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We numerically study the melting process of a solid layer heated from below such that
a liquid melt layer develops underneath. The objective is to quantitatively describe and
understand the emerging topography of the structures (characterized by the amplitude
and wavelength), which evolve out of an initially smooth surface. By performing both
two-dimensional (achieving Rayleigh number up to Ra = 10'!) and three-dimensional
(achieving Rayleigh number up to Ra = 10%) direct numerical simulations with an
advanced finite difference solver coupled to the phase-field method, we show how the
interface roughness is spontaneously generated by thermal convection. With increasing
height of the melt the convective flow intensifies and eventually even becomes turbulent.
As a consequence, the interface becomes rougher but is still coupled to the flow topology.
The emerging structure of the interface coincides with the regions of rising hot plumes and
descending cold plumes. We find that the roughness amplitude scales with the mean height
of the liquid layer. We derive this scaling relation from the Stefan boundary condition and
relate it to the non-uniform distribution of heat flux at the interface. For two-dimensional
cases, we further quantify the horizontal length scale of the morphology, based on the
theoretical upper and lower bounds given for the size of convective cells known from Wang
et al. (Phys. Rev. Lett., vol. 125, 2020, 074501). These bounds agree with our simulation
results. Our findings highlight the key connection between the morphology of the melting
solid and the convective flow structures in the melt beneath.
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1. Introduction

Melting and freezing are important for a wide range of applications across industry,
geophysics and astrophysics, such as in aircraft de-icing (Cao, Tan & Wu 2018) and the
dynamics of icy satellites (Spencer et al. 2006), the Earth’s mantle (Labrosse, Hernlund &
Coltice 2007), icebergs and ice shelves (Ristroph 2018). These phase transition processes
also belong to the wider class of moving free boundary problems (called Stefan problems,
Rubinstein 1971), which are very complex because the boundaries of the domains are
usually unknown and have to be determined as part of the solution. In particular, the
presence of fluid motion modifies the transport of heat which is crucial to the melting
and freezing dynamics.

As an important part of the global climate system, the topography of the ice—ocean
interface at the base of ice sheets has received increasing attention due to its effects
on the ice shelf stability and the basal melt rate (Stanton et al. 2013; Jenkins et al.
2018; Hewitt 2020; Cenedese & Straneo 2023). Also, in industrial applications such
as in latent thermal energy storage devices, the roughness of the basal topography of
the phase-change materials has also been found to affect the heat transfer efficiency
(Kamkari & Amlashi 2017; Sivasamy, Devaraju & Harikrishnan 2018). However, little
is known about the mechanisms responsible for the evolving roughness of the basal solid
topography. The interaction between the melting processes and turbulent flows is thus a
relevant, interesting and complex problem, in which fluid dynamics and thermodynamics
are intimately coupled. The key fundamental question we want to address here is: How
does a turbulent convective melt flow beneath the melting solid affect its basal topography?
And can one develop a quantitative theory for the evolution of the basal morphology?

A way to answer this question is to start by considering a sufficiently simplified and
controllable system that still possesses the complexity and rich phenomenology of the
turbulent flow observed in reality. A well-studied and commonly used convection set-up
in fluid dynamics is Rayleigh-Bénard (RB) convection (Ahlers, Grossmann & Lohse 2009;
Lohse & Xia 2010; Chilla & Schumacher 2012; Shishkina 2021), which considers a fluid
layer confined between a cold top and a hot bottom plate. RB convection has previously
been taken as model system to study multiphase flows, including studies on convection
with dispersed phases (Oresta et al. 2009; Kim et al. 2020; Liu et al. 2022a), two-layer
convection (Zhong, Funfschilling & Ahlers 2009; Xie & Xia 2013; Liu et al. 2022b) and
convection with phase transitions (Lakkaraju e al. 2013; Wang, Mathai & Sun 2019).

Some early experimental studies of a melting solid in RB convection mainly focused
on pattern formation at the liquid—solid interface in the presence of a weakly convective
flow (Davis, Miiller & Dietsche 1984). Since then, more relevant studies have appeared,
including both experimental and numerical work to study the effects of convective flow
(Favier, Purseed & Duchemin 2019), shear (Couston et al. 2021; Hester et al. 2021),
rotation (Ravichandran & Wettlaufer 2021), initial conditions (Purseed et al. 2020) and the
density maximum of water at 4 °C (Wang, Calzavarini & Sun 2021a; Wang et al. 2021b,c¢),
which reveal the solid topography and its melt rate with convective flow, covering a wealth
of phenomena.

