winds by, e.g., rocket experiments, and Es

movements by the GPS-TEC method, under the exist-

ence of strong Es. The refinement of our knowledge as

shown in Fig. 5 would help us investigate the coupling

between the neutral atmosphere and plasma movement

in the ionospheric E region.

Conclusions

We have shown several morphological characteristics

and dynamics of mid-latitude (30 N–45 N) Es patches

by daytime GPS-TEC observations in Japan. This study

can be summarized as follows:

(1). Intensely ionized daytime Es patches show frontal

structures with typical elongation in E-W.

(2). Typical lengths and widths of Es frontal structures

are 50–500 km and 10–30 km, respectively.

(3). Small-scale sub-structures, characterized by QP

TEC signature, are often found to accompany the

main frontal structure.

(4). Northward and southward movements,

perpendicular to the elongation azimuths, are

observed. They are 30–100 m/s with the average of

60 m/s in both directions.

(5). Tidal winds in the neutral atmosphere may control

the migration direction of Es frontal structures.
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