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Morphology-Based Crack Detection for Steel Slabs
Anders Landström and Matthew J. Thurley

Abstract—Continuous casting is a highly efficient process used
to produce most of the world steel production tonnage, but can
cause cracks in the semi-finished steel product output. These
cracks may cause problems further down the production chain,
and detecting them early in the process would avoid unnecessary
and costly processing of the defective goods. In order for a
crack detection system to be accepted in industry, however, false
detection of cracks in non-defective goods must be avoided. This
is further complicated by the presence of scales; a brittle, often
cracked, top layer originating from the casting process.

We present an approach for an automated on-line crack
detection system, based on 3D profile data of steel slab sur-
faces, utilizing morphological image processing and statistical
classification by logistic regression. The initial segmentation
successfully extracts 80% of the crack length present in the
data, while discarding most potential pseudo-defects (non-defect
surface features similar to defects). The subsequent statistical
classification individually has a crack detection accuracy of over
80% (with respect to total segmented crack length), while dis-
carding all remaining manually identified pseudo-defects. Taking
more ambiguous regions into account gives a worst-case false
classification of 131 mm within the 30 600 mm long sequence
of 150 mm wide regions used as validation data. The combined
system successfully identifies over 70% of the manually identified
(unambiguous) crack length, while missing only a few crack
regions containing short crack segments.

The results provide proof-of-concept for a fully automated
crack detection system based on the presented method.

Index Terms—Mathematical morphology, crack detection, steel
slabs.

I. INTRODUCTION

A. Background

Currently almost 95% of the world steel production ton-

nage is solidified by continuous casting [1]. The method

has advantages in productivity, cost reduction and output

quality, but, depending on factors such as design, operation and

maintenance, may introduce various surface defects [2]. Steel

slabs (see fig. 1), the major (semi-finished) product within steel

casting, are therefore susceptible to crack formation.

Since steel slabs are often intended for sheet steel rolling,

surface defects such as cracks may result in long sections of

defective end-user products. Consequently, inspection of steel

slabs before sending them through to the rolling mill, thereby

avoiding related problems at the later stage, is important to

the steel industry. However, most inspection systems within

the area are still manually operated [3], [4].

This work focuses on automated detection of longitudinal

cracks in steel slabs, based on non-contact measurements.

A good solution to the problem should efficiently detect
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potentially problematic cracks, while keeping the number of

false positives (non-crack regions being identified as cracks)

at a minimum. Therefore particular notice needs to be taken

to the presence of scales, which constitute a brittle, often

cracked, top layer, formed from oxidization in the manufactur-

ing process. This scale layer is unavoidable during casting [5],

and cracks therein are from a top view perspective similar to

cracks in the steel and therefore risk causing false positives

in the detection result. In the intended use of this work, a

robust system must handle surfaces partially covered by scales

without reporting false positives from pseudo-defects (non-

defect surface features similar to defects).

B. Related Research

Surface inspection by computer vision is a wide topic, and

its progress in industrial processes has been documented in

several surveys during the last decades [6]–[11].

Of particular interest to this work are automated systems

for steel surface inspection, which is a field of ongoing study

well represented in literature. Gray-scale intensity imaging

is commonly used, in combination with various different

signal processing techniques such as wavelet transforms [12],

[13], Gabor filters [4] and image morphology [4], [5], [14].

Use of gray-scale intensity images has its limitations though.

Variations in lightning conditions, giving rise to potential

pseudo-defects, are a problem. In particular, light reflection

from scale regions may vary substantially, making the gray

level in intensity images highly unpredictable which may give

rise to psuedo-defects [13]. Other parameters, such as steel

type, may effect properties in gray-scale images as well [5].

