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Cellular membranes are a heterogeneous mix of lipids, proteins and
small molecules. Special groupings enriched in saturated lipids and
cholesterol form liquid-ordered domains, known as “lipid rafts,”
thought to serve as platforms for signaling, trafficking and mater-
ial transport throughout the secretory pathway. Questions remain
as to how the cell maintains small fluid lipid domains, through
time, on a length scale consistent with the fact that no large-scale
phase separation is observed. Motivated by these examples, we
have utilized a combination of mechanical modeling and in vitro
experiments to show that membrane morphology plays a key role
in maintaining small domain sizes and organizing domains in a
model membrane. We demonstrate that lipid domains can adopt a
flat or dimpled morphology, where the latter facilitates a repulsive
interaction that slows coalescence and helps regulate domain size
and tends to laterally organize domains in the membrane.

bilayer mechanics | lipid rafts | membrane morphology

T he plasma and organelle membranes of cells are composed of
a host of different lipids, lipophilic molecules, and membrane

proteins (1). Together, they form a heterogeneous layer capable of
regulating the flow of materials and signals into and out of the cell.
Lipid structure and sterol content play a key role in bilayer organi-
zation, where steric interactions and energetically costly mismatch
of lipid hydrophobic thickness result in a line tension that induces
lateral phase separation (2). Saturated lipids and cholesterol are
sequestered into liquid-ordered (Lo) domains, often known as
“lipid rafts,” distinct from an unsaturated liquid-disordered (Ld)
phase (3–5). Domains whose lipids include saturated sphingolipids
and cholesterol, with sizes in the range of ≈50–500 nm, have been
implicated in a range of biological processes from lateral protein
organization and virus uptake to signaling and plasma-membrane
tension regulation (6–18). In the biological setting, maintenance of
small domain size is thought to arise from a combination of lipid
recycling and energetic barriers to domain coalescence (19–21)
[potentially provided by transmembrane proteins (22)], ostensibly
resulting in a stable distribution of domain sizes. These biological
examples serve as a motivation to better understand the biophys-
ical mechanisms that maintain small lipid domains over time and
pose challenges to the classical theories of phase-separation and
“domain ripening” [such as Cahn–Hilliard kinetics (23)].

A simple physical model that describes the evolution of lipid
domain size and position predicts that domains diffuse and
coalesce, such that the number of domains constantly decreases,
whereas the average domain size constantly increases (23).
Indeed, models of 2D phase separation have been studied in detail
for many physical systems (24–27), and where the phase boundary
is unfavorable and characterized by an energy per unit length (28),
the domain size grows continuously (23, 29, 30). However, mem-
branes can adopt 3D morphologies that affect the kinetics of phase
separation (31–35). In those cases where morphology is consid-
ered as part of the phase separation model, previously uncharac-
terized coalescence kinetics emerge (32). Experimentally, model
membranes have shown that nearly complete phase separation
on the surface of a giant unilamellar vesicle can be reached in
as little as 1 minute (3). With these facts in mind, our central
questions are: How can model membranes that have phase sepa-
rated maintain a distribution of small domain sizes on long time
scales and short length scales? Are there membrane-mediated

(i.e., elastic) forces that inhibit coalescence and spatially organize
domains?

We begin to answer these questions by examining the energetics
of the membrane using a linear elastic model. A phase-separated
membrane is endowed with bending stiffness, membrane tension,
an energetic cost at the phase boundary, and domains of a particu-
lar size. Membrane bending and tension establish a natural length
scale over which a morphological instability develops that switches
domains from a flat to “dimpled” shape, similar to classical Euler
buckling (36) (see Fig. 1). The dimpling instability is size-selective
and “turns on” a membrane-mediated interaction that inhibits
domain coalescence. This transition is a precursor to budding
and is distinct from transitions that require spontaneous curva-
ture. Although variations in membrane composition may change
specific parameter values, the mechanical effects we describe are
generic. Thus, these systems exhibit shape-dependent coarsening
kinetics that are relevant for a broad class of 2D phase-separating
systems. The interaction between domains is a mechanical effect,
and we use a model treating dimpled domains as curved rigid
inclusions to distill the main principles governing this interaction.
Experimentally, we use a model mixture of lipids and cholesterol
to show that such an interaction exists between dimpled domains
and is well approximated by a simple model. We hypothesize that a
combination of lipid recycling (19) and elastic interactions could
serve as a mechanism for the organization of domains and the
maintenance of small domain sizes in cellular membranes.

