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We derive a stochastic nonlinear continuum theory to describe the morphological evolution of
amorphous surfaces eroded by ion bombardment. Starting from Sigmund’s theory of sputter erosion,
we calculate the coefficients appearing in the continuum equation in terms of the physical parame-
ters characterizing the sputtering process. We analyze the morphological features predicted by the
continuum theory, comparing them with the experimentally reported morphologies. We show that
for short time scales, where the effect of nonlinear terms is negligible, the continuum theory predicts
ripple formation. We demonstrate that in addition to relaxation by thermal surface diffusion, the
sputtering process can also contribute to the smoothing mechanisms shaping the surface morphology.
We explicitly calculate an effective surface diffusion constant characterizing this smoothing effect,
and show that it is responsible for the low temperature ripple formation observed in various exper-
iments. At long time scales the nonlinear terms dominate the evolution of the surface morphology.
The nonlinear terms lead to the stabilization of the ripple wavelength and we show that, depending
on the experimental parameters such as angle of incidence and ion energy, different morphologies
can be observed: asymptotically, sputter eroded surfaces could undergo kinetic roughening, or can
display novel ordered structures with rotated ripples. Finally, we discuss in detail the existing ex-
perimental support for the proposed theory, and uncover novel features of the surface morphology
and evolution, that could be directly tested experimentally.

PACS numbers: 79.20.Rf, 64.60.Ht, 68.35.Rh

I. INTRODUCTION

Sputtering is the removal of material from the surface
of solids through the impact of energetic particles [1–3].
It is a widespread experimental technique, used in a large
number of applications with a remarkable level of sophis-
tication. It is a basic tool in surface analysis, depth profil-
ing, sputter cleaning, micromachining, and sputter depo-
sition. Perhaps the largest community of users is in the
thin film and semiconductor fabrication areas, sputter
erosion being routinely used for etching patterns impor-
tant to the production of integrated circuits and device
packaging.

To have a better control over this important tool, we
need to understand the effect of the sputtering process
on the surface morphology. In many cases sputtering is
routinely used to smooth out surface features. On the
other hand, some investigations indicate that sputtering
can also roughen the surface. Consequently, sputter ero-
sion may have different effects on the surface, depending
on many factors, such as incident ion energy, mass, angle
of incidence, sputtered substrate temperature and mate-
rial composition. The experimental results on the effect
of sputter erosion on the surface morphology can be clas-
sified in two main classes. There exists ample experimen-
tal evidence that ion sputtering can lead to the develop-
ment of periodic ripples on the surface [4–27]. Depending
on the sputtered substrate and the sputtering conditions
these ripples can be surprisingly straight and ordered.
However, a number of recent investigations [28–36] have

provided rather detailed and convincing experimental ev-
idence that under certain experimental conditions ion
eroded surfaces become rough, and the roughness follows
the predictions of various scaling theories [37]. Moreover,
these investigations did not find any evidence of ripple
formation on the surface. Up to recently these two mor-
phological features were treated separately and no unified
theoretical framework describing these morphologies was
available.

The first widely accepted theoretical approach describ-
ing the process of ripple formation on amorphous sub-
strates was developed by Bradley and Harper (BH) [38].
This theory is rather successful in predicting the ripple
wavelength and orientation in agreement with numerous
experimental observations. However, a number of exper-
imental results have systematically eluded this theory.
For example, the BH theory predicts an unlimited ex-
ponential increase in ripple amplitude in contrast with
the observed saturation of the surface width. Similarly,
it cannot account for surface roughening, or for ripple
orientations different from those defined by the incom-
ing ion direction or perpendicular to it. Finally, recent
experiments [12,13] have observed ripples whose wave-
length is independent of the substrate temperature, and
linear in the ion energy, in contrast with the BH predic-
tion of a ripple wavelength which depends exponentially
with temperature and decreases with ion energy.

In the light of the accumulated experimental results,
it is clear that a theory going beyond the BH approach
is required, motivating the results described in this pa-
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per. Thus here we investigate the morphology of ion-
sputtered amorphous surfaces aiming to describe in an

unified framework the dynamic and scaling behavior of
the experimentally observed surface morphologies. For
this we derive a nonlinear theory that describes the time
evolution of the surface morphology. At short time scales
the nonlinear theory predicts the development of a peri-
odic ripple structure, while at large time scales the sur-
face morphology may be either rough or dominated by
new ripples, that are different from those existing at
short time scales. We find that transitions may take
place between various surface morphologies as the ex-
perimental parameters (e.g. angle of incidence, penetra-
tion depth) are varied. Usually stochastic equations de-
scribing growth and erosion models are constructed us-
ing symmetry arguments and conservation laws. In con-
trast, here we show that for sputter eroded surfaces the
growth equation can be derived directly from a micro-
scopic model of the elementary processes taking place in
the system. A particular case of our theory was pre-
sented in [39]. In addition, we show that the presented
theory can be extended to describe low temperature rip-
ple formation as well. We demonstrate that under certain
conditions ion-sputtering can lead to preferential erosion
that appears as a surface diffusion term in the equation
of motion even though no mass transport along the sur-
face takes place in the system. To distinguish it from
ordinary surface diffusion, in the following we refer to
this phenomenon as effective smoothing (ES). We cal-
culate analytically an effective surface diffusion constant
accounting for the ES effect, and study its dependence
on the ion energy, flux, angle of incidence, and pene-
tration depth. The effect of ES on the morphology of
ion-sputtered surfaces is summarized in a morphological
phase diagram, allowing for direct experimental verifica-
tion of our predictions. A restricted study along these
lines appeared in [40].

The paper is organized as follows. In Section II we
review the recent advances in the scaling theory of rough
(self-affine) interfaces. Section III is dedicated to a brief
overview of the experimental results on surface morphol-
ogy development under ion sputtering. A short summary
of the theoretical approaches developed to describe the
morphology of ion sputtered surfaces is presented in Sec-
tion IV. This section also contains a short description
of Sigmund’s theory of sputtering, that is the basis for
our calculations. In Section V we derive the nonlinear
stochastic equation describing sputter erosion. Analysis
of this equation is presented in Section VI, discussing
separately both the high and low temperature ripple for-
mation. We compare the predictions of our theory with
experimental results on surface roughening and ripple
formation in Section VII, followed by Section VIII, that
summarizes our findings.

II. SCALING THEORY

In the last decade we witnessed the development of an
array of theoretical tools and techniques intended to de-
scribe and characterize the roughening of nonequilibrium
surfaces and interfaces [37]. Initiated by advances in un-
derstanding the statistical mechanics of various nonequi-
librium systems, it has been observed that the roughness
of many natural surfaces follows rather simple scaling
laws, which can be quantified using scaling exponents.
Since kinetic roughening is a common feature of ion-
bombarded surfaces, before we discuss the experimen-
tal results on sputtering, we need to introduce the main
quantities characterizing the surface morphology.