Due to the shortcomings of intensity imaging, other alter-

native optical techniques for automated inspection of metallic

surfaces have been suggested. Pernkopf [15] notes that range

imaging provides better contrast to surface defects with “three-

dimensional characteristics”, and that the strong changes in

reflective properties in scale regions motivates the use of range

(a) (b)

Fig. 1. Examples of a steel slab (a) and a longitudinal surface crack (b).
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data over intensity imaging due to less sensitivity to inhomo-

geneous reflectance. Pernkopf and O’Leary [16] summarize

two range imaging methods: Light sectioning, using projected

light to calculate distance, and photometric stereo, obtaining

distances for a static scene from several intensity images using

different light sources. Another solution, based on range data

collected by conoscopic holography, is presented by Alvarez

et al. [17].

In addition to the more traditional machine vision ap-

proaches, numerous systems interpreting data collected by

other Non-Destructive Testing (NDT) methods such as ther-

mocouples [18], eddy currents [19], magnetic powder [20],

ultrasound [21] or sulfur prints [22] are also common in liter-

ature. These systems generally require more contact though,

in contrast to intensity and range imaging.

In addition to the given examples of methods for steel

inspection, other methods for crack detection have been

applied in other contexts. The possibility to use watershed

segmentation for crack detection in X-ray images of welds

have been studied [23], and the Hough transform have been

used for crack detection in color images of biscuits [24] as

well as X-ray images of welds [25].

Watershed segmentation can be used to identify cracks,

given a proper set of seeds, but risks over-segmenting the

data [23]. The method may therefore require substantial post-

processing in order to properly separate cracks from pseudo-

defects. A good set of seeds reduces post-processing, but

instead increases the need for pre-processing. For example,

use of stochastic watershed [26] would require a minimum

amount of parameters while providing a good segmentation,

but requires a substantial amount of processing time and

is therefore not suitable for the intended on-line system.

Moreover, when no crack is present watershed segmentation

will still produce something which must be post-processed in

order to rule out the presence of cracks.

The Hough transform is a good tool for identifying line

segments in the data, and have been used in crack detection

systems [24], [25]. However, the Hough transform requires a

binary image as input, which again requires pre-processing.

The situation is also complicated by the fact that cracks in

steel may not be perfectly straight, which further calls for

pre-processing.

C. Contribution

As stated in the previous section, inspection of metallic

surfaces by intensity imaging suffers from limitations. In

particular, the method may introduce pseudo-defects in scale

regions. For robust non-contact inspection of steel surfaces

partially covered by scales, range imaging provides a more

promising alternative.

Due to the nature of the presented problem, where the

cracks by definition have a longitudinal orientation and thereby

represent a specific directional structure in the casted steel

surface data, we present a solution based on mathematical mor-

phology. The strength of mathematical morphology lies in its

ability to identify and/or enhance features of specific shape and

orientation in the data. It is a common technique for analyzing
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Fig. 2. Input data example: A 150×100 mm (width×length) region of steel
slab profile data, viewed in 3D (a) and from above (b).

3D profile data, and has previously been used in a wide range

of applications such as LiDAR [27], aggregates [28], [29],

and pellets [30]. However, it has to the authors’ knowledge

not been used for analysis of 3D profile data in the intended

context; crack detection for casted steel.

In this work, we present a strategy for morphology-based

crack detection for steel slabs based on 3D surface profile

data collected by laser triangulation. The system first segments

the data using mathematical morphology, and the resulting

connected regions are assigned a crack probability using a

logistic regression model.

II. MEASUREMENTS

Sets of 3D profile data for steel slab surfaces were acquired

at two separate occasions, and are hence referred to as sets A

and B, respectively. The data is processed in regions (here

referred to as images) of 150×100 mm (width×length, or

x×y) in size, identifying cracks by segmenting the data set and

classifying the resulting connected regions. Set A, containing

a total of 644 images collected from two slabs, was used

as model set for the presented segmentation algorithm and

thereafter used to train a classifier, while set B, containing a

total of 323 images collected from four slabs, was used as

an independent validation set. Reference maps for both sets,

defining the location of strong crack signatures in the data,

were produced by manually marking clear, open cracks in the

data. Fig. 2 presents an example of crack data, captured at

0.1×0.1×0.0053 mm (width×length×depth) resolution.
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TABLE I
MORPHOLOGICAL NOTATION

B Binary image.
I Gray-scale image.
s Structuring element.
I ⊖ s Erosion of I by s.
I ⊕ s Dilation of I by s.
I ◦ s = (I ⊖ s)⊕ s Opening of I by s.
I • s = (I ⊕ s)⊖ s Closing of I by s.
I rec⊕8 IM 8-pixel neighborhood reconstruction

of I from a marker image IM .