The first section of the article outlines the energetic contribu-
tions to the mechanical model and predicts the conditions under
which domain dimpling occurs. The second section outlines how
dimpled domains facilitate an elastic interaction and compares the
model interaction to our measurements made in phase-separated
giant unilamellar vesicles.

Elastic Model and Morphological Transitions
The energetics of a lipid domain are dominated by a competition—
on one hand, the applied membrane tension and bending stiffness
both energetically favor a flat domain; on the other hand, the phase
boundary line tension prefers any domain morphology (in 3D)
that reduces the boundary length. We use a continuum mechan-
ical model that couples these effects, relating the energetics of
membrane deformation to domain morphology. As we will show,
this competition results in a morphological transition from a flat to
dimpled domain shape, where 2 dimpled domains are then capable
of interacting elastically.

Lipid domains in a liquid state naturally adopt a circular shape
to minimize the phase boundary length (3), allowing us to for-
mulate our continuum mechanical model in polar coordinates.
We employ a Monge representation, where the membrane mid-
plane is described by a height function h(r) in the limit of
small membrane deformations (i.e., |∇h| < 1). With this height
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Fig. 1. Three-dimensional rendering of a dimpled lipid domain in dimen-
sionless coordinates. For a domain (shown in red), a competition between
bending, membrane tension and phase boundary line tension results in a
morphological transition from a flat to a dimpled state as depicted. The dim-
ple costs bending energy but reduces line tension energy by reducing the
phase boundary length (shown as a white line around the domain). This mor-
phology facilitates interactions between domains that significantly alter the
kinetics of coalescence and lateral lipid organization. The dimensionless pro-
jected domain radius is ρo = ro/λ2, where ro is projected radius, and λ2 is the
elastic decay length.

function, we characterize how membrane tension, bending, spon-
taneous curvature, and line tension all contribute to domain
energetics.

Changes in membrane height alter the projected area of the
membrane and hence do work against the applied membrane
tension, resulting in an increase in energy written as

Gtens = πτ

(∫ ro

0
(∇h1)2rdr +

∫ ∞

ro
(∇h2)2rdr

)
, [1]

where τ is the constant membrane tension, ro is the projected
radius of the domain, h1 is the height function of the domain, and
h2 is the height function of the surrounding membrane (37, 38).
Membrane curvature is penalized by the bending stiffness with a
bending energy written as (37, 39)

Gbend = πκ
(2)
b

(
σ

∫ ro

0
(∇2h1)2rdr +

∫ ∞

ro
(∇2h2)2rdr

)
. [2]

This model allows the domain and surrounding membrane to have
differing stiffnesses, κ

(1)
b and κ

(2)
b respectively, characterized by

the parameter σ = κ
(1)
b /κ

(2)
b , and from this point on we drop the

superscript on κ
(2)
b . Recent experiments suggest that the bending

moduli of a cholesterol-rich domain and the surrounding mem-
brane are approximately equal (5, 40), and hence for simplicity,
we assume that the bending moduli of the 2 regions are equal
(i.e., σ = 1), unless otherwise noted. In addition to bending stiff-
ness, the domain may exhibit a preferred “spontaneous” curvature
due, for instance, to lipid asymmetry (35, 41). The contribution of
domain spontaneous curvature can be simplified to a boundary
integral that couples to the overall curvature field by

Gspont = −2π σκbco

∫ ro

0
(∇2h1)rdr = −2π σκbcoroε, [3]

where co is the spontaneous curvature of the domain, and ε is the
membrane slope at the phase boundary. Furthermore, we assume
the saddle-splay curvature moduli are equal in the 2 regions, yield-
ing no dependence on Gaussian curvature. In principle, this con-
tribution could be accounted for with a boundary term, explored in
detail in supporting information (SI) Appendix. The phase bound-
ary line tension is applied to the projected circumference of the
domain, as shown in Fig. 1, by Gline = 2πroγ, where γ is the energy
per unit length at the phase boundary.