However, most of the previous experimental and numerical studies have only considered
turbulent but still relatively weak convection (Rayleigh number (Ra) < 10%). In many
natural and industrial applications, however, the thermal driving can be stronger and the
flow more turbulent. Increasing Ra will affect both the flow structures and the heat transfer
scaling, e.g. the different heat transfer scalings in the plume impacting region and plume
ejecting region in van der Poel et al. (2015b), Zhu et al. (2018) and Reiter et al. (2021), and
a cross-over in the wall heat transport from impacting dominated to ejecting dominated is
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found at Ra ~ 3 x 10! when Pr = 1 (Reiter et al. 2021). How highly turbulent convection
affects the emerging morphology of the melting substrate remains a crucial but hitherto
unsolved question.

In order to better estimate the coupling of turbulent convection to the morphology
of the melting solid, in this work, we aim to extend the simulations on melting in
the RB configuration to higher Ra (up to 10° in three dimensions and up to 10'! in
two dimensions), by performing direct numerical simulations coupled to the phase-field
method. In particular, we focus on the physical mechanism for the formation of roughness,
which is due to the different heat flux contributions from impacting and ejecting plumes,
and their evolution as the thermal convection strengthens with a scaling of 1/3 with the
effective Ra number.

The paper is organized as follows. In § 2, we describe the governing equations and
control parameters used in the simulations. In § 3, we show how the morphology evolves
under the interaction with convective flow beneath. In § 4, we quantitatively analyse the
scaling of the interface amplitude with Ra. In § 5, we extend this analysis to the evolution
of the interface with increasing Ra, characterized by the typical wavelengths. In § 6,
we show how the roughness amplitude depends on the Stefan number St¢, which is the
non-dimensional latent heat. Finally, in § 7, we summarize the results and give an outlook
to future work.

2. Governing equations and control parameters

The flow in RB convection is confined between two parallel plates separated by a distance
H, with gravitational acceleration g acting orthogonally to these plates. We numerically
integrate the velocity field u and the temperature field 6 according to the Navier—Stokes
equations subject to the Oberbeck—Boussinesq approximation, ignoring potential density
anomalies which e.g. occur for water at 4°C. We implement the phase-field method
presented by Hester et al. (2020) to simulate the melting solid. In this technique, the phase
field variable ¢ is integrated in time and space, and smoothly transitions from a value
of 1 in the solid to a value of O in the liquid. The dimensionless governing equations,
constrained by the incompressibility condition V - u = 0, read

ou Pr_, ou
—~4+u-Vu=—-Vp+,/—Vu——+0be, 2.1
at Ra n
i +u-Vo ! V20 + Sta¢ (2.2)
N u- = —_—, .
ot v RaPr at
% _ 0 [V% Lo — )1 — 20 + ce)] (2.3)
3t  5StC/RaPr €2 ’ ‘

Here, the temperature field 8 = (T — T,,)/A has been non-dimensionalized using the
temperature difference A between the plates and the equilibrium melting temperature
Ty, and the velocity field # has been non-dimensionalized with the free-fall velocity
Ur = /gBHA, where B is the thermal expansion coefficient; e, is the direction of gravity
and 7 is the penalty parameter to damp the velocity to zero in the solid phase, which we
set equal to the time step, following Favier et al. (2019). All lengths have been made
non-dimensional with the plate separation H. The physical control parameters in the
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equations are the Rayleigh, Prandtl and Stefan numbers, defined as

AH3 L
Ra=P8AH"  p Vg E (2.4a~c)
VK K cpA

Here, v is the kinematic viscosity of the liquid, « is the thermal diffusivity (which is
assumed to be equal in the solid and the liquid), g is the gravitational acceleration, ¢, the
specific heat and L the latent heat; Pr is fixed to 10, representative of cold water. First, St
is fixed to 1, and the effect of increasing St to somewhat more realistic values (in practical
situations) for ice and other phase-change materials will be investigated in § 6.

The applied phase-field model was initially derived based on entropy conservation,
which guarantees the thermodynamic consistency, and also satisfies the Gibbs—Thompson
relation (Hohenberg & Halperin 1977; Wang et al. 1993; Favier et al. 2019; Hester et al.
2020), which is given by

T—T, £

=2y, 2.5
A cV (2.5)

where T is the dimensional temperature, T, the equilibrium melting point, y the local
interface curvature and ¢ is used to measure the diffuse interface thickness; € = ¢/H is
typically chosen as an empirical value in the phase-field method (Ding, Spelt & Shu 2007;
Yue, Zhou & Feng 2010). Here, we take € to be equal to the grid spacing in our simulations,
following the convergence test in Favier et al. (2019). Also, C is the same parameter as
appears in (2.3). It controls the dependence of the melting point on the interface curvature.
At scales relevant for turbulent convection, we anticipate the Gibbs—Thomson effect to be
minimal, because the local curvature is relatively low, and therefore we choose C = 1
(Hester et al. 2020). The condition of heat flux balance at the liquid—-solid interface is
given by the classical Stefan conditions (Woods 1992; Worster, Batchelor & Moffatt 2000)
as

Lv, = cpk (3,7 — 3, TP), (2.6)

where v, is the normal velocity of the interface, and the superscripts (§) and (L) represent
the solid and liquid phases, respectively. A more detailed discussion of the parameters and
the validation of our implementation can be found in Hester et al. (2020) and also our own
software documentation (Howland 2022).

