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ABSTRACT

We present the morphological catalogue of galaxies in nearby clusters of the WIde-field

Nearby Galaxy-clusters Survey (WINGS). The catalogue contains a total number of 39 923

galaxies, for which we provide the automated estimates of the morphological type, applying

the purposely devised tool MORPHOT to the V-band WINGS imaging. For ∼3000 galaxies

we also provide visual estimates of the morphological type. A substantial part of the paper is

devoted to the description of the MORPHOT tool, whose application is limited, at least for the

moment, to the WINGS imaging only. The approach of the tool to the automation of morpho-

logical classification is a non-parametric and fully empirical one. In particular, MORPHOT

exploits 21 morphological diagnostics, directly and easily computable from the galaxy image,

to provide two independent classifications: one based on a maximum likelihood (ML), semi-

analytical technique and the other one on a neural network (NN) machine. A suitably selected

sample of ∼1000 visually classified WINGS galaxies is used to calibrate the diagnostics for

the ML estimator and as a training set in the NN machine. The final morphological estimator

combines the two techniques and proves to be effective both when applied to an additional test

sample of ∼1000 visually classified WINGS galaxies and when compared with small samples

of Sloan Digital Sky Survey (SDSS) galaxies visually classified by Fukugita et al. and Nair

et al. Finally, besides the galaxy morphology distribution (corrected for field contamination)

in the WINGS clusters, we present the ellipticity (ε), colour (B − V) and Sersic index (n)

distributions for different morphological types, as well as the morphological fractions as a

function of the clustercentric distance (in units of R200).

Key words: galaxies: clusters: general – galaxies: elliptical and lenticular, cD – galaxies:

general.

1 IN T RO D U C T I O N

The WIde-field Nearby Galaxy-clusters Survey (WINGS; Fasano

et al. 2006) has gathered wide-field, photometric data, in the optical

bands B and V (Varela et al. 2009), of several hundred thousand

galaxies in the fields of 76 nearby clusters (0.04 ≤ z ≤ 0.07), se-

⋆E-mail: giovanni.fasano@oapd.inaf.it

lected from three X-ray flux-limited samples compiled from ROSAT

All-Sky Survey data (Ebeling et al. 1996, 1998, 2000). The observa-

tions in the optical bands have been obtained with the WFC@INT

and with the WFI@MPG/ESO-2.2 cameras for the northern and

southern clusters, respectively. Follow-ups of the optical WINGS

survey include medium-resolution, multi-fibre spectra of ∼6000

galaxies in 48 WINGS clusters (Cava et al. 2009), wide-field imag-

ing in the near-infrared (NIR) bands J and K of ∼106 galaxies in 28

WINGS clusters (Valentinuzzi et al. 2009) and U-band, wide-field
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Galaxy morphology in WINGS 927

imaging of 18 WINGS clusters (Omizzolo et al., in preparation).

Lastly, a narrow Hα-band photometric survey is presently ongoing

on a subset of the WINGS cluster sample.

The WINGS survey was conceived in 2000, mainly with the aim

of making up for the odd situation for which, while a large amount

of high-quality morphological data for distant clusters were already

available from Hubble Space Telescope (HST) imaging (Couch et al.

1994; Pascarelle et al. 1995; Oemler, Dressler & Butcher 1997;

Kelson et al. 1997; Couch et al. 1998; Lubin et al. 1998), high-

quality CCD data were almost lacking for large samples of nearby

clusters. Actually, the very selection of the WINGS cluster sam-

ple, as well as the choice of the telescopes and the observational

constraints of the optical survey, was performed in order to meet

the requirements needed by the main original task (morphology of

galaxies in clusters), in terms of absolute field of view (>1.6 Mpc)

and spatial resolution (1 arcsec < 1.3 kpc).

A recent, comprehensive review of the various aspects and issues

linked to galaxy morphology can be found in Buta (2011). Until

a dozen years ago, the morphological-type estimate of galaxies

was obtained just by visual inspection of photographic plates or

CCD frames. A few attempts were actually made in the 1990s

to obtain automated morphological classification of galaxies (with

neural networks and self-organizing maps; Naim et al. 1995; Naim,

Ratnatunga & Griffiths 1997), but they remained isolated. In the

last decade, the sudden availability of CCD mosaics has made it

no longer feasible to conduct morphological classifications by eye,

since one has often to deal with wide and/or deep fields, each

one containing thousands of galaxies. This has triggered a number

of papers proposing different tools for an automated morphology

estimate of large galaxy samples.

There are basically two alternative approaches to the problem

of the automated morphological classification of galaxies. The first

one exploits the parametrization of their radial light profiles (see

e.g. Gutierrez et al. 2004; Trujillo & Aguerri 2004; Saintonge et al.

2005; Tasca & White 2005; Örndahl & Rönnback 2005; Ravin-

dranath et al. 2006; Cassata et al. 2010). In this case, the most com-

monly used morphological diagnostics are the bulge fraction (B/T)

and Sersic’s index (n). Several tools have been devised to obtain, in

(semi)automated mode, the best-fitting parameters of the analytical

laws used to represent the light distribution of galaxies. Among

others, we mention GIM2D (Simard 1998), GALFIT (Peng et al.

2002), GASPHOT (Pignatelli, Fasano & Cassata 2006), 2DPHOT

(La Barbera et al. 2008), GASP2D (Méndez-Abreu et al. 2008)

and GALPATH (Yoon, Weinberg & Katz 2011). However, this ap-

proach to the morphological classification of galaxies presents two

serious drawbacks: (i) the analytical components derived from the

formal best fitting of galaxy light profiles (usually exponential and

Sersic laws) often do not correspond to real physical components

(disc and bulge; see e.g. Tasca & White 2005); (ii) the correlations

between these diagnostics (B/T and n) and the visual morpholog-

ical type are weak and show a high degree of degeneracy, espe-

cially for early-type galaxies (see Fig. 1, see also Sánchez-Portal

et al. 2004; Pignatelli et al. 2006). These drawbacks reflect the fact

that structure and morphology of galaxies are intrinsically differ-

ent concepts (see van der Wel 2008). In fact, while the first one is

a global property that can be described by means of simple ana-

lytical laws and leaves mostly aside the problems connected with

image texture, signal-to-noise ratio (S/N) and resolution [apart from

the convolution with the local point spread functions (PSFs)], the

second one mainly deals with pixel-scale behaviours and features

which, without visual inspection, make difficult any quantitative

description.

Figure 1. Visual morphology versus Sersic’s index (top panel) and bulge

fraction (bottom panel) for the 527 galaxies in common between the

MORPHOT calibration sample (see Section 3.1) and the WINGS-GASP2D

sample (Sánchez-Janssen et al., in preparation).

The alternative, non-parametric approach tries to face the prob-

lem by relying upon various diagnostics, directly computable from

the digital postage-stamp images of galaxies, which are empiri-

cally found to correlate with the visual morphological estimates.

The non-parametric tools can be in turn divided into two main cat-

egories: (i) those using a few (two or three) diagnostics and the

relative two- or three-dimensional space to try to segregate galax-

ies with different morphological types; and (ii) those using neu-

ral networks (NN; or some other sharp methodology) to combine

many diagnostics, thus drawing a final, quantitative estimate of the

morphological type. Among the tools belonging to the first cate-

gory, besides the pioneering diagnostic devised by Abraham et al.

(1996, concentration versus asymmetry) and the popular concentra-

tion/asymmetry/clumpiness (CAS) diagnostic set (Conselice 2003),

it is worth mentioning those proposed by Abraham, van den Bergh

& Nair (2003, Gini coefficient) and Lotz, Primack & Madau (2004,

M20 coefficient), Lauger, Burgarella & Buat (2005, concentration

and asymmetry at different wavelengths), Yamauchi et al. (2005,

concentration and coarseness coefficients), Menanteau (2006), van

der Wel (2008) and Petty (2009). To the second category can be

assigned the tools devised by Odewahn et al. (2002, Fourier analy-

sis of the images), Ball et al. (2004), Goderya, Andreasen & Philip

(2004), de la Calleja & Fuentes (2004), Kelly & McKay (2004,

shapelet analysis), Moore, Pimbblet & Drinkwater (2006), Scarlata

C© 2012 The Authors, MNRAS 420, 926–948
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928 G. Fasano et al.

et al. (2007, ZEST), Huertas-Company et al. (2008) and Shamir

(2009). A mixed approach (B/T decomposition + non-parametric

diagnostics) has been tried by Rahman & Shandarin (2004), Cheng

et al. (2011) and Vikram et al. (2010, PyMorph).

The non-parametric approach seems to be more effective than

the parametric one in estimating the morphological type of galaxies

(Hatziminaoglou et al. 2005) and has been claimed to be even able

to compare with visual estimates as far as the intrinsic scatter and

the robustness of the results are concerned (Odewahn et al. 2002;

Bell et al. 2004; Huertas-Company et al. 2008). However, a common

limitation of the non-parametric tools available in the literature is

the scarce ability of separating S0s from elliptical galaxies, which

is actually an important issue when dealing with galaxy evolution

in clusters (Dressler et al. 1997; Fasano et al. 2000; Treu et al. 2003;

Postman et al. 2005; Desai et al. 2007; Poggianti et al. 2009).

In this paper we describe a new automated, non-parametric

tool for the morphological-type estimate of large galaxy samples

(MORPHOT; Fasano & Vanzella 2007), which is in fact able to

separate Es from S0s in a majority of cases. MORPHOT belongs to

the second previously mentioned category of non-parametric tools.

It starts with a set of 21 suitably devised morphological diagnos-

tics, and combines them in two different (independent) ways, thus

producing the final morphological type (and the relative confidence

interval) for each galaxy in a given input catalogue. We fine-tune

MORPHOT for extensive application to the WINGS cluster sample

and present the catalogues of the survey, which contain morpho-

logical types of ∼40 000 galaxies. We stress that although the basic

methodology is robust for any set of digital images of similar spatial

resolution and dynamic range, at this stage the tool does not pretend

to have a general validity, regardless of the observing conditions

(telescope, detector, seeing) and the galaxy sample (redshift). How-

ever, we will show that it produces reliable results for the particular

purposes of the WINGS survey.

In Section 2 we report on the intrinsic reliability of the visual mor-

phological classifications. In Section 3, we describe in some detail

the structure of MORPHOT and the various steps of the tool’s flow-

chart. In Section 4 we analyse the performances of MORPHOT on

the WINGS galaxy sample. In Section 5 we apply MORPHOT to

the WINGS cluster galaxies, present the WINGS catalogues of mor-

phological types and briefly discuss the main statistical properties of

galaxy morphology in the WINGS clusters. Section 6 summarizes

the results and outlines the future employment of the MORPHOT

classifications. Throughout the paper we adopt the following cos-

mology: H0 = 70 km s−1 Mpc−1, �M = 0.3 and �� = 0.7.