Finally, a constraint must be imposed that relates the actual
domain area, A, to the projected domain radius ro. The ener-
getic cost to change the area per lipid molecule is high [≈50–100
kBT/nm2 where kB = 1.38 × 10−23 J/K and T = 300 K (42)];

hence, we assume the domain area is conserved during any mor-
phological change (see SI Appendix for details). We impose this
constraint using a Lagrange multiplier, τo, with units of tension by

Garea = τo

(
π

∫ ro

0
(∇h1)2rdr + πr2

o − A
)

. [4]

This results in an effective membrane tension within the domain
τ1 = τ + τo, which must be negative to induce dimpling. Examin-
ing the interplay between bending and membrane tension, we see
that 2 natural length scales emerge—within the domain we define
λ1 = √

σκb/τ1, and outside the domain we define λ2 = √
κb/τ.

These length scales allow us to define the relevant dimensionless
parameters in this system.

The total free energy of an elastic domain and its surrounding
membrane is then the sum of these 5 terms, G = Gtens + Gbend +
Gspont + Gline + Garea. Details on all the terms in the free energy
can be found in SI Appendix. With this free energy in hand, we
examine how the morphology of a circular domain evolves as we
tune domain size and the elastic properties of the membrane.

The height field and radius can be rescaled by the elastic decay
lengths such that the Euler–Lagrange equation for the domain can
be written in the parameter-free form ∇2(∇2 +β2)η1 = 0, whereas
the equation for the surrounding membrane is ∇2(∇2 − 1)η2 = 0,
where the dimensionless variables are defined by λ2ηi = hi,
λ2ρ = r, λ2ρo = ro and β = iλ2/λ1. Using the same dimensionless
notation, the energy from line tension and spontaneous curvature
can be written as Gline = 2πκbρoχ and Gspont = −2π σκbερoυo,
with υo = λ2co and χ = γλ2/κb. The dimensionless line ten-
sion, χ, is simply a rescaled version of the line tension γ and is
1 of 2 key parameters that characterize the morphological transi-
tion; the dimensionless domain area, α = A/λ2

2, is the second key
parameter.

The admissible solutions for η1(ρ) and η2(ρ) are zeroth order
Bessel functions J0(βρ) and K0(ρ), respectively, with the bound-
ary conditions |∇η1(0)| = |∇η2(∞)| = 0 and |∇η1(ρo)| =
|∇η2(ρo)| = ε. The boundary slope, ε, is the parameter that indi-
cates the morphology of the domain; ε = 0 indicates a flat domain,
whereas 0 < |ε| � 1 indicates a dimpled domain. The 5 contribu-
tions to membrane deformation energy yield a relatively simple
expression for the total free energy, given by

G = πκbρo

[
ε2

(
σβ

J0(βρo)
J1(βρo)

+ K0(ρo)
K1(ρo)

)
+ 2(χ − εσυo)

]

− κb(σβ2 + 1)
(
πρ2

o − α
)
. [5]

Mechanical equilibrium is enforced by rendering the energy
stationary with respect to the unknown parameters ε, ρo, and β,

∂G
∂ε

= 0,
∂G
∂ρo

= 0,
∂G
∂β

= 0. [6]

These equilibrium equations physically correspond to torque bal-
ance at the phase boundary, lateral force balance at the phase
boundary, and domain area conservation, respectively.