Three-dimensional (3-D) simulations are conducted in a domain with (L, Ly, L;) =
(2,1,1), where Ly, L, and L, are the dimensionless horizontal lengths in the x
direction, y direction and the dimensionless vertical length in the z direction, respectively.
Two-dimensional (2-D) simulations are conducted in a domain with (L, L;) = (2,1). We
also ensure that there are enough grid points to capture the turbulent flow. Specifically, for
the 3-D case of Ra = 10°, we use a uniform mesh of 1536 x 768 x 768. Besides, a grid
independence test has been conducted to ensure that the same final conclusion is obtained
when the grid size is either halved or doubled. A list of all simulation cases is shown in
table 1.

We impose a fixed temperature & = 1 at the bottom heated plate (below the melt) and
6 = 0 at the top cooled plate (above the frozen liquid), and no-slip boundary conditions
for both plates. Periodic boundary conditions are imposed in horizontal directions. The
melting temperature of the solid is set to the same value as the temperature at the top wall
0 = 0. Initially, we prescribe a flat interface height at h/H = 0.1, with the velocity field
setto u = 0 everywhere. The temperature field in the liquid is initialized as a linear profile
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Ragff Ra St Resolution Discussed in
3-D

10° 108 1 768 x 384 x 384 §4

100 10° 1 1536 x 768 x 768 §83,4
2-D

109 108 [0.25,1,4] 288 x 576 §84,5,6

100 10° [0.1,0.2,0.25,1,4] 576 x 1152 §84,5,6

107 1010 [0.25,1,4] 1152 x 2304 §84.5,6

108 101 1 2304 x 4608 §84,5

Table 1. List of all simulation cases. Here, Ragﬂv is the effective Ra defined by the initial liquid layer height.

with random fluctuations of maximal amplitude 0.01 to trigger a transition to turbulence.
Simulations are performed using the second-order staggered finite difference code AFiD
(Verzicco & Orlandi 1996; van der Poel ef al. 2015a), which has already been extensively
validated (Kooij et al. 2018) and used to study a wide range of convection problems (van
der Poel et al. 2015b; Yang, Verzicco & Lohse 2016; Yang et al. 2020; Wang, Lohse &
Shishkina 2021d). The extension of the AFiD code to include two phases approached with
the phase-field method (Cahn—Hilliard equation) was discussed and validated in Liu et al.
(2021).

For studying the evolution of the interface topography, the location of the interface,
defined implicitly by ¢ = 1/2, is the key response of the system. Locally, we thus
define the dimensionless height of the interface &(x,y,f) = h/H by the equation
o, y,E(x,y,1),1) = 1/2. From that, we infer the dimensionless mean height of the fluid
layer as

1
L,L,

_ Ly Ly
= [ [ ecrna. @)
o Jo
We denote all horizontally averaged values with an overbar. We can use £ () to define the
effective Rayleigh number of the fluid layer
BgA (1))’
VK

Rayy(t) = = Ra(§(1))® < Ra. (2.8)

We also define the (non-dimensionalized) local heat flux ¢ at the interface as

K(VT - n)|z=n =
Xy, 1) = ——————— = —£(VO - n)|—¢, 2.9
q(x,y, 1) KAJh &( ) =g (2.9)
where Z and z denote the dimensional and dimensionless vertical coordinate, respectively,
K = apC, denotes the thermal conductivity and C,, the specific heat; n denotes the normal
direction to the solid-liquid interface, calculated by n = V¢ /|V¢|. The time-dependent
global Nusselt number is defined as

Nu(1) = q(1) = =§(VO - n)|=¢. (2.10)

Note that calculating such a diffusive flux directly at ¢ = 0.5 in a phase-field simulation
will result in an erroneously small flux since the temperature gradient is smoothed out
by the diffuse interface. It is therefore vital to resolve the conductive sublayer, where
normal temperature gradients are uniform, outside the diffuse interface region so that the
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heat flux can be accurately calculated. We have further validated our interfacial heat flux
calculations against the Stefan condition (2.6) to ensure self-consistency.