2 H OW R ELIABLE IS THE V ISUA L

CL A SSIFIC ATION?

After the pioneering attempt by Raynolds (1920) to provide a mor-

phological classification of spiral nebulae and since the first, defi-

nite understanding by Hubble (1925) of the extragalactic nature of

many nebulae, a number of different classification schemes have

been proposed for the galaxy morphology. The original Hubble

sequence (Hubble 1922, spirals/elongated/globular/irregulars) was

improved by the author himself, first introducing the concept of

tuning fork to distinguish between normal and barred disc galaxies

(Hubble 1926), and then defining the S0 morphological type (Hub-

ble 1936). Later on, the Hubble system was refined and completed,

introducing spiral types later than Sc (Sd and Sm; de Vaucouleurs

1959), a new type of amorphous galaxies (Irr-II; Holmberg 1950)

and ring-based (de Vaucouleurs 1963) or arm-based (Elmegreen &

Elmegreen 1987) distinctions among disc galaxies.

Radically different classification schemes were proposed by Mor-

gan (1958) and van den Bergh (1959, 1960a,b). The first one links

morphology with central concentration of light and stellar popu-

lations, also introducing the new cD type. The second one links

morphology with total luminosity (luminosity classes) and extends

the basic Hubble scheme (E/Sp/Irr) to the lowest luminosity galax-

ies (dwarfs).

Today, the most frequently used classification scheme for sta-

tistical studies is the numerical code associated with the so-called

Revised Hubble Type (TRH), first introduced by de Vaucouleurs

(1974), subsequently improved in the Third Reference Catalogue

of Bright Galaxies (RC3; de Vaucouleurs et al. 1991) and schemat-

ically recalled in Columns 1 and 2 of Table 1.

For reasons which will become clear in the next section, the

MORPHOT tool uses a slightly modified version of the TRH code

(reported in Column 3 of Table 1 as TM: MORPHOT Type), in

which the code −6 is associated with the cD galaxies (rather than

with compact Es) and the transition class E/S0 is introduced and

coded as −4 (the code assigned to cDs in the canonical TRH system).

Before illustrating in some detail the MORPHOT tool, it is im-

portant to explain what would be the ideal performance that we

have tried to achieve. This limit is obviously represented by the

intrinsic uncertainty of the morphological classifications provided

by experienced human classifiers.

In order to quantify this ideal target, we have first collected Sloan

Digital Sky Survey (SDSS) g-band images of 163 galaxies in the red-

shift range 0.005–0.015, with full width at zero intensity (FWHM) ≤
2 arcsec and TRH classification code given in the RC3. In this pre-

liminary sample the fraction of early-type galaxies turned out to

be small compared with that in clusters. Therefore, we decided to

include in this sample 70 more SDSS images of early-type galaxies

obeying the same previous criteria about FWHM limit and morpho-

logical availability in the RC3, but in the redshift range 0.015–0.03.

Table 1. Revised Hubble Type

(TRH) and MORPHOT Type

(TM) codes.

Code TRH TM

−6 cEa cD

−5 E E

−4 cD E/S0

−3 S0− S0−

−2 S0 S0

−1 S0+ S0+

0 S0/a S0/a

1 Sa Sa

2 Sab Sab

3 Sb Sb

4 Sbc Sbc

5 Sc Sc

6 Scd Scd

7 Sd Sd

8 Sdm Sdm

9 Sm Sm

10 Im Im

11 cIa cIa

acE and cI are compact el-

liptical and irregular galaxies,

respectively.
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Galaxy morphology in WINGS 929

Figure 2. The top panels show the paired comparisons of the classifications from AD, GF and RC3, with the number of galaxies reported in each bin. The

bottom panels report the histograms of the differences for each pair of classifiers.

It is worth noting that, in spite of the worse image quality (average

seeing and photometric depth) of SDSS with respect to WINGS,

due to the lower range of redshift (z ≤ 0.03), most SDSS images of

galaxies in our sample have visual classification accuracy (spatial

resolution in kpc) at least comparable to that of the WINGS survey

(0.03 < z < 0.07; see fig. 8 in Paper I).

The 233 galaxies in the final sample have been independently

classified by two of us (AD and GF) using the TRH code adopted

in RC3. The top panels of Fig. 2 show the paired comparisons

of the classifications from AD, GF and RC3, with the number of

galaxies reported in each bin. Note that since in the RC3 and AD

data bases very uncertain classification has been assigned to 42

and eight galaxies, respectively (with five galaxies having uncer-

tain morphology from both RC3 and AD), the AD–GF, GF–RC3

and AD–RC3 comparisons just rely on 225, 191 and 188 common

galaxies, respectively. Note also that compact galaxies, both ellip-

ticals (TRH = −6) and irregulars (TRH = 11), are not present in

the selected sample of RC3 galaxies. The histograms of the differ-

ences for each pair of classifiers are reported in the bottom panels of

Fig. 2, while the main statistical quantities of these differences are

reported in the first three rows of Table 2. The worse performances

of the RC3 classifications with respect to those given by AD and

GF can be explained because of the very nature of the RC3 data,

which mainly result from compilation and statistical homogeniza-

tion of different (mostly inhomogeneous) data sources. The fourth

and fifth rows of Table 2 report the same quantities relative to the

comparisons of the morphological type estimates given by two of

us (GF and WJC) for the clusters Abell 1643 and Abell 1878 [z ∼
0.20 and z ∼ 0.25, respectively; ground-based, very good seeing

imaging taken at the Nordic Optical Telescope (NOT)] and for the

clusters CL 0024+16 and CL 0939+47 (z ∼ 0.39 and z ∼ 0.41,

respectively; WFPC2 imaging from the MORPHS collaboration;

Smail et al. 1997). These comparisons are illustrated in Fasano

et al. (2000, their fig. 2). Comments about the last row in the table

are given at the beginning of Section 4. From Table 2 the visual

morphological classifications turn out not to be biased among each

other, the largest average displacement in the table being less than

�T ∼ 0.5. Instead, both the rms and the fractions of absolute dif-

ferences less than one, two and three times TRH codes turn out to

share relatively wide ranges (σ�T from 1.2 to 2.4; |�T| ≤ 1 from

∼0.53 to ∼0.84; |�T| ≤ 2 from ∼0.79 to ∼0.96; |�T| ≤ 3 from

∼0.91 to ∼0.99). It is interesting to note that similar uncertainties

on the visual classifications and similar wide ranges in the statis-

tical quantities of the differences were found by the MORPHS

Table 2. Comparisons among visual morphological classifications.

Comparison Ngal z Telescope 〈�T〉 σ�T |�T| ≤1 |�T| ≤ 2 |�T| ≤ 3

AD–GF 225 ≤0.03 SDSS 0.076 1.257 0.836 0.960 0.982

GF–RC3 191 ≤0.03 SDSS −0.554 2.374 0.529 0.796 0.932

AD–RC3 188 ≤0.03 SDSS −0.425 2.272 0.569 0.787 0.910

GF–WJC 67 ∼0.2 NOT −0.242 1.348 0.727 0.909 0.985

GF–WJC 207 ∼0.5 HST 0.043 1.479 0.773 0.928 0.976

GF–GF 136 0.04–0.07 INT+MPG −0.072 1.158 0.940 0.976 0.994

C© 2012 The Authors, MNRAS 420, 926–948
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930 G. Fasano et al.

collaboration in their morphological catalogue of 1857 cluster

galaxies at z ∼ 0.5, observed with WFPC2@HST and classified

by four different human classifiers (Smail et al. 1997, their fig. 1).

3 T H E M O R P H OT TO O L

Fig. 3 shows the flow-chart of MORPHOT. The top and bottom

parts of the figure illustrate the calibration and application stages,

respectively. Each stage must be read following the direction of the

big arrow on the left-hand side. In particular, in the calibration stage,

the visual estimates TV (in the MORPHOT system TM) are obtained

for two samples, each one including ∼1000 galaxies, extracted with

the same random criteria from the WINGS imaging. The first one

will be used as a calibration sample for the tool, while the second

one will be employed in Section 4 as a test sample in order to assess

the performances of MORPHOT. For each galaxy in the calibration

sample, (i) the global quantities: size (R), S/N and ellipticity (ε) are

recorded; (ii) 20 image-based, numerical diagnostics of morphol-

ogy (Di, i = 1, . . . , 20) are defined and their values are evaluated.

The calibration sample is used to gauge how the diagnostics Di

Figure 3. Flow-chart of MORPHOT.

C© 2012 The Authors, MNRAS 420, 926–948
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Galaxy morphology in WINGS 931

depend on TV and on the global quantities. This allows us to pro-

duce a semi-analytical estimator which combines the most effective

diagnostics through a maximum likelihood (ML) technique (see

Section 3.3.1 and Appendix B). The same sample is also used as a

training set for an NN machine (see Section 3.3.2 and Appendix C),

in which the global quantities (R, S/N and ε) and the diagnostics Di

are the input quantities and the visual codes TV (in the TM system

of Table 1) are the targets. Finally, the NN and the ML estimators

are combined to produce the final MORPHOT estimator TM.

In the following subsections of the present section the various

steps of the MORPHOT tool are described in detail.

3.1 The calibration sample of WINGS galaxies

In the framework of the WINGS project, we have devised the multi-

object, automated surface photometry tool GASPHOT (Pignatelli

et al. 2006; D’Onofrio et al., in preparation). This tool has been

used to perform detailed surface photometry of 42 297 galaxies in

the WINGS clusters for which SEXTRACTOR (Bertin & Arnouts 1996)

found more than 200 (300) contiguous pixels (threshold area: Athr)

brighter than 1.25 (1.07) times the rms per pixel of the background

(σ bkg) for those images obtained with the WFC@INT (WFI@ESO)1

(∼μV = 25.7 for the WINGS survey).

With the aim of providing a sample of galaxies suitable to cali-

brate MORPHOT, optimizing its performances for WINGS, we de-

cided to randomly extract 16 galaxies per cluster from the WINGS–

GASPHOT catalogues, taking care to put two galaxies in each one

of the eight bins of apparent V magnitude defined as follows: V ≤
15, 15 < V ≤ 16, . . . , 20 < V ≤ 21, V > 21. In this way we gathered

1216 WINGS galaxies sampling uniformly the whole range of mag-

nitudes of the GASPHOT–WINGS galaxy sample (see Section 4)

and spanning the whole range of observing conditions (background

noise and FWHM) of the WINGS optical imaging (see Varela et al.

2009). We decided to remove from this sample those galaxies too

close to the edges of the CCDs and/or the very peculiar objects (on-

going mergers or quite ill-shapen galaxies). After that, we are left

with a final calibration sample of 926 galaxies. All these galaxies

have been visually classified by GF according to the TM code shown

in Table 1.