Analysis of the equilibrium equations reveals a second-order
transition at a critical line-tension, χc, as shown in Fig. 2. For
χ less than this critical value, only the flat, trivial solution with
ε = 0 exists. At χc a nontrivial solution describing buckled or dim-
pled morphologies emerges. For zero spontaneous curvature, the
bifurcation is defined by a transcendental characteristic equation

σβ
J0(βρo)
J1(βρo)

+ K0(ρo)
K1(ρo)

= 0, [7]

with β = √
(χc/ρo − 1)/σ and ρo = √

α/π. For a given dimension-
less domain area, α, this defines the critical line tension required
to dimple the domain. In Fig. 2A Inset, this relation is used to
generate a morphological phase diagram that shows where in the
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Fig. 2. Bifurcation diagram for dimpling transition at constant area (dimen-
sionless domain area α = π/4, bending modulus κb = 25 kBT , elastic decay
length λ2 = 500 nm, ratio of bending moduli σ = 1). Constant line tension
and increasing area produces a qualitatively similar graph. (A) At zero spon-
taneous curvature (υo = 0, thin black line) the bifurcation is symmetric, the
upper and lower branches are at the same energy, and the flat domain, ε = 0,
becomes unstable above the critical point (horizontal black dashed line). With
finite spontaneous curvature [υo = 2, co = (250 nm)−1, thick blue line] the
lower energy branch (upper) has nonzero boundary slope for all line tensions,
asymptoting to the zero spontaneous curvature branch. At a line tension
slightly higher than the critical line tension, χc , for the zero spontaneous cur-
vature case, a bifurcation yields a higher energy dimple with the opposite
curvature as υo (indicated by the second vertical dashed line). (Inset) Equilib-
rium phase diagrams for bending moduli ratios of σ = 0.5 (red), σ = 1 (green),
and σ = 2 (blue) (the dashed lines are the approximation of Eq. 8) show-
ing flat (F) and dimpled (D) domains. (B) Energy difference between the flat
and dimpled state, normalized by the bending modulus κb, for domains with
and without spontaneous curvature (υo = 0 → thin black line; υo = 2 →
thick blue line).

space of dimensionless domain area and line tension we find the
discontinuous transition (i.e., bifurcation) from a flat domain to a
dimpled domain. Near the morphological transition the boundary
slope grows as |ε| ∝ √

χ/χc − 1, indicating that a dimple rapidly
deviates from the flat state. The transition is symmetric, in that
both possible dimple curvatures have the same energy, and hence
the domain is equally likely to dimple upwards or downwards. In
the experimentally relevant limit of small dimensionless domain
area, the complexity of Eq. 7 is reduced to

χc
√

α = γc

κb

√
A � 8σ

√
π. [8]

This leads to the conclusion that the dominant parameter gov-
erning domain dimpling at zero spontaneous curvature is χ

√
α.

For a small domain, the dimpling transition is directly regu-
lated by domain area, the bending modulus, and line tension but
only weakly depends on applied membrane tension. Intuitively,
domains dimple when line tension or domain size increase, as
shown in Fig. 2A Inset. Likewise, a decrease in bending stiffness
can also induce dimpling. The effects of applied membrane ten-
sion are weak because the change in projected area upon dimpling
does not lead to a significant energy cost relative to the cost of
bending and line tension.

If membrane elastic properties are fixed (i.e., fixed κb, τ and
γ), the dimpling-induced interactions “turn on” only after a criti-
cal domain size is achieved. This scenario is encountered when 2
domains, too small to dimple on their own, diffusively coalesce
into a larger domain capable of dimpling and hence interact-
ing. Indeed, such a size-selective coalescence mechanism was
observed recently in model membrane vesicles (43). This con-
stitutes a distinct class of coarsening dynamics, where classical
diffusion-limited kinetics are obeyed until the domain size distrib-
ution has matured past the critical size for dimpling—then domain
coalescence is a relatively slow, interaction-limited process.

For the model domain considered in Fig. 2, with area α = π/4
(ro � 250 nm), the critical dimensionless line tension is χc � 13,
corresponding to a critical line tension of γc � 0.65 kBT/nm
(1 kBT/nm = 4.14 pN). This value compares well with theoret-
ical estimates of the line tension (28, 44) and falls squarely in the
range of values from AFM measurements (2), though it is slightly
higher than the value of γ � 0.22 kBT/nm measured via shape
analysis of fully phase-separated vesicles (5) and γ � 0.40 kBT/nm
measured from micropipette aspiration experiments (45). In gen-
eral, measured values of the line tension depend heavily on
bilayer composition, spanning a range of ≈0.05 − 1.5 kBT/nm
(2, 5, 45).