III. SEGMENTATION

Morphological image processing is frequently used through-

out this section. Definitions of the morphological concepts

can be found in the introduction to the subject provided by

Dougherty and Lotufo [31], and notations used are summa-

rized in Table I. The nature of the morphological operations

give rise to a set of parameters, which must be set in

accordance to a definition of what we are actually looking for.

Therefore these parameters have been set experimentally from

the model set, while considering their relation to adequate

physical measures relevant to the problem. We thereby define

the following concepts:

• Trench: A single-directional, less than 5 mm wide, dis-

tinct longitudinal depression in the surface.

• Scale: An elevated, less than 25 mm wide, part of the

surface, possibly cracked by an opening no more than

5 mm in width.

• Crack signature: A trail of the bottom 0.1 mm wide

portions of a trench, where the trench depth is larger than

0.1 mm.

To emphasize the relation to the physical measures, lengths

are denoted in [mm] rather than pixels. These parameters are

likely dependent of the steel grade being inspected, but an

investigation of such relations lies beyond the scope of this

work.

After preprocessing (described in section III-A), a coarse

search for trenches is performed at 1×1 mm resolution

(section III-B). The search is then gradually refined, first

at 0.3×0.3 mm resolution where scales are excluded (sec-

tion III-C) and finally at 0.1×0.1 resolution where cracks are

identified (section III-D). This strategy decreases processing

time and concentrates on regions where cracks are expected.

Binary images displayed in this section are inverted, display-

ing pixels with value 1 (true) in black on a white background.

A. Preprocessing

Before crack signatures are extracted from the data, prepro-

cessing is performed.
1) Identifying the slab region: The actual slab region in the

data is identified so that we do not search for cracks outside

the slab.
2) Compensating for slope: The slope of the slab is com-

pensated for by subtracting a least-squares fitted plane from

the data, using a uniformly randomly distributed set of 15 000

sample points (1% of the pixels) for the least-squares fit. We

here assume that each 150×100 mm part of the slab surface

can be approximated by a plane.

(a) (b)

Fig. 3. (a) Side view example of occlusion: Surface information from the
crossed-out region cannot reach the sensor, resulting in occluded (unknown)
3D profile data such as the white pixels around the scales shown in (b).

3) Handling occluded data: Occluded regions in the mea-

sured data, caused by other parts of the surface blocking the

path between the projected laser line and the sensor (see fig. 3),

are potential crack indicators and therefore set to the minimum

height value of the currently processed 150×100 mm region.

4) Removing noise: Noise in the data is reduced by median

filtering, using a centered neighborhood of size 0.3×0.3 mm.

B. Trench Search (Low Resolution)

In order to reduce the total required processing time, an

initial low resolution search for surface cavities is performed

on a downsampled version of the preprocessed data set (see

fig. 4a). In the downsampling process, the data is converted to

1×1 mm resolution using a Gaussian filter before sampling (to

be fully accurate the new scale is 1.1×1.1 mm in order to use

an odd sized neighborhood, but for simplicity we write 1 mm

in this text). This resolution is too low to capture a crack

in detail, but the longitudinal trench in the data indicating

a potential crack is clearly visible. Such trenches can be

identified by morphological processing, so that only regions

in their proximity need to be processed further.

1) Estimating trench depth: Let I1 denote the downsampled

preprocessed 3D data (fig. 4a) and define lh,5mm and lv,5mm as a

horizontal and a vertical, respectively, line structuring element

of length 5 mm. The difference between the minimum heights

to which the two structuring elements can be pushed down

into the preprocessed steel surface,

Iraw = (I1 • lh,5mm)− (I1 • lv,5mm), (1)

then yields a first approximation Iraw of the trench depth,

as presented in fig. 4b. The operation separates longitudinal

features from transversal, i.e. cracks from oscillation marks,

by assigning them different signs (longitudinal trench depths

being positive).