It is worth recalling here that the photometry of the WINGS

optical survey has been performed on images in which large galaxies

and haloes of bright stars have been removed after modelling them

with elliptical isophotes (see Varela et al. 2009). This allowed us to

perform a careful subtraction of the background and estimation of

its rms (σ bkg) even for small galaxies embedded in the halo of the

brightest cluster galaxies. Therefore, the WINGS optical catalogues

provide, for all galaxies, robust SEXTRACTOR determination of the

ellipticity (εSEx) and of the above-mentioned threshold area Athr.

It is also worth mentioning that each individual galaxy is recorded

within a square, odd-sized frame of side 3 × amaj, where amaj cor-

responds to the semimajor axis (in pixels) of the ellipse with area

Athr and ellipticity εSEx.

3.1.1 Preliminary image processing

Before running the core-tool of morphological type estimation, for

each postage-stamp galaxy image of a given sample, MORPHOT

1 The different thresholds σ bkg and number of contiguous pixels take into

account that we are using cameras with different pixel size (see Varela et al.

2009 for details).

automatically performs the refinement of the local background sub-

traction and the galaxy re-centring. In particular, the central pixel of

each galaxy image is made to be coincident with the intensity peak

or with the distance-averaged intensity (bary)centre, depending on

whether the galaxy shows a well-defined, dominant light peak (reg-

ular shape) or an irregular structure with several local peaks. More-

over, a preliminary processing of the postage-stamp galaxy image

is performed, which produces two ancillary (and temporary) frames

FC and FS.

In the frame FC (C: clean), the possible spurious features (ghosts)

and/or those objects (both stars and galaxies) different from the

galaxy under analysis are removed by comparing the original image

(F0) with the 180◦ rotated one (F180). In particular, if at a given pixel

position the difference F0 − F180 is greater than n times the rms of

the pixel values of F180 over a box of side = 2 × FWHM around the

same position, the pixel value in F0 is replaced by the corresponding

value in F180. We have empirically verified that, in our redshift range

and with our instrumental set, using n = 3 allows us to satisfactorily

remove most of the unwanted objects without either changing the

statistical properties of F0 (image texture) or fading the interesting

galaxy features, like spiral arms, bars, rings and H II regions.

The frame FS (S: smooth/symmetric) is obtained in two steps:

first the symmetrization is achieved by averaging (pixel by pixel) FC

with its 180◦ rotated version; then, the median (3×3) and adaptive

(Richter et al. 1991, max. block size = 11) filters are applied to the

symmetrized frame.

It is worth stressing that the evaluation of the morphological

diagnostics (see the following sections) is performed on either FC

or FS, depending on the particular diagnostic. In general, those more

specifically linked to the global properties of galaxies (i.e. different

kinds of concentration, etc.) are evaluated on FS, while those dealing

with pixel-scale structures, local features (clumpiness, discyness,

etc.) and symmetry are evaluated on FC. The cleaned image FC is

also used to determine the total intensity (IT, in ADUs) and the final,

global geometrical parameters (ellipticity ε and position angle θ )

of the galaxy. These are used in turn to produce a model image FM

from the elliptical apertures intensity profile of FC, to determine the

equivalent radii (in pixels) enclosing 80 per cent of the total galaxy

light (R80) and to compute the average S/N of the galaxy: S/N =
IT/(σ bkgAthr). The global quantities ε, R80 and S/N are used in the

calibration procedure of diagnostics (see Section 3.2).

3.2 Morphological diagnostics

Our approach to the automation of morphological classification is a

fully empirical one. We do not try to identify an orthogonal set of a

few independent morphological indicators (hereafter diagnostics),

as in the case of the CAS parameter set (Conselice 2003) or in the

papers by van der Wel (2008) and Scarlata et al. (2007). Rather,

we prefer to bet on a large number of diagnostics, no matter if in

some cases they are similar to each other, since we postulate that

each one of them could potentially be sensitive to some particu-

lar morphological characteristic and/or feature of the galaxies. In

other words, we decided not to throw out anything a priori and to

defer to a later stage the possibility of giving up some of the di-

agnostics. In addition, we do not try to select the most significant

diagnostics by means of statistical techniques, like for instance prin-

cipal component analysis (PCA; see Section 3.3). We just test each

diagnostic on the field (the test sample; see Section 4), checking

whether its addition to the previous (smaller) set of diagnostics im-

proves the tool’s performance (see Section 3.3.1 and Fig. 8). Lastly,

our diagnostics are not necessarily defined (and conceived) to be
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932 G. Fasano et al.

independent of the image parameters (photometric depth, noise,

pixel size, seeing, etc.). In fact, at least for the time being, we

aim to apply MORPHOT just to the WINGS imaging, deferring

to a later time the release of a more generally usable version of

the tool, where the definition of the diagnostics will be as much

as possible independent of the observing material. More explicitly,

the calibration of the diagnostics we describe in the next sections

is performed on the WINGS calibration sample defined in Sec-

tion 3.1 and holds good just for WINGS-like data. For now, applying

MORPHOT to imaging data different from WINGS would actually

imply a re-calibration of the diagnostics on the new data set.

Up to now we have empirically introduced (and tested) 20 diag-

nostics. Some of them are not conceptually original, but are usually

more simply defined with respect to the similar indicators already

present in the literature. Again, we prefer to test a large number

of rough diagnostics that are rapidly evaluated, rather than a small

set of carefully calibrated (but sometimes hard to compute and not

necessarily more efficient) indicators. It is also worth noting that

our set of diagnostics is actually open, meaning that additionally

devised diagnostics (like, for instance, the spirality analysers from

Naim et al. 1995 and Shamir 2011) can be introduced without

changing the structure of the tool. The only limitation we pose for

the new diagnostics is that they have to be image based, thus ex-

cluding colour- and spectroscopy-based quantities. This is because

we think that, in order to have an unbiased picture of the evolution

of galaxies in clusters, the information on morphology and stellar

population should be kept separate. In Appendix A we present in

some detail the definition and the meaning of the 20 diagnostics

Di (i = 1, . . . , 20). Here we just mention that many of them turn

out to be correlated, sometimes strongly so. This is shown in Fig. 4

for the calibration sample and it is somehow expected due to our

empirical approach.

Figure 4. Mutual correlations among the MORPHOT diagnostics defined in Appendix A.
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Galaxy morphology in WINGS 933

Figure 5. The MORPHOT diagnostics defined in Appendix A versus visual

morphological type for the calibration sample.

3.2.1 Diagnostic dependences

Fig. 5 illustrates how the 20 morphological diagnostics defined in

Appendix A correlate with the visual morphological type for the

926 galaxies of the calibration sample. For the sake of clarity the

Y-labels are omitted in the figure and the visual morphological types

(integer values) of the calibration galaxies in the southern clusters

(304 objects) are shifted by 0.5 upwards.

Moreover, in Fig. 5 the diagnostics D1, D7, D8, D9, D10, D12, D15,

D19 and D20 are plotted in logarithmic scale. It is evident from the

figure that many diagnostics have quite similar (average) behaviour

as a function of the visual morphological type. Still, as explained

before, we postulate that even slight differences among diagnostics

could in principle help to disentangle different morphological fea-

tures, and we defer to a later stage (the comparison of the results

with the visual classification) the decision about the diagnostics to

be retained. For the moment, it is worth emphasizing the impor-

tance of the diagnostics D10 and D11 in disentangling ellipticals

from S0 galaxies. Fig. 6 shows that the distributions of these di-

agnostics for the two morphological types are quite separate. The

relative scarcity of non-discy (face-on) S0s in the figure is likely

attributable to some cases of face-on S0s which have been visually

misclassified as ellipticals. Regarding this, we note that, with the

spatial resolution typical of the WINGS survey, to entirely remove

this kind of misclassification turns out to be almost impossible,

even for visual classifications. Actually, Capaccioli et al. (1991)

have shown that to distinguish face-on S0s from ellipticals could be

a difficult task even for very well resolved galaxies (see Cappellari

et al. 2011 for a more radical point of view).

As already stated before, since our aim is to provide morpho-

logical classifications of WINGS galaxies, our diagnostics Di are

not conceived to be independent of instrumental and observing pa-

rameters (pixel size, seeing, S/N, etc.). Fig. 7 illustrates how the Di

depend on log(R80/FWHM) and on log (S/N).

In contrast, no significant dependence of the diagnostics on the

apparent ellipticity ε has been found. Regarding this, before describ-

Figure 6. Distribution of the average value of the discyness diagnostics

D10 and D11 (see Appendix A) for the (visually classified) elliptical and S0

galaxies of the calibration sample.

ing the techniques we used to extract from our diagnostics univocal

estimates of the morphological type, it is worth mentioning that,

from now on, we formally include ε into the set of diagnostics.

Therefore, their total number is hereafter assumed to be 21 (Di, i =
1, . . . , 20 + ε).

3.3 Combining the diagnostics

Having defined the diagnostics Di and tested their dependence on

both the visual morphological type (TV) and the global quantities

R80 and S/N, we are left with the difficult task of simultaneously

exploiting their capabilities, in order to improve as much as possi-

ble the final effectiveness of the tool in recognizing the morphology

of galaxies. In other words, we must combine in some (smart)

way the 21 diagnostics to obtain a single, final morphological

estimator.

Although our empirical approach would drive us to use all the

diagnostics (see Section 3.2), we first tried to identify, through the

canonical PCA, an orthogonal transformation converting our diag-

nostics in a set of uncorrelated variables, smaller than the original

set, but still preserving the wealth of morphological information

contained therein. However, likely because our diagnostics are not

normally distributed, this attempt turned out to be unsuccessful.

In fact, running the PCA on our galaxy calibration sample, we just

obtained two significant eigenvectors, whose linear combination re-

sulted in an extremely large scatter of the PCA morphological types

with respect to the visual estimates. Actually, in Section 3.3.1 (see

Fig. 8) the number of significant diagnostics is shown to be much

larger than two.

Returning to our empirical approach, we used two different tech-

niques, totally independent of each other, in order to obtain the

above-mentioned combination of the diagnostics and the final,

global morphological estimator. It is worth mentioning that both

techniques produce morphological-type estimates in one digit dec-

imal numbers.
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934 G. Fasano et al.

Figure 7. The MORPHOT diagnostics defined in Appendix A versus log(R80/FWHM) and log (S/N).

Figure 8. Average value (upper panel) and rms (lower panel) of the dif-

ferences �TML = (TML − TV) as a function of the number of diagnostics

(ND) used for the ML estimator. The numbers in the open circles identify

the diagnostics (see Appendix A) recursively added to the previous ones.

The average value and the rms become nearly stable after ND = 9 and ND =
11, respectively.