Let us consider a two-dimensional surface that is char-
acterized by the height function h(x, y, t). The morphol-
ogy and dynamics of a rough surface can be quantified
by the interface width, defined by the rms fluctuations in
the height h(x, y, t),

w(L, t) ≡
√

1

L2

∑

x,y=1,L

[h(x, y) − h̄]2, (1)

where L is the linear size of the sample and h̄ is the mean
surface height of the surface

h̄(t) ≡ 1

L2

∑

x,y=1,L

h(x, y, t). (2)

Instead of measuring the roughness of a surface over
the whole sample size L× L, we can choose a window of
size ℓ × ℓ, and measure the local width, w(ℓ). A general
property of many rough surfaces is that the roughness
depends on the length scale of observation. This can be
quantified by plotting w(ℓ) as a function of ℓ. There are
two characteristic regimes one can distinguish:

(i) For length scales smaller than ℓ×, the local width
increases as

w(ℓ) ∼ ℓα, (3)

where α is the roughness exponent. If we are interested
in surface phenomena that take place at length scales
shorter than ℓ× then we cannot neglect the roughness of
the surface. In this regime the roughness is not simply a
number, but it depends on the length scale accessible to
the method probing the surface.

(ii) For ℓ ≫ ℓ×, w(ℓ) is independent of ℓ, thus, at
length scales larger than ℓ×, the surface is smooth. In this
regime we can characterize the surface roughness with the
saturation width wsat = w(ℓ×).

The dynamics of the roughening process can be best
characterized by the time dependent total width (1). At
early times the total width increases as w(L, t) ∼ tβ ,
where β is the growth exponent. However, for finite sys-
tems, after a crossover time t×, the width saturates, fol-
lowing the Family-Vicsek scaling function [41]

w(L, t) ≡ tβg

(

t

Lz

)

, (4)
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where z = α/β is the dynamic exponent and g(u ≪ 1) ∼
1, while g(u ≫ 1) ∼ u−β.

Scaling relations such as Eq. (4) allow us to define
universality classes. The universality class concept is a
product of modern statistical mechanics, and encodes the
fact that there are but a few essential factors that deter-
mine the exponents characterizing the scaling behavior.
Thus different systems, which at first sight may appear
to have no connection between them, behave in a remark-
ably similar fashion. The values of the exponents α and
β are independent of many “details” of the system, and
they are uniquely defined for a given universality class.
In contrast, other quantities, such as A, ℓ×, or wsat, are
non-universal, i.e. they depend on almost every detail of
the system.

III. EXPERIMENTAL RESULTS

The morphology of surfaces bombarded by energetic
ions has long fascinated the experimental community.
Lately, with the development of high resolution obser-
vation techniques such as atomic force (AFM) and scan-
ning tunneling (STM) microscopies, this problem is living
a new life. The various experimental investigations can
be classified into two main classes. First, early investi-
gations, corroborated by numerous recent studies, have
found that sputter eroded surfaces develop a ripple mor-
phology with a rather characteristic wavelength of the
order of a few micrometers [4–27]. However, a number
of research groups have found no evidence of ripples, but
observed the development of apparently random, rough
surfaces [28–36], that were characterized using scaling
theories. In the following we summarize the key experi-
mental observations for both ripple development and ki-
netic roughening.

A. Ripple formation

The ripple morphology of ion bombarded surfaces has
been initially discovered in the mid 1970’s [4–6]. Since
then, a number of research groups have provided detailed
quantitative results regarding the ripple characteristics
and dynamics of ripple formation. It is beyond the scope
of this paper to offer a comprehensive review of the vast
body of the experimental literature on the subject. Thus,
we selected a few experiments that offer a representative
picture of the experimental features that appear to be
common to different materials.

Angle of incidence: An experimental parameter which
is rather easy to change in sputtering is the angle of in-
cidence θ of the incoming ions relative to the normal to
the average surface configuration. Consequently, numer-
ous research groups have investigated the effect of θ on
the ripples. These results indicate that ripples appear

only for a limited range of incidence angles, which, de-
pending on materials and ions involved, typically vary
between 30◦ and 60◦.

Support for a well defined window in θ for ripple forma-
tion was offered by Stevie et al. [7], who observed abrupt
secondary ion yield changes (correlated with the onset
of ripple morphology development) in experiments on 6
and 8 keV O+

2 sputtering of Si and 8, 5.5, and 2.5 keV
O+

2 sputtering of GaAs at incidence angles between 39◦

and 52◦. These results were corroborated by Karen et al.

[8–10], who investigated ripple formation on GaAs sur-
faces under bombardment with 10.5 keV O+

2 ions. They
found that ripple formation takes place for angles of in-
cidence between 30◦ and 60◦ (see Table I of Ref. [10]).
Similarly, Wittmaack [11] found that ripple formation oc-
curs at incidence angles between 32◦ and 58◦ during 10
keV O+

2 -ion bombardment of a Si target.
Temperature dependence: Another parameter that has

been found to influence the ripple structure, and in par-
ticular the ripple wavelength, is the temperature of the
substrate, T . Two different behaviors have been docu-
mented: exponential dependence of the ripple wavelength
on T has been observed at high temperatures, while the
wavelength was found to be constant at low tempera-
tures.

A series of experiments on the temperature depen-
dence of ripple formation were reported by MacLaren
et al. [12]. They studied InP and GaAs surfaces bom-
barded with 17.5 KeV Cs+ and 5.5 keV O+

2 ion beams
in the temperature range from −50◦ C to 200◦ C. For
GaAs bombarded by Cs+ ions the ripple wavelength in-
creased from 0.89 µm to 2.1 µm as the temperature in-
creased from 0◦ C to 100◦ C. Probably the most inter-
esting finding of their study was that lowering the tem-
perature, the ripple wavelength did not go continuously
to zero as one would expect, since the surface diffusion
constant decreases exponentially with temperature (see
Sect. IVC), but rather at approximately 60◦ C it stabi-
lized at a constant value. MacLaren et al. interpreted
this as the emergence of radiation enhanced diffusion,
that gives a constant (temperature independent) contri-
bution to the diffusion constant. Recently, Umbach et

al. [13] have studied the sputter-induced ripple forma-
tion on SiO2 surfaces using 0.5 − 2.0 keV Ar ion beams.
The temperature dependence of the ripple wavelength
ℓ was investigated for temperatures ranging from room
temperature to 800◦ C. It was found that for high tem-
peratures, T ≥ 400◦ C, the ripple wavelength follows the
Arrhenius law (1/T 1/2) exp (−∆E/2kBT ), indicating the
thermally activated character of the relaxation processes.
However, at low temperatures the ripple wavelength was
independent of temperature, indicating the presence of a
temperature independent relaxation mechanism.

Results indicating temperature independent non-
diffusive relaxation have been reported for crystalline ma-
terials as well by Carter et al. [14]. In these experiments
Si bombarded with highly energetic 10−40 keV Xe+-ions
led to ripple formation with wavelength ℓ ≃ 0.4 µm for
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angles of incidence close to 45◦. Changing the surface
temperature from 100 K to 300 K the ripple wavelength
and orientation did not change. This observation led
the authors to conclude that the smoothing mechanism
is not of thermal origin. They also found that the rip-
ple wavevector is relatively insensitive to the primary ion
energy.