3. Roughness evolution

First, we study how the morphology of the initially smooth solid layer above the turbulent
convective flow evolves during the melting process. The simulations are run until the layer
is completely molten. We present an instantaneous 3-D visualization of the temperature
field in figure 1(a). Vertical slices of the temperature field at various times are shown in
figure 1(b-d) along with corresponding bottom views of the interface in figure 1(e—g). As
seen from these latter figures, the roughness increases as the convective flow intensifies
with time. Here, by roughness we refer to the scale of the undulations in the solid-liquid
interface. At the early stage, under the influence of convection, the interface evolves from
flat to small-scale cellular structures, as shown in figure 1(e). Over time, the cellular
structures merge and become larger. The large-scale circulation driven by the convection
also grows in scale as time evolves. Furthermore, from figures 1(d) and 1(g), at large Ra.,
we do not find isolated cusps above the sinking plumes as in Favier et al. (2019) for smaller
Ra,, but rather more rough topography from recirculation induced melting. We found
that the rough cellular structures exist mainly in the regions associated with descending
cold plumes while a smoother surface emerges in the region dominated by the rising hot
plumes.

Apparently, the interface topography changes as Raep increases, depending on the
rising hot plume region and the descending cold plume region. This also occurs in two
dimensions, as highlighted for example by figure 2 for Ra = 10'!: at the early stage, the
solid melts locally above the rising hot plume, but less so above the descending cold
plume. The unstable descending cold plumes locally generate recirculation flow, as shown
in figure 2(a) where Raqy = 3.1 X 108. While the solid keeps melting and Ra, increases
further, the solid above the cold descending plumes melts faster and becomes rougher than
that above the hot rising plumes (see figure 2(b) at Ra.r = 5.3 X 10'9). More unstable
cold plumes generate multiple recirculation flows. These turbulent plumes are able to
effectively mix their surroundings, thus inducing an increase of the vertical and horizontal
heat transport, therefore resulting in more local roughness elements. The early appearance
of the recirculation in figure 2(a) was not observed by the previous study of Favier et al.
(2019). Note that we only have 2-D simulations at high Ra. Reiter et al. (2021) suggest that
the higher Ra used in our study is needed to observe the recirculation. The formation of
quasi-steady rolls from the normal mode initial condition of Favier et al. (2019) leads to
coherent interfacial cusps that may also act to inhibit the emergence of such recirculation
Zones.

4. Roughness amplitude

To quantitatively analyse the topography as time evolves, we first denote the fluctuation
terms by a prime, calculated by the local value minus the horizontally averaged value,
both for the interface height & and heat flux ¢

e,y ) =6y, 1) —E@0), ¢y 0D =qky1)—qQ), (4.1a,b)

where g = £36/9z. Then we measure the typical amplitude of the interface by the root
mean square (r.m.s.) of &’ as

Ems(1) = (EQ.y, 1) — E(0))? = /& (x.3.1)2. (4.2)
956 A23-6
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Figure 1. Visualizations of the 3-D numerical simulation at Ra = 10°. () Instantaneous 3-D temperature
field at 7= 1200z;. Light blue colour above the flow field represents the solid ice phase ¢ > 1/2.

(b—d) Two-dimensional slices of the temperature field at times 400t, 800t and 1200t¢, where t; = VH/gBA
is the free-fall time. (e—g) The contour maps of the solid interface corresponding to the times in (b—d). The
topography is found to become rougher as time evolves. Note the different colour code in (g) as compared with
(e) and (f), reflecting the roughening of the structure with time.

We rescale &5 as érms = érmsRal/ 3 to provide a more general comparison across the
different simulations. This is equivalent to non-dimensionalizing the r.m.s. height with
the intrinsic length scale [ = (vk/gp A)'/3 rather than with H. Figure 4(a) shows érms as
function of the effective Rayleigh number Ra.sr. The amplitude monotonically increases
as Raep increases. Deforming cellular structures during merging will cause fluctuations
in the results. However, we find that &,,; depends primarily on the effective Rayleigh
number, with a reasonable collapse of the data from all of our simulations, following an
approximate scaling of Raeﬁrl/ 3,

We now set out to understand this scaling érms ~ Raer'/”°. We begin from the
non-dimensionalized Stefan boundary condition (2.6), approximated by only the vertical
component of the heat flux

1/3

5 _ 1 3 1 ¢ 43
ot  RaPrdz  ~/RaPré&’ '
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(a) 1

Figure 2. (a) Temperature field at Ray = 3.1 x 108 of 2-D simulation at Ra = 10'!, with a zoom plot of the
interface shape. (b) Temperature field at later time at Raoy = 5.3 X 101, again for 2-D simulation at Ra = 101

which relates the melt rate to the local heat flux ¢ using (2.9). Spatial averaging of (4.3)
gives

dr St«/RaPrS.