3.3.1 Maximum likelihood estimator

As outlined at the beginning of Section 3 (see also the flow-chart in

Fig. B1), the first technique exploits the ML statistics to combine

the diagnostics. Concisely, after having removed their obvious de-

pendences on the galaxy size (relative to the FWHM) and S/N (see

Section 3.2.1 and Fig. 7), we use the dependence of diagnostics on

the visual morphological type in the calibration sample [i.e. the 2D

distributions in Fig. 5 to estimate the probability that a given value

of each diagnostic could come from (be measured for) galaxies of

all possible morphological types]. Then, for a galaxy with unknown

morphology and known (measured) diagnostics, we compute the

ML probability (product of the probabilities associated with the di-

agnostics) as a function of the morphological type T and we assume

that the ‘true’ morphological type of the galaxy is that providing the

largest value of ML. From the function ML(T), we can also derive

the confidence interval of each ML estimate of the morphological

type. Details about the MORPHOT-ML technique can be found in

Appendix B.

In order to determine how many diagnostics (and which ones)

are necessary (and sufficient) to optimize the ML technique, we

have first applied the above procedure to all galaxies in the cali-

bration sample using the 21 Di one by one and recording the di-

agnostic which provides the lowest scatter (rms) of the differences

between the ML and visual morphological types (TML − TV; here-

after �TML). Then, we have repeated the procedure by adding the

remaining 20 diagnostics one by one to the first selected diagnostic,

and we have again recorded the one which minimizes the above-

mentioned rms among the 20 couples of diagnostics. We iterated

this loop, each time adding one by one the remaining n diagnostics

to the (21−n) already recorded, while the Di last. Fig. 8 illustrates

the result of this iteration, showing how the average value and the

rms of the �TML distribution vary as a function of the number ND

of diagnostics used to provide the TML of galaxies in the calibration

sample.

The circled numbers in the figure refer to the corresponding di-

agnostic’s numbers in Appendix A. Fig. 8 shows that the average

�TML becomes nearly stable (at ∼0.24) after ND ∼9, while the

rms of the �TML distribution decreases until ND ∼ 11. It is worth

mentioning that, according to the F-test for significantly different

variances, up to this value of ND, the addition of new diagnostics sig-

nificantly reduces the rms, at variance with the (above-mentioned)

formal result of the PCA. From Fig. 8 the diagnostics which turn

out to be effective for the ML technique, sorted by decreasing
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Galaxy morphology in WINGS 935

effectiveness, are: D13, D15, D9, D12, D11, D5, ε, D17, D14, D10 and

D3.

The outlined iterative procedure, aimed at identifying the most

effective diagnostics of the ML technique, is clearly an empirical

one. For instance, we have chosen to stop the iterations when min-

imizing the rms (ND = 11), rather than the average value of �TML,

since we consider the minimum �TML at ND = 5 to be just a statis-

tical fluctuation due to the finiteness of the test sample. Moreover,

we cannot rule out (actually, we consider very likely) the possi-

bility that different combinations of Di could work better, giving

lower values of rms(�TML). Still, testing all possible combinations

of the diagnostics was intractable and, we believe, unproductive.

Thus, we assume that the morphological types TML we got using

the first 11 effective diagnostics are the best possible ML estimates

for the calibration galaxies. Although lacking in a rigorous explana-

tion, we believe the slightly worse rms performance of the tool for

ND >11 to be due (again) to the finiteness of the test sample, which

might induce in the empirical ML procedure a sort of oversampling

noise.

The short-dashed lines in Fig. 9 connect the median values of

�TML in different bins of TV (upper panel) and the corresponding

rms values (lower panel), while the relevant global statistics of the

�TML distribution for the calibration sample are reported in the first

row of Table 3.

Figure 9. Upper panel: the median values of (T − TV) in different bins

of TV are connected for the estimators TML (short-dashed line), TNN (dot–

dashed line, blue in the electronic version) and TM (long-dashed line, red in

the electronic version) obtained by running MORPHOT on the calibration

sample. The full (black) line illustrates the behaviour of the TM estimators

obtained by running MORPHOT on the test sample (see Section 4). Lower

panel: the rms of (T − TV) in different bins of TV for the estimators TML,

TNN and TM in the case of the calibration sample. The meaning of the

different lines is as in the upper panel. The full (black) line refers to the TM

estimator in the case of the test sample.

3.3.2 Neural network estimator

The second technique we use to combine the morphological diag-

nostics is based on the classical feed-forward multi-layer perceptron

NN. Details about the MORPHOT-NN technique can be found in

Appendix C. Here we just mention that again the NN morphological

type estimates are supplied with confidence intervals, while in this

case (at variance with the ML technique) we use as input quantities

of the NN machine the whole set of diagnostics (Di, i = 1, . . . , 20)

plus the global quantities ε, log(R80/FWHM) and log(S/N). The

reason for this choice is explained in Appendix C.

The dot–dashed lines in Fig. 9 (blue in the electronic version)

connect the median values of �TNN in different bins of TV (upper

panel) and the corresponding rms values (lower panel), while the

relevant global statistics of the �TNN distribution for the calibration

sample are reported in the second row of Table 3. Comparing these

values with the corresponding ones relative to the ML technique

(first row of the same table) and looking at Fig. 9, we conclude that

the performances of the NN estimator are significantly better than

those of the ML estimator.

3.3.3 The final MORPHOT estimator

As already pointed out at the beginning of Section 3.3, the ML and

the NN provide conceptually and technically different approaches

to the problem of combining the morphological diagnostics. There-

fore, the MORPHOT estimators produced by the two techniques

(TML and TNN) should be independent of each other and the rms of

their difference should roughly be the square root of the sum of their

variances with respect to TV (rms[TML − TNN] ∼2.55). Actually,

elementary numerical simulations show that the particular density

distribution of TV makes the real rms lower than the above theoret-

ical value, in agreement with the value we found in the calibration

sample (rms = 2.05, see the last row in Table 3).

Once the mutual independence of the two estimators has been

checked, the last step of the MORPHOT flow-chart (see Fig. 3) is

the evaluation of the final morphological-type estimator TM, which

is simply defined as the average value of the two independent esti-

mators: TM = (TML + TNN)/2. Similarly, the lower and upper limits

of the confidence interval of TM are obtained by averaging the lower

and upper confidence limits of TML and TNN, respectively.

The long-dashed lines in Fig. 9 (red in the electronic version)

connect the median values of �TM in different bins of TV (upper

panel) and the corresponding rms values (lower panel), while the

relevant global statistics of the �TM distribution for the calibration

sample are reported in the third row of Table 3.

Comparing these values with the corresponding ones relative

to the ML and NN techniques (the first two rows of the same

table), we should conclude that the global performances of the

NN estimator are even better than those of the final MORPHOT

estimator, thus making it convenient to adopt TNN alone to optimize

the performances of MORPHOT. Still, just because of the above-

mentioned mutual independence of the ML and NN estimators, we

are inclined to believe that their combination could in any case

provide more stable results, each technique possibly compensating

the biases of the other one. Actually, from the upper panel of Fig. 9,

the biases of the TM and TNN estimators in different bins of TV have

quite similar sizes, while the scatter of the TM estimator along the

TV sequence (long-dashed, red line in the lower panel) turns out to

be more stable than in the case of the TNN estimator (dot–dashed,

blue line in the same panel). Therefore, we decided to adopt TM as

the final MORPHOT estimator.
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936 G. Fasano et al.

Table 3. Comparisons between visual morphology and MORPHOT Type for both the calibration

and the test samples. The last row refers to the mutual comparison between TML and TNN.

�T Sample 〈�T〉 σ�T Median(�T) |�T| ≤1 |�T| ≤2 |�T| ≤3

TML − TV CALIB 0.24 2.08 0.00 0.616 0.778 0.867

TNN − TV CALIB −0.05 1.47 0.10 0.656 0.875 0.951

TM − TV CALIB 0.01 1.56 0.10 0.640 0.832 0.925

TM − TV TEST −0.06 1.72 0.00 0.631 0.803 0.885

TML − TNN CALIB 0.29 2.05 0.10 0.522 0.754 0.865

It is worth noting that all the estimators tend to be biased towards

later and earlier morphological types for the early and late visual

types, respectively. However, this is expected (and in some sense

obvious) because of the one-sided error distribution of galaxies

close to the limits of the available range of visual morphological

types.

4 T E S T I N G T H E PE R F O R M A N C E O F

M O R P H OT

As mentioned in Section 3, the test galaxy sample has been extracted

from the V-band WINGS imaging using the same (random) crite-

ria described in Section 3.1 for the calibration sample. Again, we

removed from the initial sample of 1216 galaxies those objects too

close to the edges of the CCDs and/or the very peculiar objects (on-

going mergers or quite ill-shapen galaxies), being left with a final

sample of 979 objects, which have been visually classified by GF

according to the TM code exemplified in Table 1. It is worth noting

that 136 (mostly bright) galaxies turned out to be in common be-

tween the calibration and the test samples. Since the classifications

of the two samples (both from GF) are independent of each other,

these galaxies have been used to estimate the internal consistency of

the visual classifications from GF. The main statistical indicators of

this comparison are reported in the last row of Table 2. They show

that significant differences can be found even by comparing among

each other the morphological classifications provided by the same

human classifier, for the same galaxy sample, but at different times.

For all the galaxies in the test sample, we have computed the

global quantities (ε, R80 and S/N) and the MORPHOT diagnostics

Di and we have obtained the maximum likelihood (TML), the neural

network (TNN) and the final (TM) MORPHOT estimators of the

morphological type.

In the fourth row of Table 3 we report the relevant statistical

quantities of the comparisons between visual and MORPHOT clas-

sifications for the test sample.

From Tables 2 (rows 1, 4 and 5) and 3 (rows 3 and 4) and from

Fig. 9 one can derive the following remarkable conclusions: (i)

for the calibration sample the scatter of the TM estimator with re-

spect to the visual classifications turns out to be quite comparable to

(sometimes better than) the scatter reported in Table 2 among visual

types provided by different experienced human classifiers; (ii) for

the test galaxy sample, the above-mentioned scatter just marginally

increases with respect to the previous case, still remaining quite

competitive with respect to the average scatter among visual clas-

sifications.

Fig. 10 illustrates how the differences �TM = TM − TV (average

value and scatter) behave as a function of apparent magnitudes,

threshold areas and the S/N ratios of galaxies in the test sample. As

might be expected, the scatter of �TM increases (from ∼0.7 to ∼2)

Figure 10. Dependence of the difference (TM − TV) on apparent magnitude

(upper panel), threshold area (middle panel) and S/N (bottom panel) for the

test sample. The big, full dots and the corresponding error bars illustrate the

average values and the rms in each bin.

when the threshold area and the apparent luminosity of galaxies

decrease. In contrast, no dependence of the scatter on S/N is found.

Fig. 11 illustrates the comparison between the visual and the

final (TM) morphological classifications of the galaxies in the test

sample. In this case the comparison is made in ‘broad’ bins of

morphology, where the ‘broad’ classes are conventionally defined

as follows: ellipticals (E), for T < −4; lenticulars (S0), for −4 ≤
T ≤ 0; early-spirals (SpE), for 0 < T ≤ 4; late-spirals (SpL), for

4 < T ≤ 7; very late-spirals and irregulars (Irr), for T > 7. Note

that we have included the cD galaxies in the broad class E. This is

because MORPHOT tends to classify as cDs (T = −6) some among

the brightest and largest ellipticals in the test sample. Note also that

we have included in the S0 ‘broad’ class both the galaxies classified

E/S0 (T = −4) and those classified S0/a (T = 0).