The raw extracted signal may be effected by oscillation

marks, but a more refined trench signature,

Itrench = Iraw • lv,5mm, (2)

can be obtained by performing another morphological closing

with the 5 mm vertical line structuring element on the data

(fig. 4c).
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(a)

(b)

(c)

(d)

Fig. 4. The different images obtained during the trench search: I1 (a),
Iraw (b), Itrench (c), and Btrenches (d).

2) Extracting trench markers: By thresholding Itrench, keep-

ing only the top 1% largest positive trench depths, a binary

marker Btop can be obtained. A final binary trench map

Btrenches = Btop rec⊕8 (Btop ◦ lv,10mm) , (3)

containing regions of at least 10 mm (longitudinal) length

connected to these largest trench depths, can then be retrieved

from Btop through opening by reconstruction. The resulting

binary image is presented in fig. 4d.

C. Scale Exclusion (Medium Resolution)

Scales constitute a brittle oxidized top layer covering the

casted steel (see fig. 3b). This top layer is often cracked; in

particular where scales have separated from the steel surface.

Hence, the measured data is likely to contain pseudo-defects

in the form of cracks in the scales which do not reach down

into the actual steel surface below.

(a) (b) (c)

(d) (e) (f)

Fig. 5. The different images obtained during the scale exclusion: I0.3 (a),
Idiff(45

◦) (b), Bscales (c), Bscales, e (d), Irec (e), and Bcav (f).

Cracks will later be identified by considering local topol-

ogy variations. At that stage, a scale crack will cause a

signature very similar (or even identical to) a crack in the

steel. Therefore, scale regions must be excluded from further

processing to avoid false crack detection. Scales do not require

a 0.1×0.1 mm resolution, and the procedure for excluding

them is therefore performed at 0.3×0.3 mm resolution in order

to reduce the number of required computations.

1) Identifying potential scales in one direction: Let I0.3

(fig. 5a) denote a downsampled region around a surface trench

identified in Btrenches (fig. 4d). Then let lθ,5mm and Lθ,25mm

denote lines of lengths 5 mm and 25 mm, respectively, in the

same direction θ. The closing

Ic = I0.3 • lθ,5mm (4)

first fills in any small gaps (less than 5 mm) in the data in the

direction θ. A signature for (possibly cracked) potential scales

less than 25 mm in width, as viewed from the direction θ, can

then be retrieved from the top-hat operation

Idiff (θ) = Ic − Ic ◦ Lθ,25mm. (5)

These identified potential scales, shown for θ = 45◦ in fig. 5b,

should not correspond to crack regions due to the local surface

topology.

2) Combining several directions: A single direction may

give a crude result, but by combining the results from

several directions this can be improved. By letting θ =
{−45◦, 0◦, 45◦, 90◦}, where the angles are denoted with

respect to the x-axis (the transversal direction), a refined

scale marker Bscales (fig. 5c) representing only potential scales

showing up in all four angles can be retrieved from the
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expression

Bscales =

(

4
⋂

k=1

(Idiff (θk) > 0)

)

. (6)

The marker image is then eroded by a disk dr=1mm with radius

1 mm,

Bscales, e = Bscales ⊖ dr=1mm, (7)

which removes noise and shrinks the sizes of the obtained

marker regions. This reduces the risk of noisy markers stretch-

ing into surface cavities (compare the original marker in fig. 5c

to the eroded marker in fig. 5d).

3) Improving markers by reconstruction: From the result-

ing binary marker Bscales, e (fig. 5d), a marker Imarker for gray-

scale data can be constructed by letting

Imarker =

{

I0.3 where Bscales, e = 1,
0 where Bscales, e = 0.

(8)

A morphological reconstruction on the inverse data set, as

given by

Irec = − ((−I0.3) rec⊕8 (−Imarker)) , (9)

then yields a surface where (possibly cracked) scales remain

while cracks in the steel are filled in (fig. 5e). A filter

identifying cavities located where trenches were found in

the low resolution step (section III-B) can then be obtained

by performing an opening by reconstruction on the filled in

regions, using the trench marker Btrenches (fig. 4d) from (3).