By assuming that £’ < &, cancelling out the global balance (4.4) from (4.3) and using
(4.1a,b), we obtain

g _ | 4 (4.4)

&’ 1 !
¥ 1 a4 4.5)
ot St/RaPr &

Since Raey is solely a function of 7, as seen in (2.8), we can use the chain rule to transform
the time derivative to one with respect to Ra. and apply (2.8), (4.4) and (4.5), which gives

9E’ 9E’ ot OE 1 ! 3 1
§ = i—_ § ~ ( qf) (St«/RaPré) 5
8Raeff ot a& aRaeﬁ‘ Stv/RaPr & q 3Rag

q _ _
= 3gRaer 2PRa™!. (4.6)

By integrating (4.6), we obtain

/
£~ / %Raeﬁ—mRa—W dRay;. (4.7)
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What remains unknown in this expression is the normalized heat flux fluctuation ¢'/g,
and in particular its dependence on Ra,r. Note that in classical turbulent RB convection, it
has been found that close to the bottom plate the relative heat transport contributions of the
cold descending plume region and the hot rising plumes region are not equal (Zhu et al.
2018). As Ra increases there is a cross-over in these heat flux contributions, and the heat
flux from the descending plumes can become dominant at high Ra (Reiter et al. 2021), as
there the thermal boundary layer has become very thin.

Here, we also measure the instantaneous interfacial heat flux for regions associated
with the descending cold and rising hot plume regions at different Ra.s, since Raep
keeps increasing as the solid melts. Thus we can understand the relation between the
roughness and the flow structure underneath. Whereas previous studies (Blass et al. 2021;
Reiter et al. 2021) relied on time averaging to distinguish the separate regions, we must
use instantaneous snapshots due to our time-evolving fluid domain. We measure the
temperature close to the bottom plate at a distance of 10 grid points and identify the local
temperature maxima, as highlighted in figure 3(b). Note that the exact value of this height
does not matter, and our results are robust to changes in this value. The corresponding local
heat flux ¢ is plotted in figure 3(c), which reflects the similar behaviour of spatial variation
of interface heat flux, leading to the morphology evolution. Note the narrow local peaks
in g within the cold plume region, which correspond to the recirculation regions forming
secondary cusps at the interface. We then prescribe equally sized areas centred at these
peaks such that half of the domain is classified as the ‘rising hot plume’ region. The rest
of the domain is classified as the ‘descending cold plume’ as shown on the temperature
snapshot of figure 3(a). Five consecutive snapshots are chosen to average the conditionally
averaged heat flux.

Then we plot the conditionally averaged heat flux as a function of Raey in figure 4(b).
The heat flux contributions remain approximately constant over a wide range from Ra.p =
106 to Ragy = 10'°. The heat flux fluctuation ¢’/g over the interface can be estimated
by the difference between that from the hot rising plume region and that from the cold
descending plume region. We do not observe any pronounced dependence on Racf so that

we can approximate
/

ES

A const. (4.8)

Nl

By substituting (4.2) and (4.8) into (4.7), we finally obtain the scaling for the r.m.s. of &

Erns(D) = Ra'P\J€x,y, 07 ~ Rall?, (49)

which is consistent with the results in figure 4(a). This scaling in turn implies that the
(dimensional) r.m.s. height is proportional to the mean height, that is

Hyms ~ h. (4.10)

This suggests that the large-scale circulation, determined by the layer thickness /4, has the
strongest effect on the roughness amplitude. At Rap > 10'9, £, shows a deviation from

the Raijgf scaling, which could be because of a gradual change of the heat flux distribution

in hot and cold plume regions as Ra further increases (similar to what was seen by Reiter
et al. (2021) at Pr = 1). We could also associate this with the growing importance of the
recirculation regions shown in figure 2(b) compared with the large-scale circulation. Such
high Rayleigh numbers are not easily achievable with current computational resources but
deserve further studies in the future.
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Figure 3. (a) An illustration of the temperature field and the separated region. The dashed lines represent the
edge of the hot rising (in red colour) and cold descending (in blue colour) plume regions. (b) The corresponding
temperature distribution as a function of horizontal distance close to the bottom plate at a distance of 10
grid points. The temperature distribution is smoothed by a spatial moving average for each snapshot to avoid
instantaneous fluctuations. The red stars represent the measured peak points. Each hot plume region has the
same width. (c¢) The corresponding surface heat flux g(x) calculated at the phase boundary, as defined in (2.9),
as a function of horizontal distance. The effective Rayleigh number for this snapshot is 7.5 x 10°.

5. Roughness wavelength

Another quantity of interest is the typical horizontal scale of the topography. As we shall
describe, the circulating flow structures that strongly impact the interface evolution are
quite different in 2-D and 3-D simulations, so we choose to analyse them separately.
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Figure 4. (a) Rescaled topography amplitude érms = .§,mSRa1/ 3 as a function of the Raegr (which grows with
time) for different global Rayleigh numbers and both 2-D and 3-D simulations. The dashed line shows the
§,ms ~ Ra;]ffa scaling, derived from (4.3) to (4.9). (b) The conditionally averaged heat fluxes averaged over the
hot plume region g, and over the cold plume region g, at the interface separately, normalized by the global heat
flux at the interface g. These distinct regions are highlighted in figure 3. Here, the data points are averaged over
the five consecutive snapshots around the corresponding Ra,s for 2-D cases. The error bars denote the range
of values obtained from these snapshots.