Flux and fluence dependence: The effect of the flux on
the surface dynamics was studied by Chason et al. [15,16].
In these experiments a 1 keV Xe ion beam was directed
towards a SiO2 sample with an angle of incidence of 55◦.
The typical incoming flux was 1013 cm−2s−1 and fluence
(the number of incoming atoms per surface area, playing
the role of time) was up to 10× 1015 cm−2. The surface
was analyzed using in situ energy dispersive X-ray reflec-
tivity and ex situ AFM. It was found that the interface
roughness, which is proportional to the ripple amplitude,
increases linearly with the fluence. Similar experiments
were performed on Ge(001) surfaces [17] using 0.3, 0.5,
and 1 keV Xe ion beams for T = 350◦ C. For flux values
up to 3 µA/cm2 and fluences up to 6 × 1016 cm−2, the
roughness is seen to increase as the square of the flux.

Ion energy: The ripple wavelength dependence on the
incident ion energy and the angle of incidence was re-
ported in Refs. [8–10]. The experiments indicate that
the ripple wavelength is linear in the energy, follow-
ing ℓ ∼ ǫ cos θ. Similar results were obtained in Ref.
[18], providing an extensive study of ripple formation by
secondary ion spectrometry and scanning electron mi-
croscopy. The ripple topography was observed during O+

2

primary ion bombardment of a Si(100) substrate with ion
energies ranging between 1.5 keV and 9 keV. No ripples
were observed for energies less than 1.5 keV or for high
energies, such as 1.5 keV and 7 keV, when Ar+ primary
ions were used. The experiments indicate that the ripple
wavelength increases linearly from 100 to 400 nm when
the energy of the primary ion changes from 1 to 9 keV.
Furthermore, the experimental data indicated that the
primary ion penetration depth a and the ripple wave-
length ℓ are related by the empirical relation ℓ = 40a.
The wavelength of the ripples is found to be indepen-
dent of the primary ion flux and dependent merely on
fluence, i.e. sputtered depth. The recent results by Um-
bach et al. [13] provided further strong evidence for the
linear relationship between the ion energy and the ripple
wavelength for SiO2 substrates (see below).

Ripple amplitude: Indirect results on the ripple am-
plitude were presented by Vajo et al. [18] in their study
of the surface topography induced secondary ion yield
changes on SiO2 surfaces bombarded by O+

2 ions. The
authors have found that the yield changes exponentially
in the first stages of ripple development and saturates for
large sputtered depth. Direct evidence on ripple ampli-
tude saturation was obtained by Erlebacher et al. [20],
who measured the time evolution of the ripple amplitude
in experiments bombarding Si(100) surfaces with 0.75
keV Ar+ ions. They found that, while at short times
the ripple amplitude increases exponentially, it saturates

Material Ion Angle Ion energy Ripple Ref.
type of (keV) wavelength

incidence (µm)

GaAs(100) O+

2 39◦ 8 0.2 [7]

GaAs(100) O+

2 42◦ 5.5 0.1 [7]

GaAs(100) O+

2 37◦ 10.5 0.23 [9]

GaAs(100) O+

2 42◦ 5.5 0.13 [10]

GaAs(100) O+

2 39◦ 8.0 0.21 [10]

GaAs(100) O+

2 37◦ 10.5 0.27 [10]

GaAs(100) O+

2 57◦ 13 0.33 [10]

GaAs O+

2 40◦ 3.0 0.075 [26]

GaAs O+

2 40◦ 7.0 0.130 [26]

Ge(001) Xe+ 55◦ 1 0.2 [15]

Si(001) O+

2 41◦ 6 0.4 [7]

Si(001) O+

2 42◦ 5.5 0.5 [7]

Si(100) O+

2 39◦ 8 0.5 [7]

Si(100) O+

2 40◦ 3 0.198 [18]

Si(100) O+

2 40◦ 5 0.302 [18]

Si(100) O+

2 40◦ 9 0.408 [18]

Si(100) Ar+ 67.5◦ 0.75 0.57 [19]

Si Xe+ 45◦ 40 0.4 [14]

Si O+

2 37◦ 12.5 0.35 [21]

SiO2 Ar+ 45◦ 0.5-2 0.2-0.55 [13]

SiO2 Xe+ 55◦ 1 0.03 [16]

TABLE I. Summary of the ripple characteristics reported
in sputter erosion experiments of non-metallic substrates. In
all cases shown, the ripple wave vector is parallel to the ion
beam direction. Note that a number of experiments have
obtained indirect information on ripple formation from sec-
ondary ion yield changes. These have not been included in
the table.

after a crossover time has been reached. Furthermore,
the experiments indicate that the crossover time scales
with the temperature induced surface diffusion constant.

Surface chemistry and other morphological features:

While a number of attempts have been made to ex-
plain ripple formation based on chemical effects, such as
O+

2 variations [18,21,22], most of these studies were con-
tradicted by subsequent investigations [23] where such
chemical component were not present. Furthermore, in
Refs. [8–10] it was unambiguously shown that the process
of ripple formation is not caused by defects or inherited
irregularities on the surface, but is determined merely
by the primary ion characteristics. These results indi-
cate that ripple formation is independent of microscopic
details and the surface chemistry.

Ripple formation on crystalline and metallic surfaces:

As the discussed experimental results have indicated, rip-
ple formation takes place under a variety of conditions
and on surfaces of different materials, including both
crystalline and amorphous materials. Despite the fact
that Sigmund’s theory, the basis of all theories of ripple
formation, has been developed for amorphous targets, it
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is worth noting that these approaches describe many fea-
tures of ripple formation on crystalline surfaces as well.
However, when discussing ripple formation on crystalline
materials, we always have to be aware that additional
effects, induced by the crystalline anisotropy, could be
present. An example of ripple development on crystalline
materials has been obtained for Ag(110) surfaces under
low energy (ǫ ≥ 800 eV) Ar+ primary beam bombard-
ment by Rusponi et al. [24]. Ripples with wavelength of
approximately 600 Å, oriented along the 〈110〉 crystallo-
graphic direction, appeared in a temperature range 270◦

K ≤ T ≤ 320◦ K at normal ion incidence. The ripple
structure was found to be unstable at room tempera-
ture, i.e. substantial smoothing of the surface with time
takes place. The structure depends on the ion flux and
ion energy. Similar results are available for ion-sputtered
Cu(110) monocrystals using a 1 keV Ar+ ion beam [25].
For normal incidence a well defined ripple structure was
observed with wave vectors whose direction changes from
〈001〉 to 〈110〉 as the temperature of the substrate is
raised. Off-normal sputtering generated ripples whose
orientation depends both on the ion direction and the
surface orientation. The authors suggested that this phe-
nomenon can be explained in terms of anisotropic surface
diffusion.

Summary: As the presented results indicate, ripple for-
mation on ion-sputtered surfaces has been observed by
many groups in various systems (for a partial summary
see Table I). The main experimental results, common to
most studied materials, can be summarized as follows:

• Off-normal ion bombardment often produces period-
ically modulated structures (ripples) on the surfaces of
amorphous and crystalline materials. The wavelength of
the ripples ℓ is usually of the order of tenths of microm-
eters.