Finally, Fig. 12 illustrates in more detail the results already shown

in the previous two figures and compares, for different ‘broad’

morphological classes, the distributions of apparent magnitude,
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Galaxy morphology in WINGS 937

Figure 11. Comparison between visual and MORPHOT ‘broad’ morpho-

logical classes for the galaxies of the MORPHOT test sample. At the top

of the 2D bins the percentages of the visual classes (Es, S0s, SpE, SpL

and irregulars) falling in different bins of the MORPHOT classification are

reported. Similarly, the percentages of the MORPHOT classes falling in

different bins of the visual classification are reported on the right-hand side

of the 2D bins. Finally, on the top (columns) and on the right (rows) of

the plot, we report the total number of galaxies in each ‘broad’ class of the

visual and MORPHOT estimates, respectively.

threshold area, S/N and axial ratio obtained from the visual (thick

lines) and MORPHOT (thin lines, red in the electronic version of

the paper) estimates of the test galaxy sample.

Figs 11 and 12 show that, besides mimicking the statistics 〈�T〉
and σ�T of the comparison between human classifiers (see Tables 2

and 3), the automated morphological types are able to fairly repro-

duce the global morphological fractions of the visual types (Fig. 11),

as well as the fractions binned according to several observed quan-

tities (Fig. 12). In particular, Fig. 11 shows that, in spite of the wide

range of TM corresponding to each bin of TV (and vice versa), the

global fractions of visually classified E and S0 galaxies in the test

sample are almost exactly reproduced by the MORPHOT types.

5 A P P LY I N G M O R P H OT TO T H E W I N G S

CL U STERS

The bottom part of Fig. 3 illustrates the flow-chart relative to the

application of MORPHOT to the WINGS clusters.

Concisely: (i) for the galaxy catalogue of a given WINGS cluster,

postage-stamp frames of the galaxies to be classified are extracted

from the original WINGS imaging; (ii) for each galaxy, the global

quantities (R80, S/N and ε) and the diagnostics Di are evaluated and

the (independent) NN and ML estimators of the morphological type

are produced, each one with the proper confidence interval; (iii) the

final MORPHOT estimator is obtained by averaging the NN and

ML estimators.

According to Varela et al. (2009), the WINGS optical (B, V) imag-

ing provides photometric and geometric descriptions of 400 140

galaxies in 77 clusters (∼5200 galaxies per cluster, on aver-

age). As already mentioned in Section 3.1, for about one-tenth

of them (42 297 galaxies: those with threshold area greater than

200/300 pixels for images from WFC@INT/WFI@ESO) the sur-

face photometry has been performed with GASPHOT (Pignatelli

et al. 2006). We use the GASPHOT-WINGS catalogues as input

galaxy samples to perform the morphological analysis of WINGS

galaxies with MORPHOT.

5.1 The WINGS morphological catalogues

The total number of galaxies in the GASPHOT catalogues is 42 297.

We removed from the sample those galaxies for which the Sersic

index provided by GASPHOT coincides with the boundaries of

the allowed range (0.5–8), which usually indicates that the fitting

procedure was unsuccessful (Pignatelli et al. 2006). In this way we

are left with 39 651 galaxies in the fields of the WINGS clusters.

For 527 galaxies (1.3 per cent of this sample) MORPHOT produced

unreliable results since it was not able to compute some of the

diagnostics (fuzzy/faint objects). The remaining 39 124 galaxies

have been processed by MORPHOT, which provides TML, TNN

and TM estimates of the morphological types, together with the

corresponding confidence intervals Tmin and Tmax.

We have very quickly checked on the WINGS imaging the

MORPHOT classification of the bright galaxies (mostly brighter

than V = 18) and in 426 cases (∼1 per cent of the total sam-

ple; ∼5 per cent of the checked sample) we have modified the

final classification since it was clearly wrong. Profiting from this

visual inspection procedure, we have also manually added to the

catalogues the morphological types of 799 bright galaxies (again

mostly brighter than V = 18), close to the borders of the frames

or close to bright stars, which had been discarded ‘a priori’ by the

GASPHOT and MORPHOT tools. After this manual intervention,

the total number of WINGS galaxies for which we provide the final

morphological-type estimate (TF) is 39 923. Among them, 2963 are

visual estimates (TV). This latter number includes the 926 galaxies

of the calibration sample, the 979 galaxies of the test sample (136

of them turned out to be in common with the calibration sample;

see Section 4), the 426 galaxies whose classification has been mod-

ified after visual check (31 of them turned out to be in common

with the test sample) and the 799 galaxies manually added to the

catalogues. The full MORPHOT catalogue of WINGS galaxies is

available from the Centre de Données Astronomiques de Strasbourg

(CDS) using the ViZiER Catalogue Service. Table 4 shows the first

few records of the catalogue.

5.2 External comparisons

In order to provide an external check of the goodness of our au-

tomated classifications, we have searched the literature for visu-

ally classified galaxy samples having objects in common with our

WINGS-MORPHOT sample. We only found three possible data

samples that could be usable for our purpose, all of them concern-

ing the SDSS galaxies: Fukugita et al. (2007), Nair & Abraham

(2010) and Lintott et al. (2011, Galaxy Zoo). By cross-matching

these samples with our catalogue, we found that the objects in

common are 18, 79 and 2110, respectively. However, the poten-

tially most sizeable comparison sample (Galaxy Zoo) turns out to

be practically useless, since it just provides the binary information

elliptical/spiral (no S0 classification). Moreover, while the morpho-

logical resolution of the classification system adopted by Nair &

Abraham (2010) is comparable (not equal) to the MORPHOT reso-

lution, the Fukugita et al. (2007) system only enables us to compare

the ‘broad’ morphological classes.
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938 G. Fasano et al.

Figure 12. The distributions of apparent magnitudes (V band), threshold areas (pixels), S/N and axial ratio for different ‘broad’ morphological classes (Es,

S0s, SpE, SpL and irregulars) in the WINGS test galaxy sample. The thick line histograms refer to the visual morphological types (TV), while the thin line

histograms (red in the electronic version of the paper) illustrate the distributions for the MORPHOT estimates (TM).

Fig. 13 illustrates the comparison of the MORPHOT morpho-

logical types with the Fukugita et al. (2007) and Nair & Abraham

(2010) classifications (left- and right-hand panels, respectively). In

both cases the MORPHOT results tend to be slightly shifted towards

earlier types with respect to the visual estimates. However, in spite

of the small number of cross-matched galaxies and of the differ-

ent classification systems, the agreement between the MORPHOT

automated morphological types and the visual estimates from the

literature looks satisfactory. In particular, the average value and the

scatter of the difference (TM − TNair+) turn out to be −0.4 and 1.4,

respectively, to be compared with the corresponding values given

in Tables 2 and 3.

5.3 Morphological properties of the WINGS clusters

This section outlines the main statistical properties of the galaxy

morphology in the WINGS clusters. More detailed and exhaustive

analyses on this topic will be presented in a few forthcoming papers.

Here we just illustrate some general morphological trends emerging

from the WINGS-MORPHOT catalogues.

Fig. 14 illustrates the distribution of the MORPHOT types (TM)

in the fields of the WINGS clusters. The contribution of the gen-

eral field to the different morphological types has been estimated

in two independent ways. First, we have counted galaxies in the

general field of the Padova Millennium Galaxy and Group Cata-

logue (PM2GC; Calvi, Poggianti & Vulcani 2011), for which we

have obtained MORPHOT classifications. Secondly, we have esti-

mated the fraction of cluster members in the WINGS fields using

the spectroscopic completeness and membership functions derived

for the WINGS survey by Cava et al. (2009). In the first case (upper

panel of Fig. 14) we can confidently assume the PM2GC survey to

be nearly complete down to V lim = 18, while the selection of the

WINGS spectroscopic sample has been extended down to V ∼20

(central panel of the figure). In this case, the completeness function

is mainly determined by time allocation and fibre crowding prob-

lems. Moreover, the spectroscopic WINGS survey only includes

a subsample of the original WINGS cluster sample (48 over 77).

In spite of these differences, the distributions of the MORPHOT

types in the WINGS clusters, obtained by applying to the WINGS-

MORPHOT catalogues the two (independent) statistical corrections

for membership, turn out to be remarkably consistent (see the bot-

tom panel in the same figure). The consistency is confirmed even if

we use V lim = 18 also for the membership correction based on the

spectroscopic completeness.
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Galaxy morphology in WINGS 939

Table 4. Sample rows of the MORPHOT WINGS catalogue.