5.1. Two-dimensional simulations
Focusing mainly on the 2-D simulations, we consider an integral length scale based on the
spatial Fourier transform of the interface height iz(k, t), where non-dimensional & is the

wavenumber. Analogous to the typical definition for turbulence, the typical length scale of
the topography can then be estimated as A(¢#)/H = 27 /k(t), which is defined as

o 1,7 2
k™ h(k, t)|” dk
@_/0 k. 1)
— .
/ \h(k, 1)|? dk
0

The length scale A(¢)/H is plotted in figure 5(a) as a function of £(1) for different Ra.
As expected, the length scale increases with fluctuations due to the merging cellular
structures.

The horizontal scale of the topography is expected to correspond to the wavelength of
the underlying convective rolls (Esfahani er al. 2018; Favier et al. 2019). To quantitatively
describe the convection rolls, we use the result of Wang et al. (2020) for the lower and
upper bounds on the aspect ratio of the convective rolls I, = A,/h, which was derived
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Figure 5. (a) The wavelength A(7)/H of the topography as function of interface height () for different Ra.
The dashed line represents 1/H = &. For low Ra, A is always larger than &, while for high Ra, A can be smaller
than &, which means that the topography becomes even rougher. (b) Quantity B (defined in (5.3)) as function of
Racg for different Ra. The solid line represents the quadratic fit of our data, and the dashed line represents the
fitting curve from Wang et al. (2020). (¢) The measured convection roll aspect ratio I, as a function of Raef,
the lower and upper solid lines represent the lower and upper bounds from the theoretical analyses (5.2) of
Wang et al. (2020). (d) The measured interface cell aspect ratio I as a function of Ra,y, the lower and upper
solid lines again represent the lower and upper bounds for interface cells from the theoretical analysis (5.2).

for smooth plates and no slip boundary conditions. Here, A, is the wavelength of the
convective rolls in classical 2-D RB convection, namely

¢ B§Fr§\/1+2\/3_B/\/1—2«/3_B, (5.2)

with
B=Re*Pr’Ra (g - 17!, (5.3)

where Re is the Reynolds number and c is a constant with ¢ = 9, following Wang et al.
(2020), and q is the averaged heat flux. These upper and lower bounds were derived based
on the strain—vorticity balance and a generalized Friedrichs inequality (Wang et al. 2020).
In these 2-D flows, the flow can be assumed as a set of elliptical rolls with a certain
range of aspect ratios and the balance between strain and vorticity is determined by the

elliptical shape of these rolls. The value of B according to (5.3) is calculated from our

simulations and plotted in figure 5(b). It can be fitted by B = O.45Ra;c})'38+0'0175 tozio(Raepr)

The form of this expression comes from a quadratic fit of the data for log B as a function
of log Ra,s, again as obtained by Wang er al. (2020) for smooth walls. In figure 5(c),
we plot the convective roll aspect ratio I as function of Ra,s and the upper and lower
bounds based on (5.2). As expected, I'; lies in between them, especially for high Ra,y.
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At low Ra,s, disagreements arise since the rough topography is more closely coupled
to the convective roll structure, compared with the smooth case in Wang et al. (2020), as
highlighted by figure 2(a). This can cause smaller aspect ratio rolls to ‘lock-in’ to the shape
of the interface and delay the merging of rolls. When beyond Ra = 10'!, B becomes more
horizontal, the upper and lower limits will approach constant values.

We can define a similar aspect ratio I, = A/h for the cellular structures on the
solid-liquid interface. In figure 5(d), we plot the interface cell aspect ratio I, as a function
of Ra.sr, which also shows good agreement with the upper and lower bounds based on
(5.2). This means that the horizontal scales of the topography correspond to those of the
convective rolls beneath. While considering that one single cellular structure can include
either one or two convective rolls (see figures 2a and 2b), ', can be larger than the upper
bounds. It is noted that we only compared with the 2-D simulations, since the theory
of Wang et al. (2020) is also limited to two dimensions. Also, the theory is no longer
applicable once the ice topography has larger deformation, as it is a theory for flat plates.