• For non metallic substrates, the orientation of the
ripples depends on the angle of incidence θ, and in most
cases is either parallel or perpendicular to the direction
of the incoming ions.

• At low temperatures the ripple wavelength is inde-
pendent of T , while it follows the Arrhenius law ℓ ∼
(1/T 1/2) exp (−∆E/kBT ) at higher temperatures.

• Numerous experiments find that the ripple wave-
length is proportional to the ion range, and thus to the
ion energy for intermediate energies.

• The ripple wavelength in many cases is independent
of the ion flux, but systematic flux dependence has also
been reported.

• The amplitude of the periodic modulations grows ex-
ponentially for early times, but saturates after a typical
crossover time has been reached. In many instances, the
ripple wavelength ℓ is found to be independent of time.

• Evidence for ripple formation was obtained for differ-
ent materials and different primary ions, suggesting that
the mechanism responsible for ripple formation is largely
independent of surface chemistry, chemical reactions on
the surface, or defects.

B. Kinetic roughening

Motivated by the advances in characterizing the mor-
phology of rough surfaces, recently a number of exper-
imental studies have focused on the scaling properties
of surfaces eroded by ion bombardment [28–36]. These
experiments have demonstrated that under certain ion
bombardment conditions ripples do not form, and the
surface undergoes kinetic roughening. The goal of the
present section is to review the pertinent experimental
results, aiming to summarize the key features that a com-
prehensive theory should address.

Surface roughness and dynamical exponents: In the ex-
periments of Eklund et al. [28,29] pyrolytic graphite was
bombarded by 5 keV Ar ions, at an angle of incidence
of 60◦. The experiments were carried out for two flux
values, 6.9×1013 and 3.5×1014 ions s−1 cm−2, the total
fluences being 1016, 1017 and 1018 ions · cm−2. STM mi-
crographs indicated that large scale features develop with
continuous bombardment, the interface becoming highly
correlated and rough. The scaling properties have also
been probed using the Fourier transform of the height-
height correlation function, obtaining a dynamic expo-
nent z in the range 1.6 − 1.8, and a roughness exponent
in the range 0.2 − 0.4. These exponents are consistent
with the predictions of the continuum theory, describ-
ing kinetic roughening, proposed by Kardar, Parisi and
Zhang (KPZ) [42], that predicts z ≃ 1.6 and α ≃ 0.38
(see section IV A1).

A somewhat larger roughness exponent has been mea-
sured for samples of iron bombarded with 5 keV Ar
ions at an angle of incidence of 25◦ [30]. The interface
morphology was observed using STM, and the height–
height correlation function indicated a roughness expo-
nent α = 0.53±0.02 [30]. The mechanism leading to such
a roughness exponent is not yet understood in terms of
continuum theories, since for two dimensional surfaces
the existing continuum theories predict α values of 0.38,
2/3 and 1 [37], far from the observed roughness exponent.

Anomalous dynamic-scaling behavior of sputtered sur-
faces was reported by Yang et al. [31]. The experi-
ments performed on Si(111) surfaces with 0.5 keV Ar+

ions with flux 0.2 µA/mm2 in a wide range of substrate
temperatures have provided evidence of scaling behav-
ior in the limit of small distances r. The height–height
correlation function has been found to follow C(r) =
〈(h(ro)−h(r+ro))

2〉 ∼ r2α log t, with α ≃ 1.15±0.08 for
temperatures lower than 530◦ C. No roughening was ob-
served for higher temperatures, demonstrating the tem-
perature dependence of kinetic roughening.

Temperature dependence: The effect of surface relax-
ation due to surface diffusion on roughening of GaAs(110)
surfaces eroded by 2 keV Ar+ and Xe+ was reported
by Wang et al. [32]. They found that both the height-
height correlation function and the small scale rough-
ness increase significantly faster during erosion at higher
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temperatures than at lower ones. The surface width in
these experiments increased with β = 0.3 at T = 725
K and there was no evidence of scaling for lower tem-
peratures, such as T = 625 K. The roughness exponent
has been determined as α = 0.38 ± 0.03. In general,
Ref. [31] concludes that on large scales the surfaces are
rougher at higher temperatures, contrary to the expecta-
tion of smaller roughness due to increased relaxation by
surface diffusion. Similar conclusions on the temperature
dependence of the scaling properties were drawn in Ref.
[33]. A sharp transition between scaling regimes in ion-
bombardment of Ge(001) surfaces with 1 keV Xe ions was
observed at Tc = 488 K. The regimes above and below Tc

are characterized by dynamic scaling exponents β with
values 0.4 and 0.1, respectively. The surface roughness
of Si(111) during low-energy (500 eV) ion bombardment
at T = 610 K was studied in Ref. [34] using STM. It was
found that the rough morphology is consistent with the
early time behavior of the noisy Kuramoto-Sivashinsky
(KS) equation (see Sect. IVA3). The measured rough-
ness exponent was α = 0.7 and the dynamic exponent
was β = 0.25.

Low energy ion bombardment: Recently a number of
experiments and simulations have focused on low energy
ion bombardment (i.e., at energies 50-500 eV), for which
the secondary ion yields are smaller than one [43–49].
In this systems, the effect of the ions is limited to the
surface of the material, the collective effect created by
the collision cascade being less relevant. Often, such low
energy sputtering leads to layer-by-layer erosion, almost
mirroring layer-by-layer growth phenomena. The effect
of vacancy diffusion and Schwoebel barriers can be rather
well studied in these systems, that include Ge(001) sur-
face etching, by 240 eV Xe ions [43,46], and Si(111) sur-
faces etched by 100 eV Ar ions [47]. In the absence of
the collision cascade, ripple formation and kinetic rough-
ening seen at higher energies, the subject of this paper,
do not appear.

Various experimental results on ion-bombardment in-
duced surface roughening are summarized in Table II.
These experiments demonstrate that kinetic roughening
is one of the major experimental morphologies generated
by ion bombardment. However, as Table II indicates,
there is a considerable scattering in the scaling expo-
nents. This scattering is not too disturbing at this point:
accurate determination of the scaling exponents from ex-
perimental data is rather difficult, since often the scal-
ing regime is masked by strong crossover effects. As we
demonstrate later, due to the separation of the linear
and nonlinear regimes, such crossovers are, indeed, ex-
pected in sputter erosion. Thus the main conclusion we
would like to extract from this section is that numerous
experiments do observe kinetic roughening, and find that
scaling concepts can successfully characterize the surface
morphology. It will be a major aim of the theory pro-
posed here to account for the origin of kinetic roughening
and predict the scaling exponents.