Spontaneous curvature does not affect the Euler–Lagrange
equations and, hence, will not effect the class of equilibrium
membrane shapes. However, domains with zero and nonzero
spontaneous curvature exhibit qualitatively different behavior.
Membranes can be asymmetric with respect to leaflet composition
(6, 46, 47), endowing a domain with potentially large spontaneous
curvature. The energetic contribution from spontaneous curva-
ture takes the form of an additional line tension depending linearly
on the slope taken by the domain boundary, ε. This breaks the
symmetry of the membrane, giving an energetic preference to a
dimple with the same curvature as the spontaneous curvature and
eliminating the trivial ε = 0 solution even at small line tensions.
As line tension increases, a bifurcation produces a second, sta-
ble, higher-energy dimple of the opposite curvature as υo. The
more energetically stable branch of this transition corresponds to
a dimpled state for all values of line tension and nonzero values of
domain area, as demonstrated in Fig. 2A. This predicts that as soon
as a domain with finite spontaneous curvature forms, it dimples,
regardless of size, and begins to experience interactions with any
nearby dimpled domains. It is reasonable to expect that domains
with similar composition will have similar spontaneous curvature,
and hence form dimples whose curvature has the same sign. As we
will show, dimples whose curvature has the same sign tend to inter-
act repulsively. Such a mechanism of coalescence inhibition was
observed recently in simulation (35). This indicates that control
of spontaneous curvature via domain composition can regulate
dimpling and hence, domain interaction (47, 48). Indeed, recent
theoretical (49) work shows that lipid asymmetry leads to precisely
these kinds of dimpled domains.

Calculated shapes of dimpled domains induced by line tension
and spontaneous curvature are shown in Fig. 3A, alongside dim-
pled domains observed on giant unilamellar vesicles, shown in
Fig. 3 B and D.

Elastic Interactions of Dimpled Domains
Given 2 domains that have met the criteria for dimpling, the defor-
mation in the membrane surrounding the domains mediates an
elastic interaction when they are within a few elastic decay lengths
(λ2) of each other. This equips us to begin addressing how small
membrane domains might be achieved on short and long time
scales. As previously stated, free diffusion sets the maximum rate
at which a quenched membrane can evolve into a fully phase-
separated membrane (23), where this evolution can happen in
as little as a minute on the surface of a giant unilamellar vesicle
(GUV) (3). By comparison, recycling and, hence, homogenization

Ursell et al. PNAS August 11, 2009 vol. 106 no. 32 13303



Fig. 3. Theoretical and experimental dimpled domain shapes. Domains are shown as thicker red lines, surrounding membrane as thinner blue lines. (A) The
dimensionless height profile (η) as a function of dimensionless radius (ρ) for minimum energy dimples with and without spontaneous curvature (dimensionless
spontaneous curvature, υo, and line tension, χ, are indicated in the legend; dimensionless domain area α = π/4). (B) Epifluorescence cross-section of a dimple
on the surface of a GUV; the red and blue lines are a guide to the eye. (C) 1D model of interaction—dimples maintain shape, but tilt (φ) as a function of
separation distance (d). Dimples with the same sign of curvature repel, whereas dimples with opposite sign attract. The single domain shape, with boundary
slope ε and dimensionless projected radius ρo is shown for reference. (D) Epifluorescence cross-section of 2 dimpled domains interacting on the surface of a
GUV. (Scale bars, 3 μm.)

of cellular membrane is a process that takes place on the time scale
of an hour or more (50). Our measurements of domain inter-
actions (detailed below and other data shown in SI Appendix)
estimate the coalescence barrier between dimpled domains at
≈5 − 10 kBT . Hence, given the diffusion-limited rate of coales-
cence, interactions slow this process by approximately e−5 � 0.007
to e−10 � 0.00005.