This results in a binary filter

Bcav = (Irec > I0.3) rec⊕8 Btrenches, (10)

where cavities in the steel surface, as opposed to scales, are

identified (fig. 5f). This filter can then be used to exclude

scales and other non-cavities from further crack analysis.

D. Crack Signature Extraction (High Resolution)

In non-scale regions where longitudinal cavities were found,

a more detailed investigation is needed. Fig. 6a shows an

example of data processed in this step, I0.1.

1) Identifying sharp discontinuities: We restrict our atten-

tion to sharp discontinuities in the data in the horizontal

(transversal) direction. This is done by retrieving a binary filter

Bdiscont =

{

I0.1 • lh,0.3mm > I0.1 where Bcav = 1,
0 where Bcav = 0,

(11)

where lh,0.3mm is a horizontal line structuring element of length

0.3 mm (fig. 6b). Bcav (fig. 5f) is the cavity filter obtained

from (10).

2) Depth estimation: The depths Idepth of horizontal dis-

continuities in the data are then approximated as

Idepth =

{

I0.1 • lh,5mm − I0.1 where Bdiscont = 0,
0 where Bdiscont = 1,

(12)

where lh,5mm is a horizontal line structuring element of length

5 mm. Hence, the crack depth is defined as the difference

between the actual data value and the minimum height to

which a horizontal line of length 5 mm can be pushed down

into the data. The resulting image is shown in fig. 6c.

(a) (b) (c)

(d) (e)

Fig. 6. The different images obtained during the crack signature extraction:
I0.1 (a), Bdiscont (b), Idepth (c), Bcracks (d), and BL,10 (e).

3) Obtaining crack signatures: From the approximated

crack depth Idepth, we define potential crack signatures Bcracks

as

Bcracks = Idepth > 0.1, (13)

neglecting depths smaller than 0.1 mm (see fig. 6d).

4) Linking crack signatures: Neighboring remaining sig-

natures are linked together while unconnected signatures are

discarded, using a morphological filter given by the recursive

expression

BL,k =

{

Bcracks, k = 0,
(BL,k−1 • dk) rec⊕8 ((BL,k−1 • dk) ◦ lk) , k > 0.

(14)

Here, dk is a disk structuring element of radius k mm and

lk a vertical line structuring element of length 2k + 0.1 mm,

where k = {0.1, 0.2, 0.3, . . . , 1.0}. The filter is a modified

close/open alternating filter. Instead of using the same element

for both the closing and the opening a disk is used to close up

parts that are not perfectly vertically aligned, while a vertical

line is used to restrict the filter output to vertical features.

An opening by reconstruction in each step makes the filter

more conservative, keeping more of the grouped regions in

each step. This linking produces a segmented data set, where

each connected component marks a region corresponding to a

potential crack in the steel surface (see fig. 6e).

5) Excluding small regions: After the linking procedure,

small regions are discarded by an area opening of size 5mm2.

Connected components in the remaining signatures are re-

ported as potential crack segments.
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IV. CLASSIFICATION

Once the data has been segmented, shape features are

extracted for each reported connected component. These pa-

rameters can then be used to classify the potential cracks as

(true) cracks or non-cracks. The potential cracks reported by

the segmentation was first manually classified, producing a

reference set where each connected region is marked as being

a crack, a non-crack or unclassified (ambiguous regions where

cracks are likely although no open crack is visible). This

classification was based upon resemblance to the identified

cracks in the model set (see section II).

A. Variable Extraction and Orientation Thresholding

The depth of each connected region is reflected by its

median depth, retrieved from (12). Since the region obtained

from the morphological filtering is in general wider than the

actual thin crack, we only consider pixels where the estimated

depth is non-zero. Other shape parameters are obtained by

approximating each connected region by an ellipse defined

by the same corresponding second central moments (see

fig. 7). The lengths of the minor and major axes can then be

considered to reflect the length and width of the crack, and the

orientation is defined by the minimum absolute angle between

the major axis and the x-axis (the transversal direction).