Surface Ion Ion Angle α β Ref.
material type energy of

(keV) incidence

Graphite Ar+ 5 60◦ 0.2-0.4 2.5-2.9 [28]

Iron Ar+ 5 25◦ 0.53 −− [30]

Si(111) Ar 0.5 0◦ 1.15∗
−− [31]

Si(111) Ar+ 0.5 0◦ 0.7 0.25 [34]

GaAs(110) Ar+ 2 0◦ 0.38(3) 0.3 [32]

Ge(001) Xe 1 30◦
−− 0.1, 0.4 [33]

Ni, Cr, Cu Ar+ 1 86◦ 0.49 −− [36]

TABLE II. Summary of the scaling exponents, character-
izing the surface morphology, reported in various experiments
on sputter eroded surfaces. ∗ - anomalous logarithmic scaling
was reported in this experiment.

IV. THEORETICAL APPROACHES

The recent theoretical studies focusing on the char-
acterization of various surface morphologies and their
time evolution have revolutionized our understanding of
growth and erosion (for reviews, see [37]). The physi-
cal understanding of the processes associated with inter-
face roughening require the use of the modern concepts
of fractal geometry, universality and scaling. In Sect.
IVA we review the major theoretical contributions to
this area, necessary to describe the morphology of ion-
eroded surfaces. In Sects. IVB to IVE we then review
the available theoretical approaches (whether through
continuum equations or by the use of discrete atomistic
models) that specifically describe surfaces eroded by ion-
bombardment, emphasizing the procedures which allow
to describe within a continuum approach some of the rel-
evant physical processes taking place at the surface, such
as surface diffusion and beam fluctuations.

A. Continuum theories of kinetic roughening

The full strength of the continuum theories comes from
the prediction of the asymptotic behavior of the growth
process valid in the long time and large length scale lim-
its. These limits are often beyond the experimentally or
practically interesting time and length scales. A notable
exception is sputter erosion, where both the short time
ripple development and the asymptotic kinetic roughen-
ing have been observed experimentally. Consequently,
next we discuss separately the continuum theories needed
to understand sputter erosion.

6



1. Kardar-Parisi-Zhang (KPZ) equation

The time evolution of a nonequilibrium interface can
be described by the Kardar-Parisi-Zhang (KPZ) equation
[42]

∂h

∂t
= ν∇2h +

λ

2
(∇h)2 + η. (5)

The first term on the rhs describes the relaxation of the
interface due to the surface tension (ν is here a pos-
itive constant) and the second is a generic nonlinear
term incorporating lateral growth or erosion. The noise,
η(x, y, t), reflects the random fluctuations in the growth
process and is a set of uncorrelated random numbers with
zero configurational average. For one dimensional in-
terfaces the scaling exponents of the KPZ equation are
known exactly, as α = 1/2, β = 1/3, and z = 3/2. How-
ever, for higher dimensions they are known only from
numerical simulations. For the physically most relevant
two dimensional surfaces we have α ≃ 0.38 and β ≃ 0.25
[50].

If λ = 0 in Eq. (5), the remaining equation describes
the equilibrium fluctuations of an interface which tries
to minimize its area under the influence of the external
noise. This equation, first introduced by Edwards and
Wilkinson (EW) [51], can be solved exactly due to its lin-
ear character, giving the scaling exponents α = (2−d)/2
and β = (2−d)/4. For two dimensional interfaces (d = 2)
we have α = β = 0, meaning logarithmic roughening of
the interface, i.e., w(L) ∼ log L for saturated interfaces,
and w(t) ∼ log t for early times.

2. Anisotropic KPZ equation

The presence of anisotropy along the substrate may
drastically change the scaling properties of the KPZ
equation. As a physical example consider an ion bom-
barded surface, where the ions arrive under oblique in-
cidence in the x − h plane. As a result, the x and y di-
rections along the substrate will not be equivalent. This
anisotropy is expected to appear in the erosion equation,
leading to an anisotropic equation of the form (d = 2)

∂h

∂t
= νx∂2

xh + νy∂2
yh +

λx

2
(∂xh)2

+
λy

2
(∂yh)2 + η(x, y, t), [AKPZ] (6)

where ∂xh ≡ ∂h/∂x and ∂yh ≡ ∂h/∂y. The anisotropy
leads to surface tension and nonlinear terms that are
different in the two directions, which have been incor-
porated in the growth equation by considering different
values for the coefficients ν and λ (in Eq. (6), νx and
νy are positive constants). Equation (6) is called the
anisotropic KPZ (AKPZ) equation. It was introduced
by Villain [52], and its nontrivial properties were studied

by Wolf [53,54]. We note that if νx = νy and λx = λy,
Eq. (6) reduces to the KPZ equation (5). The AKPZ
equation has different scaling properties depending on
the signs of the coefficients λx and λy. When λx ·λy < 0,
a surface described by the AKPZ equation has the same
scaling properties as the EW equation. However, when
λx · λy > 0 the scaling properties are described by the
isotropic KPZ equation (5). Thus, changing the sign of
λx or λy can induce morphological phase transitions from
power law scaling (w ∼ tβ ; w(L) ∼ Lα) to logarithmic
scaling (w ∼ log t; w(L) ∼ log L).

3. Kuramoto-Sivashinsky (KS) equation

The Kuramoto-Sivashinsky (KS) equation, originally
proposed to describe chemical waves and flame fronts
[55], is a deterministic equation of the form:

∂h

∂t
= −|ν|∇2h − K∇4h +

λ

2
(∇h)2 [KS]. (7)

While it is deterministic, its unstable and highly nonlin-
ear character gives rise to chaotic solutions. The analysis
of the KS equation for one dimensional surfaces shows
[56–62] that in the limit of long time and length scales,
the surface described by the KS equation is similar to
that described by the KPZ equation, i.e. obeys self-affine
scaling with exponents z = 3/2 and β = 1/3. The short
time scale solution of KS equation reveals an unstable
pattern-forming behavior, with a morphology reminis-
cent of ripples [56]. For two dimensional surfaces, how-
ever, the results are not clear. Computer simulations are
somewhat contradictory, providing evidence for both EW
and KPZ scaling [63,64].

The anisotropic KS equation was studied in Ref. [65],
indicating that for some parameter values the nonlin-
earities cancel each other, and lead to unstable modes
dominating the asymptotic morphology. At early times
the surface displays a chaotic pattern, with stable do-
mains that nucleate and grow linearly in time until ripple
domains of two different orientations are formed. The
pattern of domains of perpendicularly oriented ripples
coarsen with time until one orientation takes over the
system.

There are various physical systems, including ion sput-
tering, in which the relevant equation for the surface
height is a noisy version of the KS equation (7) [66,67].
Dynamical renormalization group analysis [68] for the
surface dimensions d = 1 and 2 indicate that the large
distance and long time behavior of such noisy generaliza-
tion of Eq. (7) is the same as that of the KPZ equation,
the d = 2 result being only quantitative.