The physical origin of domain interaction is explained by a sim-
ple model based on the assumption that the dimpled domain shape
is constant during interaction, but the domains are free to tilt by an
angle φ, as shown in Fig. 3C. This assumption was, in part, inspired
by experimental observations of domain shapes on the surface of
giant unilamellar vesicles, as shown, for example, in Fig. 3D. The
interaction energy is approximately an order of magnitude less
than the free energy associated with the morphological transition
itself (see Fig. 2B), thus interaction does not perturb the domain
shape significantly. Only allowing domains to rotate simplifies the
interaction between 2 domains to a change in the boundary condi-
tions in the 3 regions of interest, shown in blue in Fig. 3C. Applying
the small gradient approximation, the boundary slope is given by
|ε−φ| in the outer regions and by |ε+φ| in the inner region. With
the single domain boundary slope, ε, set by the energy minimiza-
tion of the previous section (i.e., eq. 6), the pairwise energy is
minimized at every domain spacing, d, by ∂G/∂φ = 0 to find the
domain tilt angle that minimizes the deformation energy (see SI
Appendix for details). This results in 2 qualitatively distinct sce-
narios: 2 domains whose curvatures have the same sign repel each
other, whereas 2 domains whose curvatures have the opposite sign
attract each other. Scaling arguments can be used to show that
the strength of interaction between 2 dimpled domains increases
approximately linearly with their area so long as they are both
larger than some critical area (see SI Appendix for details). Math-
ematically, the assumption of rigidly rotating dimpled domains
is identical to a previous 2D model of bending-mediated inter-
actions between intramembrane proteins, represented by rigid
conical inclusions (51).

Independent of the effects of spontaneous curvature, slight
osmolar imbalances and constriction due to the lipid phase bound-
aries create small pressure gradients across the membrane that
tend to orient all dimples on a vesicle in the same direction,
resulting in net repulsive interactions between all domains. Transi-
tions between “upward” and “downward” dimples are infrequent
due to a large energy barrier. In the simplest case, where the

domains are the same size, the tilt angle φ monotonically increases
as 2 domains get closer, φ(d) � −εe−d. Likewise, the inter-
action energy increases monotonically with decreasing domain
separation, Vint(d) � 2πκbε

2ρ2
oe−d. To quantitatively compare

our interaction model with experiment, we analyzed the thermal
motion of small domains on the surface of giant unilamellar vesi-
cles, as described in Materials and Methods. For direct comparison,
we fit both the 1D model outlined here and the 2D inclusion model
(51) to the measured potential of mean force between domains, as
shown in Fig. 4. The 2 models are experimentally indistinguishable,
though with a slightly different elastic decay length.

In these experiments, membrane tension was regulated by bal-
ancing the internal and external osmolarity, giving us coarse

Fig. 4. Measuring domain interactions on the surface of a vesicle. (A) Three
images of dilute interacting domains on the surface of the same vesicle. (Scale
bar, 10 μm.) (B) The repulsive interaction potential (Vint) between domains
on the surface of the same vesicle as A. The energy is measured in kBT ,
and distance is domain center-to-center. The blue dashed line is a fit to the

1D interaction model in this article, Vint(r) = a1e−r/λ
(1D)
2 + a2, with elastic

decay length λ
(1D)
2 = 240 nm. The orange dashed line is a fit to the model,

Vint(r) = 2πκb[(a1a2)2K0(r/λ(2D)
2 ) + a2

2a4
3K2

2 (r/λ(2D)
2 )] + a4, with elastic decay

length λ
(2D)
2 = 270 nm, based on the theory of Weikl et al. (51). Both elastic

decay lengths indicate a membrane tension of ∼4×10−4 kBT/nm2. Errors bars
are shown in green on the x-axis.
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control over the elastic decay length λ2. Through time, the distance
between every domain pair was measured, and the net results were
used to construct a histogram of center-to-center distance prob-
ability, the natural logarithm of which is the potential of mean
force, as shown in Fig. 4B. We selected vesicles that had a low
density of approximately equal-sized domains, and thus, generally,
the interactions were described by a repulsive pairwise potential.
Though areal density of domains and generic data quality var-
ied in our experiments (see SI Appendix), all datasets exhibit the
repulsive core of the elastic interaction. Multibody interactions
occur, though infrequently; their effect can be seen as a small
variation in the baseline of Fig. 4B, which is not captured by the
pairwise interaction model. At high membrane tension, when we
would not expect dimpled domains, we qualitatively verified that
domains coalesce in a rapid manner as compared with our low-
tension experiments (data not shown). Other recent experiments
have also observed repulsive interactions and a correspondingly
slower rate of coalescence between domains on low membrane
tension vesicles, and a marked increase in coalescence kinetics on
the surface of taut vesicles (43).