We exclude all connected regions with orientation less than

45◦ from further analysis, since these can hardly be considered

longitudinal. Box plots for the obtained variable distributions

for set A within the manually defined groups cracks and non-

cracks are presented in fig. 8.

1) Orientation: The orientation box plot in fig. 8a shows

that the identified cracks indeed show a longitudinal behavior,

and the orientation threshold could probably be raised. In this

work however, the number of available samples was already

considered scarce enough from a statistical point of view.

2) Minor axis: In fig. 8b, we see that cracks in the model

set are in general wider than other reported regions. This

is considered to be a result of frequently occurring zig-zag

patterns in the cracks in set A – a property we can hardly

assume to be true in general. Thus, the minor axis is considered

unsuitable for classification.

3) Major axis & median depth: The major axis and the

median depth (figs. 8c and 8d) show separation between the

groups, indicating that the segmentation succeeds in finding

Fig. 7. Ellipses fitted to the connected regions reported by the segmentation.
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(d)

Fig. 8. Box plots for studied variables in the model set; orientation (a), minor
axis length (b), major axis length, (c), and median depth (d), respectively.

long, deep regions where cracks have been manually iden-

tified. These variables are therefore considered suitable for

classification of the crack signatures.

B. Logistic Regression

In fig. 9a, the manually classified regions are marked in the

space spanned by the two variables selected for classification;

the major axis and the median depth. While the number of

regions containing cracks is not very high, we see that there

is indeed a tendency for crack regions to be longer and deeper

than the non-crack noise from the segmentation. In this space,

a statistical classifier was then obtained by fitting a logistic

regression model to the manually classified groups containing

cracks and non-cracks. This method was chosen because it

does not assume normally distributed data [32], [33], which

makes it a suitable choice for the available model data where

crack samples are quite sparsely distributed within the upper

right part of fig. 9a.

1) Posterior probability: Logistic regression can be used

to estimate the posterior probability for each sample to

belong to a certain group. More specifically, an n-variable

logistic regression model is defined by the parameters

{β0, β1, β2, ..., βn}, which for each sample represented by the
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Fig. 9. The two-dimensional classification space (a) and the corresponding
CDFs (b). In both figures, lines marking 10%, 50% and 90% crack probabil-
ities (seen from left to right) are displayed.

variables {x1, x2, ..., xn} yields a posterior probability given

by

Pposterior =
1

1 + e
−

(

β0+
∑

k=n

k=1
βkxk

) . (15)

The interested reader is referred to Afifi [33] and Dobson [34]

for more details on the topic of logistic regression.

2) Probability threshold: Cumulative distribution functions

(CDFs) representing the posterior probabilities, given for each

classified region by (15), are presented in fig. 9b. The solid

lines represents the CDFs in percentage of the total number of

regions for each manually classified group, while the dashed

lines represents the CDFs in total length percentage (total

detected length of cracks vs. total length of manually marked

cracks) for each manually classified group. A probability

percentage threshold, which corresponds to a boundary line

in fig. 9a, can be used to identify cracks in the data. It should

be noted that the classifier is blind to what the segmentation

fails to report. Also, as mentioned, regions with orientation

less than 45◦ have already been discarded at this stage.

By selecting a probability value for thresholding higher

than 50% we can avoid the misclassification risk near the

50% boundary, which will make the system more robust. This

threshold should be a trade-off between 100% crack detection

and 0% false positives. Since our primary focus in this work

is on the latter, we want a high threshold value which still

classifies most identified cracks correctly. Fig. 9b shows that

we can set a probability requirement as high as 90% and still

keep 93% of the total length of connected regions containing

manually identified cracks, while safely avoiding any false

positives. However, the unclassified samples must be taken

into account as well. We can get worst-case scenarios by

considering the two extremes;

1) all unclassified regions are assumed to be non-cracks,

and

2) all unclassified regions are assumed to be cracks.