5.2. Three-dimensional simulations

We now turn to the 3-D simulations, where the above theoretical bounds do not apply. In
their study of large aspect ratio RB convection, Krug, Lohse & Stevens (2020) observe
typical ‘superstructures’ of aspect ratio I” = 6.3 in the temperature and velocity fields
at Ra = 108, Pr = 1, along with an increasing trend for the aspect ratio with Ra. These
structures significantly exceed the aspect ratios permitted for the rolls in two dimensions,
and Pandey, Scheel & Schumacher (2018) find that in three dimensions for Pr closer to 10,
even wider rolls can be expected than for Pr = 1.

For our 3-D simulations, we can construct similar length scales for the interface as
in (5.1). In figure 6, we present two such length scales computed using either Fourier
transform in x or y and then averaging over the remaining horizontal axis to give a single
scale. For example, the typical interface wavelength in x is defined as

* 1,7, 2
| ik -

Ay, ) = e , Zm=—/ Ay dy. (5.4a.b)
/‘wamﬁk 0
0

Ly

Since the RB system has no preferential flow direction in the horizontal, if the domain
were infinitely large one would expect A, ~ A, due to rotational symmetry. However, it
is clear from figure 6(a) that the topography length scales do not match. Comparing the
superstructure results of Krug et al. (2020) with our domain size, with L,/H =2 and
Ly/H = 1, it is not surprising that the aspect ratio of the domain appears to be limiting the
scale of the topography. Even for the first recorded snapshot, as shown in figure 6(b) with a
black dashed line, the aspect ratio of the domain in the y-direction is less than 5, suggesting
that large-scale structures expected in unconfined domains could not be reproduced.

As in three dimensions, the large-scale circulation associated with these thermal
structures appears to play an important role in the evolution of the interface. We can
highlight this in more detail by considering the time-averaged flux of heat at the bottom
plate and the phase boundary. We define the time-averaged vertical heat flux at the lower
plate as

1 ('« HAT

gx,y) = — ——dr, 5.5
q(x,y) . (5.5

956 A23-13


https://doi.org/10.1017/jfm.2023.15

https://doi.org/10.1017/jfm.2023.15 Published online by Cambridge University Press

R. Yang, C.J. Howland, H.-R. Liu, R. Verzicco and D. Lohse

@ 10 (b) 5 —

\ —— 1, Ra=108
\ V
0.8 1 4 “ - /12, Ra=108
\ —o— A, Ra=10°
0.6 = ;5. —— 1, Ra=10°
A/H I N === Uk
k N
047 —o— A, Ra=108 21
~o— 4, Ra= 108
021 —e— A, Ra=10° 14
—o— A, Ra= 10°
0 200 400 600 800 0 200 400 600 800
t/Tf t/Tf.

Figure 6. (a) Phase boundary horizontal length scales and () aspect ratios for the 3-D simulations. The large
values and the difference between A, and A, suggest that the domain size is restricting the pattern formation on
the interface.

for an averaging time of #,. For the upper boundary, we can use the local interface height
as a proxy for the time-integrated heat flux through & = hg + 1,q/(St~/RaPr). To ensure
the fluxes are comparable in magnitude, we rescale this upper heat flux to account for
the heating of the expanding liquid layer in the simulation. The time-averaged heat fluxes
at each boundary are presented in figure 7 for a range of integration times. Particularly
at early times, the fluxes at the two boundaries are inversely correlated, with larger heat
flux at the top boundary (and hence more melting), corresponding to regions where the
integrated heat flux at the lower boundary is smaller.

This can again be associated with the large-scale circulation of RB convection into
‘impacting’ and ‘ejecting’ regions. Considering panels (c¢) and (d) of figure 7, where the
bottom plate shows a region of low heat flux around y &~ 0.6. At the Rayleigh numbers
being considered, this can be associated with a region where the plumes are ejected from
the lower plate. Since the plumes rise up vertically, this corresponds to a region of impact
at the upper phase boundary, and therefore enhanced melting. The correlation of the phase
boundary evolution and the large-scale convective circulation suggests that future studies
of pattern formation by convection and phase change at high Ra should consider 3-D
domains of very large aspect ratio.

6. Effect of Stefan number St

The Stefan number measures the ratio between latent heat and sensible heat. The higher St
18, the more heat is needed to melt the solid and thus the lower the melt rate. In their
previous study, Favier et al. (2019) explored the melting in RB convection at Pr =1,
Ra < 108 and 0.02 < St < 50, and found that St plays an insignificant role in the interface
roughness amplitude. In our study at Pr = 10, with 108 < Ra < 10" and 0.1 < St < 4,
we also find that St still has insignificant effects on the roughness amplitude.