WINGS_ID Cluster TML T min
ML T max

ML TNN T min
NN T max

NN TM T min
M T max

M TV TF

WINGSJ103833.76-085623.3 A1069 3.1 −0.3 4.6 5.9 1.6 8.6 4.5 0.7 6.6 −999.0 4.5

WINGSJ103834.09-085719.2 A1069 4.3 3.0 5.2 4.1 0.5 7.7 4.2 1.8 6.5 −999.0 4.2

WINGSJ103834.13-085030.4 A1069 −5.0 −5.0 −4.7 −5.1 −6.0 −4.4 −5.0 −5.5 −4.6 −999.0 −5.0

WINGSJ103835.85-084941.0 A1069 1.8 −0.1 3.7 −0.2 −3.5 3.9 0.8 −1.8 3.8 −999.0 0.8

WINGSJ103835.89-085031.5 A1069 −1.5 −3.5 0.5 −3.2 −5.1 −1.4 −2.4 −4.3 −0.4 −999.0 −2.4

WINGSJ103836.38-083614.8 A1069 3.8 1.6 4.2 5.0 0.2 8.9 4.4 0.9 6.6 −999.0 4.4

WINGSJ103836.95-085300.8 A1069 −5.0 −5.0 −4.5 −5.9 −6.0 −5.1 −5.5 −5.5 −4.8 −5.0 −5.0

WINGSJ103837.15-085753.4 A1069 3.2 0.2 5.3 4.4 1.1 7.9 3.8 0.7 6.6 3.0 3.0

WINGSJ103837.48-083717.2 A1069 −1.9 −3.8 −0.0 −3.4 −4.8 −1.6 −2.6 −4.3 −0.8 −999.0 −2.6

WINGSJ103837.93-084940.5 A1069 −5.0 −5.0 −4.5 −0.9 −5.2 3.7 −3.0 −5.1 −0.4 −999.0 −3.0

WINGSJ103838.65-084938.3 A1069 −2.4 −3.5 −1.1 0.5 −3.2 4.8 −0.9 −3.4 1.8 −999.0 −0.9

WINGSJ103839.63-084742.6 A1069 2.0 −2.3 2.7 −1.4 −3.9 0.9 0.3 −3.1 1.8 −999.0 0.3

WINGSJ103840.54-085041.1 A1069 −3.0 −4.6 0.8 −4.0 −5.9 −1.4 −3.5 −5.2 −0.3 −999.0 −3.5

WINGSJ103840.85-085046.5 A1069 −4.9 −3.8 −2.3 −5.3 −6.0 −4.5 −5.1 −4.9 −3.4 −999.0 −5.1

WINGSJ103841.43-085521.6 A1069 −3.7 1.5 3.3 6.0 0.9 9.4 1.1 1.2 6.3 −999.0 1.1

WINGSJ103841.63-085528.6 A1069 −4.8 −3.5 −2.7 −3.5 −5.5 −1.4 −4.2 −4.5 −2.0 −999.0 −4.2

WINGSJ103842.12-083557.8 A1069 −5.0 −5.0 −4.1 0.5 −4.5 6.0 −2.2 −4.8 1.0 −999.0 −2.2

WINGSJ103843.03-085602.8 A1069 −5.0 −5.0 −4.3 −4.9 −5.8 −3.8 −5.0 −5.4 −4.0 −999.0 −5.0

WINGSJ103844.19-085609.3 A1069 0.5 −2.1 0.7 −1.9 −3.8 0.4 −0.7 −3.0 0.6 −999.0 −0.7

WINGSJ103844.58-084601.1 A1069 4.5 3.4 5.4 5.3 1.2 8.4 4.9 2.3 6.9 −999.0 4.9

WINGSJ103845.53-085341.2 A1069 3.1 1.4 4.0 −3.1 −5.3 −0.5 0.0 −1.9 1.8 −999.0 0.0

WINGSJ103845.73-084021.9 A1069 0.3 −1.6 0.6 −3.8 −6.0 1.9 −1.8 −3.8 1.2 −999.0 −1.8

WINGSJ103846.39-084530.6 A1069 −3.9 −4.8 −0.9 −2.3 −4.8 0.7 −3.1 −4.8 −0.1 −4.0 −4.0

WINGSJ103846.47-084226.0 A1069 −0.9 −2.6 0.8 0.7 −1.7 2.9 −0.1 −2.2 1.9 −999.0 −0.1

WINGSJ103847.59-084631.3 A1069 −1.4 −2.1 −0.2 −5.5 −6.0 −4.3 −3.5 −4.0 −2.2 −999.0 −3.5

WINGSJ103848.08-085044.8 A1069 −5.0 −5.0 −4.5 −3.9 −4.6 −2.9 −4.5 −4.8 −3.7 −999.0 −4.5

WINGSJ103848.30-084259.9 A1069 −0.1 −2.2 1.1 0.3 −1.6 2.3 0.1 −1.9 1.7 −999.0 0.1

WINGSJ103850.17-085336.6 A1069 −2.7 −0.5 2.2 2.3 −1.5 6.3 −0.2 −1.0 4.2 −999.0 −0.2

WINGSJ103850.35-084804.5 A1069 −2.8 −3.3 −0.8 −0.5 −4.0 3.8 −1.6 −3.6 1.5 −999.0 −1.6

Figure 13. Comparison between MORPHOT and literature morphological

types (see the comments in the text). Left-hand panel: number of galaxies

in the different bins of ‘broad’ morphological class for the sample of 18

WINGS-MORPHOT galaxies in common with Fukugita et al. (2007). Right-

hand panel: the MORPHOT versus Nair & Abraham (2010) morphological

types for the 79 common galaxies.

Adopting the ‘broad’ morphological classes conventionally de-

fined in Section 4, we find that ellipticals, S0s and spiral galaxies

constitute ∼33 per cent, 44 per cent and 23 per cent of the whole

galaxy population in the WINGS clusters. It is worth noting that

these morphological fractions are slightly different from those found

in Poggianti et al. (2009). The discrepancy mostly concerns the E/S0

ratio and is due to the combined effects of two factors: (i) the limit

of 0.6 × R200 adopted for the clustercentric distance in Poggianti

et al. (2009) and (ii) the behaviour of the E/S0 ratio as a function of

the clustercentric distance. Fig. 15 illustrates the point, showing the

morphological fractions as a function of the clustercentric distance

before and after correction for field contamination (right- and left-

hand panels, respectively). Note the prevalence of Es in the inner

cluster regions, which is responsible for the different E/S0 ratio

found in Poggianti et al. (2009). Note also that the field correction

does not influence this ratio up to ∼0.5 × R200, mostly operating on

the S0/SpE fraction in the external part of the clusters.

Fig. 16 shows the distributions of the projected ellipticities in

the WINGS-MORPHOT catalogues for different ‘broad’ morpho-

logical classes. In this case we do not try to correct for cluster

membership, since we just aim to check the plausibility of the dis-

tributions, also in comparison with the literature. Regarding this, the

ellipticity distribution of elliptical galaxies in Fig. 16 turns out to

be in perfect agreement with Fasano & Vio (1991, see also Vulcani

et al. 2011), while for S0s and SpE the peaks of the distributions are

slightly shifted towards lower values of the ellipticities with respect

to the corresponding distributions in Fasano et al. (1993). However,

this is not surprising, since our flattenings come from global, single

component (Sersic) fitting of the galaxy image (GASPHOT), while

the axial ratios in Fasano et al. (1993) refer to the outer isophotes

(essentially the disc components). The peculiar ellipticity distri-

bution of SpL is due to the inclusion in this ‘broad’ class of the

irregular objects, which could be intrinsically less flattened than

disc galaxies.

Fig. 17 shows the distributions of the (B − V) colour for the

spectroscopically confirmed members in the WINGS-MORPHOT

catalogues and for the different ‘broad’ morphological classes. Note

the remarkable similarity and the small, but statistically significant,

shift between the distributions of E and S0 galaxies. Note also the

bi-modal colour distribution of the late-spirals(+Irr) galaxies.

Finally, in Fig. 18 we present the distribution of the Sersic index

n for the different ‘broad’ morphological classes. Again, in this

C© 2012 The Authors, MNRAS 420, 926–948
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940 G. Fasano et al.

Figure 14. Distribution of MORPHOT types in the WINGS clusters. Upper

panel: the distributions for the uncorrected WINGS sample, for the general

field sample (from PM2GC; Calvi et al. 2011) and for the field-corrected

WINGS sample up to apparent magnitude V = 18 are illustrated by dashed,

dot–dashed and full line histograms, respectively. Middle panel: the distri-

butions for the uncorrected WINGS sample, for the spectroscopic WINGS

members and for the WINGS sample corrected with the spectroscopic com-

pleteness and membership functions derived from Cava et al. (2009) are

illustrated by dashed, dot–dashed and full line histograms, respectively. In

this case a deeper magnitude limit (V = 20) has been used (see text). Bot-

tom panel: comparison between the field-corrected and the spectroscopy-

corrected distributions of the MORPHOT types in the WINGS clusters. In

spite of the different magnitude limits adopted for the statistical corrections,

the two distributions turn out to be quite consistent with each other. The

same happens if we adopt for the spectroscopic membership correction the

same magnitude limit we used for the statistical field (PM2GC) correction

(V lim = 18).

case we do not try to correct for cluster membership. The Sersic

indices come from our WINGS-GASPHOT catalogues. As already

mentioned in Section 1, even though a correlation between these

n and the morphological type exists, it is weak and shows a high

degree of degeneracy, especially for early-type galaxies (see the

distributions for bright and faint Es).

6 SU M M A RY

In this paper, we have presented the morphological classification of

∼40 000 galaxies in the fields of 76 nearby clusters from the WINGS

optical (V-band) survey. The morphological types have been esti-

mated automatically, using the purposely devised tool MORPHOT,

whose description takes up a substantial part of the paper. It com-

bines a large set (21) of diagnostics, easily computable from the digi-

tal cutouts of galaxies, producing two different estimates of the mor-

phological type based on: (i) a semi-analytical ML technique and

Figure 15. Morphological fractions as a function of the clustercentric dis-

tance (in R200 units) for the WINGS galaxies before and after correction for

field contamination. The general field morphological fractions in different

bins of apparent V-band magnitude have been derived from the PM2GC

sample (Calvi et al. 2011) using the magnitude limit V = 18.

Figure 16. Ellipticity distributions of WINGS galaxies for different ‘broad’

morphological classes. The irregular galaxies have been included in the SpL

(see comments in the text). No correction for field contamination has been

applied.

(ii) an NN machine. The final, averaged estimator has been tested

over a sample of ∼1000 visually classified WINGS galaxies, prov-

ing to be almost as effective as the ‘eyeball’ estimates themselves. In

particular, at variance with most existing tools for automated mor-

phological classification of galaxies, MORPHOT has been shown

to be able to distinguish between ellipticals and S0 galaxies with

unprecedented accuracy. Even though its basic methodology is ro-

bust for any set of digital images of similar spatial resolution and

dynamic range, MORPHOT is presently calibrated and fine-tuned

to provide reliable morphologies of WINGS galaxies alone. Adjust-

ments of the calibration are required (and are actually in progress)

to make the tool more generally usable. The WINGS-MORPHOT

catalogue has been exploited here just to illustrate the distributions

of some relevant photometric and structural properties of galaxies in

the WINGS clusters. In a few forthcoming papers of the WINGS se-

ries, we plan to perform more detailed statistical analyses involving

the morphology of cluster galaxies. In particular, besides the clas-

sical morphology–density and morphology–clustercentric distance

relations, we will exploit the WINGS spectroscopic information

(Fritz et al. 2007, 2011; Cava et al. 2009; Hansson et al. 2011) to

study how galaxy morphology correlates with star formation rate

and history at different clustercentric distances.
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Galaxy morphology in WINGS 941

Figure 17. (B − V) colour distributions of spectroscopically confirmed

WINGS cluster members for different ‘broad’ morphological classes. The

irregular galaxies have been included in the SpL (see comments in the text).

Figure 18. Sersic index distributions of WINGS galaxies for different

‘broad’ morphological classes. Elliptical galaxies have been divided into

bright (MV < −20.5) and faint (MV ≥ −20.5) Es, while the irregular galax-

ies have been included in the SpL (see comments in the text). No correction

for field contamination has been applied.
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A P P E N D I X A : T H E C U R R E N T S E T O F

DIAG NOSTICS: DEFINITIONS

Here, we present in some detail the definition and the meaning of

the 20 diagnostics Di (i = 1, . . . , 20) we devised up to now. The

first nine of the following diagnostics are actually already present

in the literature, although sometimes in slightly different forms. We

will refer to the original papers for details about their definitions.

In contrast, the remaining 11 diagnostics are presented here for the

first time. Hereafter, in the definition of diagnostics, we use just the

pixels above the threshold value (2σ bkg) and far from the galaxy

centre more than the size of the FWHM.