B. Bradley and Harper theory of ripple formation

A rather successful theoretical model, capturing many
features of ripple formation, was developed by Bradley
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and Harper (BH) [38]. They used Sigmund’s theory of
sputtering [69,70] (see Sect. IVE) to relate the sputter
yield to the energy deposited onto the surface by the in-
coming ions. This work has demonstrated for the first
time that the yield variation with the local surface cur-
vature induces an instability, which leads to the forma-
tion of periodically modulated structures. This instabil-
ity is caused by the different erosion rates for troughs
and crests, the former being eroded faster than the lat-
ter (see Fig. 1). Consequently, any surface perturbation
increases exponentially in time. Viewing the surface pro-
file as a smooth analytical function of coordinates, BH
assumed that the surface can be locally approximated by
a quadratic form. Due to the erosion mechanism, de-
scribed in Fig. 1, the erosion rate depends on the local
curvature. Combining the curvature dependent erosion
velocity with the surface smoothing mechanism due to
surface diffusion (see [72,73] and next section), BH de-
rived a linear equation for surface morphology evolution

∂h

∂t
= −v(θ) + νx(θ)∂2

xh + νy(θ)∂2
yh − K∇4h. (8)

Here νx(θ), νy(θ) are the effective surface tensions gener-
ated by the erosion process, dependent on the angle of
incidence of the ions, θ, K is the relaxation rate due to

surface diffusion (K = DsγΩ2n/kBT exp
{

−∆E
kBT

}

, where

∆E is the activation energy for surface diffusion, γ is the
surface free energy per unit area, T is temperature, Ds

is the surface diffusion constant, Ω is the atomic volume
and n is the number of molecules per unit area on the
surface). The physical instability illustrated in Fig. 1
leads to the negative signs of the νx, νy coefficients in Eq.
(8). Eq. (8) is linearly unstable, with a Fourier mode kc

whose amplitude exponentially dominates all the others.
This mode is observed as the periodic ripple structure.
Using linear stability analysis, BH derived from Eq. (8)
the ripple wavelength as

ℓc = 2π/kc = 2π

√

2K

|ν| ∼ (JT )−1/2 exp

{−∆E

kBT

}

, (9)

where ν is the largest in absolute value of the two neg-
ative surface tension coefficients, νx and νy, and J is
the ion flux. The calculation also predicts that the rip-
ple direction is a function of the angle of incidence: for
small θ the ripples are parallel to the ion direction, while
for large θ they are perpendicular to it. As subsequent
experiments have demonstrated [15,18], the BH model
predicts well the ripple wavelength and orientation. On
the other hand, the BH equation (8) is linear, predicting
unbounded exponential growth of the ripple amplitude,
thus it cannot account for the stabilization of the rip-
ples and for kinetic roughening, both phenomena being
strongly supported by experiments (see Sect. III A-III B).

b) concave

a) convex

BeamIon

A

A’

FIG. 1. Schematic illustration of the physical origin of the
instability during ion erosion of nonplanar surfaces. A surface
element with convex geometry (a) is eroded faster than that
with a concave geometry (b), due to the smaller distances
(solid lines) the energy has to travel from the impact point to
the surface (A or A’ points).

Furthermore, the BH model cannot account for low
temperature ripple formation since the only smoothing
mechanism it considers is of thermal origin. At low tem-
peratures the ion energy and flux dependence of the rip-
ple wavelength also disagree with the BH predictions.
Despite these shortcomings, the BH theory represents a
major step in understanding the mechanism of surface
evolution in ion sputtering since for the first time it un-
covered the origin of the ion induced surface instability.
Recently a generalization of BH linear theory has been
successfully introduced [71] to account for the thermally
activated anisotropic surface diffusion present in metallic
substrates such as Cu(110).

C. Surface diffusion and deposition noise

At high temperatures surface diffusion and fluctuations
in the ion beam flux are relevant physical mechanisms
taking place on the surface [74]. In this section, we dis-
cuss the standard approach to include these phenomena
in continuum models. Let us consider the simplest sce-
nario: atoms are deposited on a surface, whereupon they
diffuse. If we assume that surface diffusion is the only
relaxation mechanism present, the height h obeys a con-
tinuity equation of the form

∂h

∂t
+ ∇̃ · j = 0, (10)

where j is a surface current density tangent to the sur-
face, and ∇̃ is calculated in a frame with axes parallel to
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the surface [75]. In general, j is given by the gradient of
a chemical potential µ,

j ∝ −∇̃µ(r, t) ≡ −∇̃2 δF [h]

δh
, (11)

where µ minimizes the free energy functional of the sur-
face F [h] and ∇̃2 is the surface Laplacian or the Laplace–
Beltrami operator. Taking the latter to be proportional
to the total surface area

F [h] =

∫

dr
√

g, (12)

with g as defined in Appendix A, and neglecting third or
higher powers of derivatives of h one arrives [73] at

∂h

∂t
= −K∇2(∇2h) ≡ −K∇4h, (13)

where K is a positive constant. Eq. (13) is the so-
called linear MBE equation [37]. For an amorphous solid
in equilibrium with its vapor Eq. (13) was obtained in
[72,73], together with the expression for the coefficient
K as in Eq. (8).

In addition to the deterministic processes, there is con-
siderable randomness in sputter erosion due to fluctu-
ations in the intensity of the ion beam. The ion flux
is defined as the number of particles arriving on the
unit surface (or per lattice site) in unit time. At large
length scales the beam flux is homogeneous with an aver-
age intensity J , but there are local random fluctuations,
η(x, t) ≡ δJ(x, t), uncorrelated in space and time. We
can include fluctuations in Eq. (13) by considering the
ion flux to be the sum of the average flux J and the noise
η, which has zero average,

〈η(x, t)〉 = 0 (14)

and is uncorrelated,

〈η(x, t)η(x′, t′)〉 = Jδ(x − x′)δ(t − t′), (15)

where we have assumed a Poisson distribution for the
shot noise. Consequently, the stochastic growth equa-
tion describing surface diffusion and fluctuations in an
erosion process has the form

∂h

∂t
= −K∇4h − J + η(x, t). (16)

This variant of Eq. (13) was introduced independently
by Wolf and Villain [76], and by Das Sarma and Tam-
borenea [77], and played a leading role in developing our
understanding of MBE. We will use the methods leading
to (16) to incorporate the smoothing by surface diffusion
in our model of ion erosion. Note, however, that as nu-
merous experimental studies [78–83] indicate, ion bom-
bardment leads to an enhancement of the surface adatom
mobility and thus may drastically change the relaxation
mechanism, as compared to regular surface diffusion.

D. Microscopic models of ripple formation and
roughening

Computer simulations provide invaluable insight into
microscopic processes taking place in physical systems.
Consequently, a number of recent studies have focused
on modeling ripple formation at the microscopic level.
These studies have proven useful in resolving issues re-
lated to low temperature ripple formation and provided
important ideas regarding the physical mechanism gov-
erning ripple formation [84–93]. Here we shortly discuss
the conclusions reached in some of the most representa-
tive numerical work.