In figure 8, we present the roughness amplitude &, as a function of Ragy as in
figure 4(a) but now at different Ra and St. Here, we find that § rms shows strong dependence
on Ra,s and little dependence on St at all of the different Ra values; the same observation
as in the previous study of Favier et al. (2019). Although there are fluctuations of the

956 A23-14


https://doi.org/10.1017/jfm.2023.15

https://doi.org/10.1017/jfm.2023.15 Published online by Cambridge University Press

Melting in turbulent convection

Lower plate Phase boundary
@ 100 ®) 100 120
0.75 £2~0.75
y 0.50 § 0.50 100 5
0.25 1025 80
0 0
(©) 1.00 (@) 1.00
0.75 2~0.75 90
o ~
y 050 2 0.50 80 4
0.25 1025
70
0 0.5 1.0 15 20 0
(@) 1.00 (N 1.00 90
0.75 70.75
[} ~
y 0.50 S 050 80 g
0.25 I 0.25
70
0
(g) 1.00
0.75
80
0.50 5
Y q
0.25 70
0 0.5 1.0 15 20

X X

Figure 7. Short-time-integrated heat flux g(x, y) (cf. (5.5)) for the 3-D simulation at Ra = 10°, for the bottom
plate z = 0 (a,c,e,g) and the phase boundary z = i (b,d, f,h). Note the similarity of (d,f,h) with those of the
topography in figure 1(e, f,g), although times here are slightly different.
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Figure 8. Effect of St on the roughness amplitude &, vs Ra,p for (a) Ra = 108, (b) Ra = 10°,
(¢) Ra = 10'9. The dashed lines represent érms ~ Ral;; .
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results due to the merging process discussed above, the relation of &, ~ Raijg? can still

be clearly seen at different Sz, similarly to figure 4(a).

7. Conclusions and outlook

We have simulated the melting of a solid above a liquid melt driven by turbulent
convection, using direct numerical simulations coupled with the phase-field method in
both two and three dimensions. We have shown that the topography becomes rougher as
Ra,sr increases, and we also explained the mechanism of roughness, which is because
of the non-uniform heat flux at the ejecting plume region and impacting plume region.
Further, we find the surface roughness amplitude scales with Ra;{;, and quantitatively
derive this scaling relation from the Stefan boundary condition, given measurements
obtained for the heat flux distribution at the interface. It also means that the roughness
amplitude A, ~ h. We quantify the typical horizontal length scale of the convection rolls
and the emerging morphology and compare with the theoretical results for the bounds for
the width of the convection rolls in Wang et al. (2020) for smooth walls, finding good
agreement, in spite of the slightly different geometries (smooth plates vs rough upper
evolving ‘plate’). In three dimensions such bounds are not appropriate, and we find the
need for very large aspect ratio domains to capture the full range of scales of the evolving
phase boundary. These results highlight the intrinsic coupling between the morphology of
the solid and the convective flow structures. Finally, we show that the interface roughness
hardly depends on St.

Based on our results, we now have a clearer picture of the topography evolution above
turbulent thermal convection. We answer how the topography of a melting solid evolves
over turbulent convective flow at higher Rayleigh numbers (up to Ra = 10'!) than the
previous studies at lower Rayleigh numbers (Esfahani et al. 2018; Favier et al. 2019).
Similar cellular structures as in Favier et al. (2019) are found in the regions of hot plumes,
while rough cellular structures in the regions of cold descending plumes are different from
the cusp structures found in Favier et al. (2019). This is because that turbulent plumes are
able to effectively mix their surroundings, thus inducing an increase of horizontal heat
transport and rougher topography.

The main ideas of our results can also be generalized to many natural and industrial
applications, such as subglacial lakes (Couston & Siegert 2021), magma oceans (Ulvrova
et al. 2012) and phase-change materials (Dhaidan & Khodadadi 2015; Noel et al. 2022).

Many aspects of this apparently simple system remain to be explored. In many industrial
and environmental applications, 3-D simulations at higher Ra and larger aspect ratio are
needed, which, however, remain numerically expensive. Also, Pr should also play an
important role, which affects the boundary layer thickness (increasing velocity boundary
layer width compared with thermal boundary layer for higher Pr) and plume structures.
We expect the ice morphology will include more small-scale structures at high Pr. Due to
the computational limit, we cannot fully explore the effect of Pr. We also note that for cold
water Pr only varies in a small range around 10 according to its only weak temperature
dependence. Future research might also compare both melting and freezing processes
(through different initial conditions) and address the issue of possible hysteresis and
whether multiple states exist. Moreover, the density maximum close to 4 °C in freshwater
also plays an important role (Wang et al. 2021¢), which can significantly affect the flow
and solid-liquid interface structures (Weady et al. 2022). For simplicity, here we assumed
a liquid with a linear temperature dependence of the density.
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Beyond these studies, future studies should be extended to multi-component liquids such
as seawater. For glacial melting in seawater, the density depends on both the temperature
and on the salt concentration, which in turn influences the flow structure. And those studies
with melting into salty water should also be extended to further canonical geometries, such
as vertical convection.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2023.15.
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