Our measurement of the pairwise potential allows us to esti-
mate elastic properties of the membrane. The elastic decay length
was fit to the 1D and 2D interaction models described above and
found to be λ

(1D)
2 � 240 nm and λ

(2D)
2 � 270 nm, respectively.

Taken with a nominal bending modulus of 25 kBT , we estimate the
membrane tension to be ≈4 × 10−4 kBT/nm2. From the images,
we measure the size of the domains at ro � 350 − 400 nm, and
hence ρo � 1.5. We estimate the line tension, γ, using Eq. 8,
based on the fact that the domains are dimpled, and find a lower
bound of γ � 0.49 kBT/nm (1 kBT/nm = 4.14 pN). This is in good
agreement with theoretical estimates and values determined from
experiment as discussed above. Finally, viewing the repulsive core
of the interaction as an effective activation barrier to coalescence,
a simple Arrhenius argument suggests a decrease in coalescence
kinetics by 2–3 orders of magnitude. Indeed, such a slowing of
coalescence was recently observed in a similar model membrane
system (43).

Discussion
Our experiments on the surface of GUVs have 3 potentially con-
founding effects, all due to the spherical curvature of the vesicle.
First, the surface metric is not entirely flat with respect to the
image plane. Thus, measurements of distance are underestimated
the farther they are made from the projected vesicle center. This
problem is ameliorated by concentrating on domains that are at
the bottom (or top) of the vesicle where the surface is nearly flat
and demanding that our tracking software exclude domains that
are out of focus; see SI Appendix for a more detailed explana-
tion. The second potential complication is that we use a flat 2D
coordinate system for our theoretical analysis; however, domains
reside on a curved surface. Given that the domain deformation,
and hence energy density, decays exponentially with λ2, as long as
λ2 is small with respect to the vesicle radius, the energetics that
govern morphology converge on an essentially flat surface metric.
The final complication is that the circular area of focus creates a
fictitious confining potential for the domains, such that the effec-
tive measured potential of mean force is the sum of the elastic
pairwise potential and a fictitious potential, Veff = Vint +Vfict. The
fictitious potential is removed by simulating noninteracting parti-
cles in a circle the same size as the radius of focus (see SI Appendix
for details).

The constant tension ensemble used in our theoretical analysis
has an experimental range of validity, determined by the excess
area available on a thermally fluctuating membrane with con-
served volume and total surface area Ao (i.e., a vesicle). In the limit
where the morphological transitions use only a small portion (ΔA)
of this excess area, defined by kBT/8πκb 
 ΔA/Ao, the tension is
constant. Outside this regime, the tension rises exponentially with

reduction in excess area, tending to stabilize dimples from fully
budding (see SI Appendix for details).

In addition to the elastic mechanism of interaction, described
herein, there may be other organizing forces at work in a
phase-separated membrane, for instance, those of elastic (28)
or entropic (52, 53) origin. However, the putative length scale
over which these effects compete with thermal fluctuations (on
the order of tens of nanometers) is not accessible to the spa-
tial and temporal resolution of our experiments. Electrostatics
may also be at work, in the form of dipole–dipole repulsion due
to the net difference in dipole density between the 2 phases
(54–56), although to first order, symmetry suggests there is a
net zero dipole moment per unit volume of bilayer (57). In our
experimental system, the modulator of repulsive interactions is
membrane morphology (i.e., domain dimpling); if other interac-
tions were a major repulsive effect, we would not expect such
forces to depend markedly on large-scale membrane morphology.