Monte Carlo simulations of sputter-induced roughen-
ing were reported by Koponen et al. [85–90]. Roughening
of amorphous carbon surfaces bombarded by 5 keV Ar+

ions was studied in [85–87] for incidence angles between
0◦ and 60◦. It was found that ion bombardment induces
self-affine topography on the submicrometer scale, the
roughness exponent being α ≃ 0.25 − 0.47 depending on
the angle of incidence [86,87]. The growth exponent β
was found to be strongly dependent on the relaxation
mechanism used and changed from β ≃ 0.3 in the model
without relaxation to β ≃ 0.2 − 0.14 when different re-
laxation rules were used in the simulations. At the same
time the roughness exponent α was found to be relatively
insensitive to the relaxation process on the nanometer
scales. Analogous results were obtained for C ions [89].
In this Reference, the ripple wavelength was found to be
relatively independent of the ion energy or the magnitude
of surface diffusion. Ripple formation was observed even
at zero temperature, when surface diffusion was switched
off, indicating the presence of ion induced smoothing.
Furthermore, these simulations led to the observation of
traveling ripples, as predicted by continuum theories (see
section VI A1). Similarly, for 5 keV Ar+ bombardment
of amorphous carbon substrates, the ripple wave vector is
seen [90] to change from parallel to normal to the beam
direction as the incidence angle is increased, in agree-
ment with BH linear theory, (see Sect. IV). The ripple
structure was again observed even when no explicit re-
laxation mechanism was incorporated in the simulations,
and ripple travelling also occurs. For length scales com-
parable to the cascade dimensions, self-affine topography
is observed.

A discrete stochastic model was introduced in Ref.
[91,92] to study the morphological evolution of amor-
phous one dimensional surfaces under ion-bombardment.
This is a solid-on-solid model incorporating the erosion
rate dependence of surface curvature, the local slope de-
pendence of the sputtering yield, and thermally activated
surface diffusion. Up to four different dynamical regimes
have been identified. Initially the surface relaxes by sur-
face diffusion with a growth exponent β ≃ 0.38, until
the onset of the linear BH instability. The instability in-
duces rapid growth (β > 0.5). In this regime the local
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slopes increase rapidly, which triggers non-linear effects
eventually stabilizing the surface, β taking up the EW
value β ≃ 1/4, which indicates that an effective positive
value of the surface tension has been generated. Finally,
in the asymptotic time limit β reaches the KPZ value
β ≃ 1/3. This behavior is consistent with that displayed
by the noisy KS equation [68]. Furthermore, the ana-
lytical study [94] using the master equation approach to
interface models [95] has shown that the noisy KS equa-
tion indeed provides the continuum limit of the discrete
stochastic model of Ref. [91]. Conversely, the results of
the simulations in [91] support the theoretical conclusions
of Ref. [68] that the asymptotic behavior of the noisy KS
equation is the same as that of the KPZ equation for one
and two dimensional surfaces.

In summary, Monte Carlo simulations of the sputtering
process of amorphous materials have shown that interme-
diate and high energy ion bombardment may lead to rip-
ple formation in a wide parameter range. Furthermore,
ripple formation was observed even at zero temperature.
Computer simulations have also confirmed the linear de-
pendence of the ripple wavelength on the incident ion
penetration depth and the fact that ripple formation is
a process fully determined by the incident ion charac-
teristics and not caused by any defects, irregularities or
surface chemistry. The same simulations have confirmed
that under some bombarding conditions the surface is
rough, and obeys scaling.

E. Sigmund’s theory of sputtering

The erosion rate of ion bombarded surfaces is charac-
terized by the sputtering yield, Y , defined as the average
number of atoms leaving the surface of a solid per in-
cident particle. In order to calculate the yield and to
predict the surface morphology generated by ion bom-
bardment, we first need to understand the mechanism of
sputtering, resulting from the interaction of the incident
ions and the substrate [1,3]. In the process of sputter-
ing the incoming ions penetrate the surface and transfer
their kinetic energy to the atoms of the substrate by in-
ducing cascades of collisions among the substrate atoms,
or through other processes such as electronic excitations.
Whereas most of the sputtered atoms are located at the
surface, the scattering events that might lead to sputter-
ing take place within a certain layer of average depth a,
which is the average penetration depth of the incident
ion. A qualitative picture of the sputtering process is
as follows: an incoming ion penetrates into the bulk of
the material and undergoes a series of collisions with the
atoms of the substrate. Some of the atoms undergo sec-
ondary collisions, thereby generating another generation
of recoiling atoms. A vast majority of atoms will not
gain enough energy to leave their lattice positions per-
manently. However, some of them will be permanently
removed from their sites.

σ

µ

P

Incident Ion

h(x,y) O

a

FIG. 2. Schematic illustration of the energy distributed by
an incident ion. While the collision process induced by a ion
is rather complex, according to Sigmund it can be reduced to
the following effective process: The ion penetrates the bulk of
the material and stops at point P , where all its kinetic energy
is released and spread out to the neighboring sites following
a Gaussian form with widths σ and µ.

The atoms located in the close vicinity of the surface,
which can gain enough energy to break their bonds, will
be sputtered. Usually the number of sputtered atoms
is orders of magnitude smaller than the total number of
atoms participating in the collision cascade.

A quantitative description of the process of ion sputter-
ing was developed by Sigmund [69]. Assuming an amor-
phous target, Sigmund derived a set of transport equa-
tions describing the energy transfer during the sputter-
ing process. A practically important result of Sigmund’s
theory is the prediction of the deposited energy distribu-
tion: the ion deposited at a point P inside the bulk of
the material spreads its kinetic energy according to the
Gaussian distribution

E(r′) =
ǫ

(2π)3/2σµ2
exp

{

−Z ′2

2σ2
− X ′2 + Y ′2

2µ2

}

. (17)

In (17) Z ′ is the distance from point P to point O mea-
sured along the ion trajectory, and X ′, Y ′ are measured
in the plane perpendicular to it (see Fig. 2 and the inset
of Fig. 5); ǫ denotes the total energy carried by the ion
and σ and µ are the widths of the distribution in direc-
tions parallel and perpendicular to the incoming beam
respectively. Deviations of the energy distribution from
Gaussian (17) occur mainly when M1 > M2, where M1 is
the mass of the projectile and M2 is the mass of the tar-
get atom. As shown by Sigmund [69,70] and Winterbom
[96], electronic stopping doesn’t affect much the shape
of deposited-energy distribution. Subsequently, Monte
Carlo simulations of the sputtering process have demon-
strated that the deposited-energy distribution and dam-
age distribution can be well approximated by Gaussian
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for intermediate and high energies. In general, compar-
ison of Sigmund’s theory with experimental results has
shown that it describes well the qualitative behavior of
the backsputtering yield, and in many cases there is good
quantitative agreement as well [1–3].

A quantity of central importance is the mean path
length of an ion traveling inside the bulk of the mate-
rial (see Fig. 2), often called penetration depth, given
by

a(ǫ) =
1 − m

2m
γm−1 ǫ2m

NCm
, (18)

where N is the target atom density, Cm is a constant
dependent on the parameters of the interatomic poten-
tial [70] and the exponent m = m(ǫ) varies slowly from
m = 1 at high energies to m ≃ 0 at very low energies.
In the region of intermediate energies, i.e. for ǫ between
10 and 100 keV, m ≃ 1/2 and we can approximate the
penetration depth as a(ǫ) ∼ ǫ.