A1 Diagnostics already present in the literature

D1: Sersic index of the luminosity profile

Given the FWHM, this diagnostic is evaluated on the image FS ac-

cording to the prescriptions given in Trujillo et al. (2001, section 4),

making use of the previously extracted elliptical aperture intensity

profile of the galaxy (see Section 3.1.1).

D2: luminosity-ranked concentration index

Again from the image FS and from the elliptical aperture inten-

sity profile, this diagnostic is evaluated as the fraction of the total

intensity coming from the 30 per cent brightest pixels.

D3: distance-ranked concentration index

Similar to the previous one, but defined as the fraction of the total

intensity coming from the 30 per cent pixels closest to the galaxy

centre (in units of elliptical distances). Note that more elaborated

versions of the concentration indices can be found in Graham et al.

(2001), Conselice (2003) and Yamauchi et al. (2005);

D4: luminosity-ranked Gini coefficient

Following Abraham et al. (2003) and Lotz et al. (2004), inside the

square whose side coordinates are the fraction of galaxy pixels and

the fraction of the total counts (square area ≡ 1), we define this diag-

nostic as the area between the diagonal of the square and the galaxy

Lorentz curve (i.e. the rank-ordered cumulative distribution func-

tion of the pixel counts). For this diagnostic and for the following

one we use the image FS.

D5: distance-ranked Gini coefficient

Similar to the previous one, but in this case the pixels are ranked in

ascending order of the elliptical distance from the galaxy centre.

D6: second-order moment of light

Following Lotz et al. (2004), we define this diagnostic as the second-

order moment of the brightest 20 per cent pixels of the image FS,

normalized to the same moment computed over the whole galaxy

area.

D7: asymmetry

For this diagnostic we use the image FC and adopt the definition

given in Conselice (1997, normalized square counts of the differ-

ence between the original and the 180◦ rotated image), with the

improvements suggested in Conselice et al. (2000, see section 3.4)

about the preliminary image processing (careful centring) and the

handling of the uncorrelated noise.

D8 and D9: clumpiness

The diagnostic D8 is defined according to Conselice (2003, see

equation 2 therein), including in the sum just the pixels with counts

above the threshold (2σ bkg) and far from the galaxy centre more

than the image FWHM. The second clumpiness diagnostic (D9) is

similar to the previous one. However, in order to further enhance

high-frequency features, in this case the model image FM defined

in Section 3.1.1 is subtracted from the galaxy image FC, instead of

the gauss-smoothed version of the image itself.

A2 New diagnostics

The following morphological diagnostics are presented here for the

first time. They all are computed on the frame FC, again using

C© 2012 The Authors, MNRAS 420, 926–948
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Galaxy morphology in WINGS 943

Figure A1. Illustration of the diagnostic D10 (see text for a detailed

explanation).

just the pixels above the threshold (2σ bkg) and far from the galaxy

centre more than the image FWHM. We recall (see Section 3.1) that

FC(i, j) is a square matrix, whose size (N) must be an odd number.

D10 and D11: discyness

The difference between the galaxy image FC and the model image

FM (residual image; hereafter FR) is used to devise two new diag-

nostics related to the shape of the galaxy isophotes (a4 > 0 ≡ discy,

a4 < 0 ≡ boxy; Bender & Moellenhoff 1987). The first diagnostic

is defined as:

D10 = (〈FR1〉 − 〈FR2〉)/〈|FR|〉,

where 〈FR1〉 and 〈FR2〉 are the average counts of FR in the equal-area

sectors of the above-defined model-ellipse marked, respectively,

with ‘1’ and ‘2’ in the bottom panel of Fig. A1. In the formula, the

quantity 〈|FR|〉 is a normalization factor representing the average

value of the (absolute) counts of FR over the whole model-ellipse

(apart from the inner circle of radius = FWHM). Clearly, D10 tends

to be positive in galaxies with disc-shaped isophotes, since in this

case the residuals in the two sectors marked ‘1’ tend to be greater

(darker in the figure) than those in sectors marked ‘2’.

The second diagnostic (D11) is defined as the correlation coeffi-

cient (CC) between the counts of the pixels within the half-part of

the model-ellipse (e.g. the bottom-half: Ypix ≤ Ycen) and those of the

corresponding pixels symmetric with respect to the galaxy centre.

In Fig. A2 these two quantities are plotted against each other for the

same galaxies used in Fig. A1, i.e. an S0 galaxy with discy isophotes

(left-hand panel) and an elliptical galaxy (right-hand panel). It is

evident that high values of CC correspond to strongly disc-shaped

objects, while for regular (non-discy) ellipticals the CC values are

close to zero.

D12: bandwidth of power spectrum

Roughly speaking, late-type galaxies are dominated by structural

features (spiral arms, clumps, tails, blobs, etc.) whose size is (much)

lower than the galaxy size, while elliptical and (in general) early-

type galaxies are typically dominated by a single, regular structure,

whose size is comparable with that of the galaxies themselves.

Figure A2. Illustration of the diagnostic D11 (see text for a detailed

explanation).

Figure A3. Scheme of a texture unit (TUij), illustrating the meaning of its

upper indices (see the formulation in the text).

Having this in mind, we have devised a new morphological diag-

nostic defined as the ratio between some characteristic inverse fre-

quency of the 2D power spectrum of the galaxy image (i.e. the typi-

cal size of features) and the equivalent threshold radius of the galaxy

(
√

Athr/π). Operatively, we estimate the characteristic size of galaxy

features by processing the FC image with the powerspec tool (op-

tion: center = yes) included in the IRAF stsdas-Fourier pack-

age (FFT), and computing on the powerspec image the equivalent

radius of the area where the power exceeds half of the maximum

FFT power.

The next four morphological diagnostics concern the statistical

behaviour of very local pixel properties (image texture; a similar

approach can be found in Moore et al. 2006) over the whole galaxy

body. In particular, they consider the texture units (TUs) provided

by all the 3×3 pixel squares centred on each pixel of the frame FC(i,

j) for i = j =2, . . . , (N − 1), where FC is the Clean Frame defined in

Section 3.1.1. In order to make easier the formalism related to these

diagnostics, it is convenient to introduce the following definitions

relative to each TUij (see Fig. A3):

fij = FC(i, j );

f 1−
ij = FC(i − 1, j ); f 1+

ij = FC(i + 1, j );

f 2−
ij = FC(i − 1, j − 1); f 2+

ij = FC(i + 1, j + 1);

f 3−
ij = FC(i, j − 1); f 3+

ij = FC(i, j + 1);

f 4−
ij = FC(i + 1, j − 1); f 4+

ij = FC(i − 1, j + 1);

cos αij1 = |i − ic|/dij ; cos αij2 = |i + j − ic − jc|/dij

√
2;

cos αij3 = |j − jc|/dij ; cos αij4 = |i − j |/dij

√
2,

C© 2012 The Authors, MNRAS 420, 926–948
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944 G. Fasano et al.

where ic ≡ jc ≡ (N/2+0.5) are the coordinates of the centre, dij =
√

(i − ic)2 + (j − jc)2 is the distance from the centre of the pixel

(i, j) and αijk (k = 1, . . . , 4) is the angle between the direction

(k−)↔(k+) in the TUij of Fig. A3 and the line connecting (i, j)

with the galaxy centre.

D13: average concaveness

Again roughly speaking, the earlier the morphological type, the

lower the unevenness of the intensity surface of the galaxy. More-

over, while in early-type galaxies the intensity gradient increases

regularly towards the centre over almost the whole galaxy body, for

late-type objects, due to the presence of relatively small structural

features (spiral arms, clumps, tails, blobs, etc.), such regular be-

haviour is limited to the very inner part of the galaxy (bulge). That

being stated and given the above definitions, this new diagnostic is

expressed by the formula:

D13 = 0.5 +

N−1
∑

i,j=2

fij × sgn

{

4
∑

k=1

cos αijk

(

f k−
ij + f k+

ij − 2fij

)

}

2 ×
N−1
∑

i,j=2

fij

which in fact provides the fraction of the total galaxy luminos-

ity coming from those pixels for which the local concaveness is

positive, computed in the corresponding TUij and weight-averaged

according to the direction of the galaxy centre (cos αijk). In the

above formula, sgn is the sign function: sgn(x) = −1, 0, 1 for x <

0, x = 0 and x > 0, respectively.

D14: monotonicity

As the previous diagnostic, this one too deals with some geometrical

rule which the intensities inside TUs should obey. In particular, in

this case we consider the fraction of the total galaxy luminosity com-

ing from pixels (i, j) for which FC(i, j) has a monotonic behaviour

in all the four directions of TUij illustrated in Fig. A3. Again, the

greater the amount of structural features (late-type galaxies), the

lower the expected fraction. In formula:

D14 = 1 +

N−1
∑

i,j=2

fij × sgn

{

4
∑

k=1

(

δf k±
ij − δf k−

ij − δf k+
ij

)

}

N−1
∑

i,j=2

fij

where

δf k±
ij = |f k−

ij − f k+
ij |, δf k+

ij = |f k+
ij − fij | and δf k−

ij = |f k−
ij − fij |.

D15: alignment

In defining the next two diagnostics it is convenient to convert the

pixel coordinates in the reference system of the circularized ellipse,

whose ellipticity and position angle (ε, θ ) are those previously

determined (Section 3.1.1) and assumed to be the global geometrical

parameters of the galaxy:

xij = [(i − ic) cos θ + (j − jc) sin θ ] ×
√

1 − ε;

yij = [(j − jc) cos θ + (i − ic) sin θ ]/
√

1 − ε;

zij = FC(i, j ).

Using this system of coordinates, the new diagnostic (D15) tries to

quantify to which degree the local maximum intensity gradient is

aligned with the galaxy centre over the whole galaxy body. Again,

the presence of small-scale structures in late-type galaxies should

imply a lower degree of alignment of the local maximum gradient

towards the galaxy centre with respect to early-type galaxies. To

quantify such a degree of alignment, the points in the space (x, y,

z) corresponding to the nine pixels of each TUij have been linearly

interpolated (χ2) by the function: Zij(x, y) = aij + bijx + cijy. Then,

for each TUij , we have computed the angle φij between two planes,

both passing through the point [xij, yij, Zij(xij, yij)] and parallel to

the z-axis. The first plane contains the galaxy centre (origin of the

new coordinate system), while the second one is parallel to the line

of maximum intensity gradient in the previous linear interpolation.

Finally, the cosines of the angles φij have been weight-averaged

over the whole frame, according to the local intensity. In formula:

D15 =

N−1
∑

i,j=2

zij × cos φij

N−1
∑

i,j=2

zij

where the cosines

cos φij =
bijxij + cijyij

√

(

x2
ij + y2

ij

) (

b2
ij + c2

ij

)

turn out to be positive if the function Zij(x, y) increases towards

the galaxy centre at the point (i, j), while they are negative in the

opposite case.