Conclusion
We have shown that lipid domains are subject to a morphological
dimpling transition that depends on the bilayer elastic proper-
ties and domain size. Dimpling allows 2 domains in proximity
to repulsively interact due to the deformation in the surround-
ing membrane. Our model makes 2 key predictions: (i) at zero
spontaneous curvature, the domain size distribution reaches a
critical point where coalescence is arrested by repulsive interac-
tions (43) and (ii) domains with finite spontaneous curvature are
always subject to interaction and hence should always coalesce at
a rate slower than the diffusion-limited rate (35). Additionally,
the strength of elastic interactions is augmented by increasing line
tension or domain area, with an approximately linear scaling. We
proposed a simple 1D model of an elastic interaction that medi-
ates dimpled-domain repulsion and then used a standard ternary
membrane system to verify the existence of dimpled domains and
their subsequent repulsive interaction. Our model offers a mecha-
nism that works against diffusion-driven coalescence, to maintain
small lipid domains over time.

Materials and Methods
GUVs were prepared from a mixture of DOPC (1,2-dioleoyl-sn-glycero-3-
phosphocholine), DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) and
cholesterol (Avanti Polar Lipids, Inc.) (25:55:20/molar) that exhibits liquid–
liquid phase coexistence (3). Fluorescence contrast between the 2 lipid phases
is provided by the rhodamine head-group-labeled lipids: DOPE (1,2-dioleoyl-
sn-glycero-3-phosphoethanolamine-N-(lissamine rhodamine B sulfonyl)) or
DPPE (1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-(lissamine rho-
damine B sulfonyl)), at a molar fraction of ≈0.005. The leaflet compositions
are presumed symmetric, and, hence, υo = 0.

GUVs were formed via electroformation (3, 58). Briefly, 3–4 μg of lipid in
chloroform were deposited on an indium–tin oxide-coated slide and dessi-
cated for ≈2 h to remove excess solvent. The film was then hydrated with
a 100 mM sucrose solution and heated to ≈50◦C to be above the miscibility
transition temperature. An alternating electric field was applied; 10 Hz for
120 m, 2 Hz for 50 m, at ≈500 Volts/m over ≈2 mm. Low membrane tensions
were achieved by careful osmolar balancing with sucrose (≈100 mM) inside
the vesicles, and glucose (≈100–108 mM) outside.

Domains were induced by a temperature quench (see SI Appendix) and
imaged by using standard TRITC epifluorescence microscopy at 80× magni-
fication with a cooled (−30◦C) CCD camera (6.7 × 6.7 μm2 per pixel, 20 MHz
digitization; Roper Scientific). Images were taken from the top or bottom
of a GUV where the surface metric is approximately flat (see SI Appendix).
Datasets contained ≈500–1,500 frames collected at 10–20 Hz with a varying
number of domains (usually 5–10). The frame rate was chosen to minimize
exposure-time blurring of the domains while allowing sufficiently large dif-
fusive domain motion. Software was written to track the position of each
well-resolved domain and calculate the radial distribution function. The raw
radial distribution function was corrected for the fictitious confining poten-
tial of the circular geometry (see SI Appendix). In the dilute interaction limit,
pairwise interactions dominate, and the negative natural logarithm of the
radial distribution function is the interaction potential (potential of mean
force) plus a constant, as shown in Fig. 4B.

Ursell et al. PNAS August 11, 2009 vol. 106 no. 32 13305

http://www.pnas.org/cgi/data/0903825106/DCSupplemental/SI_Appendix
http://www.pnas.org/cgi/data/0903825106/DCSupplemental/SI_Appendix
http://www.pnas.org/cgi/data/0903825106/DCSupplemental/SI_Appendix
http://www.pnas.org/cgi/data/0903825106/DCSupplemental/SI_Appendix
http://www.pnas.org/cgi/data/0903825106/DCSupplemental/SI_Appendix
http://www.pnas.org/cgi/data/0903825106/DCSupplemental/SI_Appendix


Note Added in Proof. Just recently, another group (59) has independently
come to similar conclusions about the presence of elastically mediated inter-
actions among dimpled domains, specifically commenting on their tendency
to order domains.
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