In case 1, the false detection rate is 21% of the total non-

crack length, or 116 mm falsely reported cracks. In case 2,

on the other hand, 81% of the total crack length is correctly

classified. The truth should lie in-between these two extremes.

The 21% false detection rate given by case 1 should be quite

pessimistic, since the vast majority of the unclassified regions

are located in the proximity of manually identified cracks, but

cannot be ruled out at this point.

V. RESULTS

The performance of the presented method was validated by

segmenting and classifying a second independent validation

set B, containing 323 regions of 3D surface data collected

from four different steel slabs.

A. Segmentation Results

The connected regions retrieved from the segmentation in-

cluded 82% of the total length of the manually marked cracks.

Correct crack signatures were extracted from all 17 images

manually marked as containing cracks.

Descriptive shape parameters were then extracted from each

detected region. Box plots are presented in fig. 10, together

with the previous results for set A for comparison. As before,

all regions with less than 45◦ absolute orientation relative

to the x-axis have at this stage been discarded. Variable

distributions for set B validate the earlier observations for set A

(section IV-A). In particular, the problem with using the minor

axis for classification is evident – crack widths in set B are

in general smaller than in set A, and are to a large extent

overlapping the widths of the non-crack regions.

B. Classification Results

The extracted variables were used as input to the logistic

regression model obtained from set A, and the resulting

classification was compared to a manual classification. Results

are presented in fig. 11. In fig. 11a, two dashed lines marking

10% and 90% crack probability, respectively, as well as a solid

line representing the 50% probability boundary are shown in

the 2D-space spanned by the major axis and the median depth.

Fig. 11b shows the corresponding cumulative distribution

functions (CDFs) for the region-wise posterior probabilities,

presented in both number of regions and length percentage.
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Fig. 10. Box plots for studied variables; orientation (a), minor axis length
(b), major axis length, (c), and median depth (d), respectively. Results for
set A are presented again for comparison.

By comparing CDFs for crack and non-crack regions the

separation tendency for the two groups can be evaluated.

Probabilities are obtained from the logistic regression model,

and are thereby based on the model data.

It is clear that at the 90% crack probability level, suggested

in section IV, the classification of the validation set is as

accurate as for the model set. 83% of the number of segmented

crack regions, or 94% of the total length of segments con-

taining cracks, are correctly classified. Still, no false positives

are reported for the manually classified non-cracks on that

probability level. Taking the unclassified regions into account

by evaluating worst-case scenarios, as described previously

in section IV-B under Probability threshold, results in less

than 23% false positives (131 mm) and at least 83% correcly

classified cracks (with respect to total length). Here, as well

as for the model set, only 2 regions containing cracks are

completely missed. As for the model set, the missed regions

contain only short cracks.
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Fig. 11. Classification of the validation data (set B), in the two-dimensional
classification space (a) and in CDF-format (b). In both figures, lines marking
10%, 50% and 90% crack probabilities (seen from left to right) are displayed.

C. Combined Results

The segmentation successfully reports 527/645 mm (82%)

of the manually marked cracks, while the classification identi-

fies 490/528 mm (93%) of these segmented regions as cracks.

This evaluation of the classification differs from the 94%

stated in the previous section, since we do not here consider

parts of the linked connected regions that do not overlap the

manually marked visible crack segments. In total, 490 mm of

the total 645 mm manually marked crack length were correctly

classified, yielding a success rate (in length percentage) of

76%. The corresponding number for the model data is 73%.

Worst-case scenario evaluation of the complete system is

less trivial. A reference for non-crack and unclassified regions

is hard to retrieve, since these regions result from the segmen-

tation and cannot be manually marked before that point. What

we can say, however, is that less than 131 mm crack length is

falsely identified. This number can be compared to the total

30 600 mm long sequence of 150 mm wide sections of data

present in the validation data set.
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VI. DISCUSSION

While the amount of collected 3D data could certainly be

improved in a continued future study, the results show clear

tendencies for the available surface profiles:

• The presented segmentation algorithm successfully ex-

tracts more than 80% of the total crack length present in

the data, while discarding most potential pseudo-defects

(non-defect surface features similar to defects).