D16: intercept angle

In defining the previous diagnostic we have introduced the local

planes Zij(x, y) interpolating the nine points (x, y, z) of each TUij .

We noted that in early-type galaxies the line of maximum gradient of

these planes should be (on average) more oriented towards the centre

than in the case of late-type galaxies and that such alignment should

be more and more pronounced at increasing intensity and decreasing

distance from the galaxy centre. Here we note that, in addition, the

average values of the intercept (aij) between these planes and the z-

axis should be higher in early-type than in late-type galaxies, where

the irregular intensity surface should make both the orientations

and the intercept levels of the planes almost randomly distributed,

especially in the intermediate and outer regions of galaxies. In order

to quantify such an average intercept level avoiding computational

divergences, we actually prefer to deal with the cosines of the angles

(β ij) between the z-axis and the straight lines connecting the points

(xij, yij, 0) and (aij, 0, 0). Since the values of cos β ij obviously depend

on the units used to measure intensities and radii, it is necessary to

normalize both quantities. We decided to normalize the intensities

at zc = FC(ic, jc) (intensity of the galaxy centre) and the radii at

Rthr =
√

Athr/π (equivalent radius of the threshold area). After

some algebra, the new diagnostic that is the normalized, average

cos β is defined as follows:

D16 =

N−1
∑

i,j=2

Wij × aij/

√

a2
ij + d2

ijK
2

N−1
∑

i,j=2

Wij

where dij =
√

x2
ij + y2

ij is the circularized distance from the galaxy

centre, K = zc/Rthr is the normalization factor and W ij = zij/dij are

the weighting factors, which increase at increasing local intensity

and at decreasing distance from the galaxy centre.

D17–D20: intensity distribution moments

The last four diagnostics simply concern the moments of the inten-

sity distribution within the galaxy frame. In particular, we consider

the median (D17), the standard deviation (D18), the skewness (D19)

and the kurtosis (D20) of the distribution of the pixel intensities,

normalized to their average value.

C© 2012 The Authors, MNRAS 420, 926–948
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Galaxy morphology in WINGS 945

A P P E N D I X B : T H E M A X I M U M L I K E L I H O O D

T E C H N I QU E

The flow-chart in Fig. B1 should help the reader in this section,

leading her/him through the various steps of this semi-analytical

technique. As already mentioned in Section 3.2.1, besides obvi-

ously depending on the visual morphological type (Fig. 5), the

diagnostics Di turn out to depend on both the seeing normalized

size [log(R80/FWHM)] and the S/N [log (S/N)] (Fig. 7). Therefore,

prior to using them to gauge the morphology of galaxies, we have to

remove these two dependences, thus picking out the net dependence

of each diagnostic on the morphological type.

To this aim the whole range of morphological types in the cal-

ibration sample has been divided into eight, nearly homogeneous

intervals (see the plots on the right-hand side of Fig. B2). For each

interval �T j (j = 1, . . . , 8), the dependences of all the diagnostics Di

(i = 1, . . . , 21) on R80 and S/N have been represented (through least-

squares fitting) by the following second-order polynomial functions:

Di,j (R80, S/N ) =
∑

m+n=0,1,2

A
m,n
ij log(R80/FWHM)n log(S/N)m

thus producing, for each Di and for each �T j, the coefficients A
m,n
ij

and the rms scatters si,j of the residuals with respect to the fits. Then,

for each Di, these quantities have been interpolated, as a function

of the morphological type, with natural cubic splines (NCS):

a
m,n
i (T ) = NCS

m,n
i [A

m,n
i (j )]; σi(T ) = NCSi[si(j )].

Figure B1. Flow-chart of the MORPHOT ML tool.

C© 2012 The Authors, MNRAS 420, 926–948
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946 G. Fasano et al.

Figure B2. Example of the fitting procedure performed in order to remove the dependence of morphological diagnostics on the size (R80) and S/N. The case

of the diagnostic D13 is illustrated in the figure. Left-hand panels: NCS fitting of the polynomial coefficients A
m,n
13 and of the scatter σ 13 as a functions of the

morphological type (details in the text). Right-hand panels: residuals of the (polynomial+spline) fits illustrated in the left-hand panels with respect to both

log(R80/FWHM) and log (S/N). In particular, the upper panels inside each �T j tick line box show the residuals as a function of log (R80/FWHM) (units at the

top of the figure), while the lower panels in each tick line box show the corresponding residuals as a function of log (S/N) (units at the bottom of the figure).

An example of this procedure is shown in the plots on the left-

hand side of Fig. B2, which refers to the diagnostic D13, defined

in Appendix A. Because of the evident discontinuity between cD

and E galaxies, the first bin (�T1) has been excluded from the

spline fitting. Such discontinuity is actually found also for the co-

efficients Am,n of the other diagnostics and reflects their peculiar

behaviour for TM = −6 (see Fig. 5). It is likely telling us once again

that cD galaxies are quite apart from Es and, in general, from all

‘normal’ galaxies, thus suggesting they are the product of a pecu-

liar evolutionary path (Fasano et al. 2010). The right-hand side of

Fig. B2 shows (again in the case of D13) the residuals of the above-

mentioned polynomial fits with respect to both log(R80/FWHM)

(upper panels inside each �T j heavy box) and log (S/N) (lower

panels in the same boxes).

The previous formulae allow us to remove the dependence of

diagnostics on R80 and S/N. Consider now a galaxy for which we

know the diagnostics Di and the quantities R80/FWHM and S/N.

For any given morphological type T and for each diagnostic, the

deviations of the actual values of Di with respect to those obtained

from the above fitting procedure, normalized by the corresponding

C© 2012 The Authors, MNRAS 420, 926–948
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Galaxy morphology in WINGS 947

Figure B3. Distribution of the deviates of the morphological diagnostics of

the calibration galaxy sample with respect to the polynomial+spline fitting

(details in the text) performed in order to remove their dependence on the

size (R80) and S/N.

expected scatter, can be expressed as follows:

�Di(T ) =
Di −

∑

m+n=0,1,2

a
m,n
i (T ) log(R80/FWHM)n log(S/N)m

σi(T )
.

If we assume the distributions of the deviates to be normal (a fair

assumption, in our case; see Fig. B3), the probability that the actual

value of the diagnostic Di is found for a galaxy of morphological

type T can be expressed by

Pi(T ) = SNFi[�Di(T )]

(SNF[x] = e−x2/2/
√

2π is the Standardized Normal Function) and

the ML probability that the morphological type T is associated with

the actual set of diagnostics Di (i = 1, . . . , 21) can be obtained

through the product of the individual probabilities:

P (T ) =
∏

i=1,21

Pi(T ).

We actually prefer to use the logarithmic form:

log[P (T )] =
∑

i=1,21

wi × log[Pi(T )],

where wi are binary weighting factors (0/1) which determine the

inclusion of each diagnostic in the final adopted set of Di (see

Section 3.3.1 and Fig. 8).

We compute the above probability from T = −6.5 to T = 10.5

(step 0.1) and assume the ML morphological estimator to be the

value of T which minimizes the −log [P(T)]. Fig. B4 shows some

examples of the behaviour of the ML probability as a function of the

morphological type for typical galaxies belonging to the six above-

defined broad morphological classes. The red lines in each left-side

figure mark the minimum values of −log [P(T)], i.e. the adopted

MORPHOT-ML morphological types TML, while the dashed lines

indicate the corresponding visual estimates TV. Conventionally, we

should obtain the confidence intervals of our ML estimates by the

change in T necessary to decrease P(T) by �P = 0.5 from its

value at the maximum (in logarithm: �log P ∼ 0.3). In practice,

Figure B4. Examples of the ML minimization for WINGS galaxies of

different ‘broad’ morphological classes.

numerical simulations of the MORPHOT-ML technique and visual

inspection of several real cases suggest that a value of �log P ∼ 0.2

provides more realistic boundaries to the morphological estimates.

The green lines in Fig. B4 set the confidence intervals obtained in

this way. Note in the figure the discontinuity between cD and E

galaxies already shown in Fig. B2 and commented on before. Note

C© 2012 The Authors, MNRAS 420, 926–948
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also the discrepancy between visual and ML estimates in the case

of the galaxy in Abell 160, which has been visually classified as

SpE and automatically classified as SpL (�T ∼ 2.5).

A P P E N D I X C : T H E N E U R A L N E T WO R K

T E C H N I QU E

The architecture and strategy adopted to produce an NN estimator

for the morphological classification are very similar to that described

in Vanzella et al. (2004). Here we briefly recall the method.

C1 Architecture

We adopt the classical feed-forward multi-layer perceptron NN

(MLP; Bishop 1995) with four layers, each one made of 23, 20,

20 and one nodes. The first layer (named input layer) receives

23 input parameters for each galaxy (i.e. the diagnostics Di, i =
1, . . . , 20 as described in Appendix A and the global quantities

ε, log[R80/FWHM] and log [S/N]), while the single output node

(output layer) produces the morphological evaluation. The other

two layers of 20 nodes each are called hidden layers. Each node of

a layer is connected to all the nodes of the next layer.

C2 Training

We use the supervised learning method, where the NN is trained

with examples. The training set is composed of the 926 galaxies in

the calibration sample, each one visually classified (TV). Each ex-

ample presented to the NN is a pair of arrays: one contains the set of

diagnostics (described in Appendix A) with 23 components and the

second array is the targeted morphology (single component), TV.

The learning algorithm2 modifies the strength of the connections

between nodes (called weights) in order to force the association be-

tween the input and the correct output. It translates to a minimization

of a merit function as a function of the set of weights.

Once a suitable set of weights is determined, it is frozen and stored

for evaluation of new (never seen) galaxies. There are various tech-

niques to identify the best set of weights, i.e. those that offer the

so-called best generalization power and that avoid the over-fitting

problem. Here we adopt the method based on a committee of NNs

(30 MLPs have been used) as described in Vanzella et al. (2004).

This method reduces the variance in the predictions maintaining a

relatively small bias (Bishop 1995). Each member of the committee

has been trained with different initial conditions (e.g. initial random

distribution of weights, random sequence of examples presented to

the NN, bootstrapping of examples) that produce different histories

of training and 30 different sets of weights. Therefore, for each

galaxy, the committee produces 30 estimations of the morphology

(T i
NN, i = 1–30). From this distribution we extract the median (mean)

TNN of the T i
NN and the central 68 per cent interval (16 and 84 per-

centiles). With this method we can associate a statistical uncertainty

with the predicted value TNN.

It is clear that the outlined weighting of the connections, inher-

ent to this methodology, automatically provides the selection of the

most significant diagnostics, thus making the preliminary (empiri-

cal) choice we performed in the case of the ML technique useless.

2 Here we have used the back-propagation algorithm with its generalized

delta rule version (see Vanzella et al. 2004).

This paper has been typeset from a TEX/LATEX file prepared by the author.
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