• At a 90% probability level, the statistical classification

individually has a crack detection accuracy of over

90% with respect to the total manually identified crack

length, while discarding all remaining manually identified

pseudo-defects. Taking ambiguous, unclassified regions

into account gives a worst-case detection rate of over

80% and a worst-case false detection rate of 23% (cor-

responding to a length of 131 mm).

• The combined system (segmentation and classification)

detection success rate, with respect to the total length of

manually marked distinct open cracks, is over 70%.

• Only a few of the regions containing cracks are com-

pletely missed (a crack region may be identified even

though all crack length within the region is not detected)

and, most importantly,

• no false positives are reported within the manually classi-

fied data and false detection in total is less than 131 mm

among the 30 600 mm long sequence of 150 mm wide

regions the validation set.

These numbers indicate that cracks to a large extent can

be separated from non-crack data, and an accurate automated

crack-detection system based on the presented method is

feasible. Some cracks – predominantly smaller ones – will

likely remain undetected as a result of the trade-off between

100% detection and 0% false positives, but longer cracks can

be quite safely identified. It is therefore important to link

crack segments together whenever possible, so that they get

long enough to be classified correctly. A potential method for

achieving this is the Hough transform, which has not been

used in this work.

The crack probability measure allows for a more continuous

crack resemblance assessment for each region, rather than a

strict binary classification. This property can be used to avoid

false positives. By thresholding at a higher crack probability

value, false positives can be avoided at the cost of successful

classification of true cracks. Tuning this threshold with respect

to associated costs can then be considered as an optimization

problem.

The presented method relies on a number of parameters,

which are set experimentally (and with respect to the actual

physical measures they represent). A completely adaptive

parameter selection would hardly be useful, due to the un-

derlying physical quantities the numbers represent, but it may

be possible to set them more systematically. In particular, the

impact on these parameters from different types of steel grades

should be further investigated. It may also be possible to

reduce the number of parameters by introducing other methods

such as watershed segmentation or the Hough transform, but

this lies beyond the scope of this work.

VII. CONCLUSION

The presented system provides a crack probability measure

for each detected potential crack. We have shown that the data

can be classified at 90% crack probability, resulting in less than

131 mm of the 30 600 mm long sequence of 150 mm wide

regions in the validation set being detected as cracks without

being manually identified as such. At this crack probability

level, over 70% of the manually identified crack length was

still successfully detected. No cracks were falsely detected in

regions where manual identification completely ruled out the

existence of cracks.

More data would allow for a more thorough statistical inves-

tigation of potential classification variables as well as a more

accurate crack probability estimation, but the presented results

clearly show the potential of the method. This work thereby

provides a start for further development of the system into

a fully automated morphology-based on-line crack detection

installation.

VIII. FUTURE WORK

The algorithm generally succeeds in identifying relatively

long connected components where cracks are present. This

makes the length an important variable in the classification,

and cracks should therefore be linked together as much as

possible so that they can be distinguished from noise. For this

purpose, use of the Hough transform should be investigated.

Combining data in several images, thereby providing more

high level knowledge, would also allow for longer estimated

crack lengths and thereby even more extreme major axes for

regions representing very long cracks.

In addition to the Hough transform, watershed segmentation

should also be considered in a future study – with focus on

seed selection and how over-segmentation can be effectively

reduced.

The handling of missing data, by setting such pixels to the

minimum value of the 150×100 mm data being processed,

did not effect classification results but is quite crude and

could certainly be improved. The authors have previously

considered reconstruction of occluded regions in 3D profile

data of rocks [35], but such methods are usually quite compu-

tationally demanding and thereby hard to implement in an on-

line system. A more locally adapted reconstruction of missing

data should make the segmentation more robust though, and

could be worth looking into further.

Finally, more extensive measurements on different types of

steel would provide more statistical data and allow for a more

thorough investigation of the relation between steel grades and

the parameters used, thereby resulting in a more accurate crack

probability estimation.
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