Eq. (17) describes the effect of a single incident ion.
Actually, the sample is subject to an uniform flux J of
bombarding ions, penetrating the solid at different points
simultaneously, such that the erosion velocity at an arbi-
trary point O depends on the total power EO contributed
by all the ions deposited within the range of the distribu-
tion (17). If we ignore shadowing effects and redeposition
of the eroded material, the normal erosion velocity at O
is given by

VO = p

∫

R
dr Φ(r) E(r), (19)

where the integral is taken over the region R of all points
at which the deposited energy contributes to EO, Φ(r) is
a local correction to the uniform flux J due to variation of
the local slopes, and the material constant p depends on
the surface binding energy and scattering cross-section
[69,70] as

p =
3

4π2

1

NUoCo
, (20)

where Uo is the surface binding energy and Co is a con-
stant proportional to the square of the effective radius of
the interatomic interaction potential.

While the predictions of Sigmund’s theory have been
checked on many occasions, it also has well known lim-
itations. Next we list two, that will limit our theory
on the surface morphology as well: (a) the assumption
of random slowing down and arbitrary collisions works
satisfactorily only at intermediate and high energies, i.e.
when ǫ ∼ 1− 100 keV, but may break down at low ener-
gies; (b) the assumption of a planar surface may influence
the magnitude of the yield, since surface roughness has
a tendency to increase the yield [97,98].

V. CONTINUUM EQUATION FOR THE
SURFACE HEIGHT

Sigmund’s theory, while offering a detailed description
of ion bombardment, is not able to provide direct in-
formation about the morphology of ion-sputtered sur-
faces. While Eq. (19) provides the erosion velocity, in
the present form it cannot be used to make analytical
predictions regarding the dynamical properties of sur-
face evolution. To achieve such a predictive power, we
have to eliminate the nonlocality contained in the in-
tegral (19) and derive a continuum equation describing
the surface evolution depending only on the local surface
morphology. The main goal of this section is to provide
a detailed derivation of such an equation starting from
Eq. (19). The properties of the obtained equation will be
discussed in the following sections.

We start by summarizing the main steps that we follow
in the derivation of the equation for the surface morphol-
ogy evolution:

(i) Using Eq. (19), we calculate the normal component
of the erosion velocity VO at a generic point O of the sur-
face. This calculation can be performed in a local frame
of reference (X̂, Ŷ , Ẑ), defined as follows: the Ẑ axis is
chosen to be parallel to the local normal to the surface
at point O. The Ẑ axis forms a plane with the trajec-
tory of an ion penetrating the surface at O. We choose
the X̂ axis to lie in that plane and be perpendicular to
Ẑ. Finally, Ŷ is perpendicular to the (X̂, Ẑ) plane and
completes the local reference frame, as shown in Fig. 3.

Y

O
m n

ϕθ

h

X

Z

x

y

FIG. 3. Illustration the local reference frame (X̂, Ŷ , Ẑ).
The Ẑ axis is parallel to the local normal to the surface n̂.
The ions arrive to the surface along −m̂. The X̂ axis is in the
plane defined by Ẑ and m̂, while the Ŷ axis is perpendicular
to this plane. The laboratory coordinate frame (x̂, ŷ, ĥ) has
its ĥ axis perpendicular to the flat substrate, ĥ and m̂ define
the (x̂, ĥ) plane and ŷ is perpendicular to it. The incidence
angle measured in the local reference frame is ϕ, and θ in the
laboratory frame.
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(ii) Next we relate the quantities measured in the lo-

cal frame (X̂, Ŷ , Ẑ) to those measured in the laboratory

frame (x̂, ŷ, ĥ). The latter is defined by the experimental

configuration as follows: ĥ is the direction normal to the
uneroded flat surface. The ion direction together with

the ĥ axis define the (x̂, ĥ) plane. Finally, the ŷ axis

is perpendicular to the (x̂, ĥ) plane (see Fig. 3 and Ap-
pendix A). Furthermore, we have to take into account
the fact that the local angle of incidence ϕ, which is the
angle between the ion trajectory and the local normal to
the surface, changes from point to point along the sur-
face. Consequently, ϕ is a function of the local value of
the slope at O (as measured in the laboratory frame), and
the angle θ between the ion trajectory and the normal n̂
to the uneroded surface.

(iii) Finally, to obtain the equation of motion for the
surface profile h(x, y, t), we have to project the normal

component of the velocity of erosion onto the global ĥ
axis. The time derivative of h(x, y, t) at any point O on
the surface is proportional to the surface erosion velocity
VO at that point and the local normal is defined by the
gradient of the surface profile h(x, y, t) at O.

Having defined our objectives and outlined the strat-
egy, we move on to the description of the calculations.
We consider point O to be the origin of the local system
of coordinates (X̂, Ŷ , Ẑ). To describe the surface profile
in a neighborhood of O we assume that the surface can
be described in terms of a smooth analytical infinitely
differentiable function, i.e. there are no singularities and
overhangs, and thus we can approximate the surface pro-
file at an arbitrary point (X, Y, Z) by [99]

Z(X, Y ) ≃ ∆20X
2

a
+

∆02Y
2

a
+

+

4
∑

m,n=0,n+m=3,4

∆nm

am+n−1
XnY m, (21)

where, for later convenience, we introduced the following
notations:

∆nm =
an+m−1

n!m!

∂n+mZ(X, Y )

∂nX∂mY
. (22)

Here ∆20 and ∆02 are proportional to the principal cur-
vatures of the surface, i.e., to the inverses of the principal
radii of curvature, RX and RY . It must be noted that,
in our approximation, X̂ and Ŷ (see Fig. 3) are the two
principal directions of the surface at O, along which the
curvatures are extremal. This implies the absence in Eq.
(21) of cross-terms of the type ∼ XY , i.e., we neglected
the term ∂2Z(X, Y )/∂X∂Y at O.

Due to its exponential nature, the deposited energy
distribution (17) decays very fast and, consequently,
only particles striking the surface at a point (X, Y, Z)
such that X/a, Y/a are of order unity, contribute non-
negligibly to the energy reaching the surface at O. We
further assume that the surface varies slowly enough so

that RX , RY and the inverses of the higher order deriva-
tives are much larger than the penetration depth a, i.e.
the surface is smooth on length scales close to a (this fact
is supported by nearly all experimental results). Now we
can calculate the various factors appearing in the integral
(19).

To proceed with Eq. (19) we note that, with respect
to local surface orientation, only the normal component
of the incident flux contributes to ion erosion. Figure
4 illustrates the calculation of the normal component of
the flux. In the figure we consider a point at the surface
(X, Y, Z), and two other points also on the surface, at
infinitesimal distances L and N away from the former.
We can estimate the correction to the average flux J due
to the surface slopes by projecting a square perpendicu-
lar to the ion beam with area n× l onto the surface area
element intersected by the ion trajectories. The result is

Φ(r) ≃ J
l n

L N
, (23)

where J is the average flux. From Fig. 4,

∆ϕ = tan−1

(

∂Z

∂X

)

≃ ∂Z

∂X
, (24)

and

ℓ

L
= cos(ϕ + ∆ϕ) ≃ cosϕ − ∂Z

∂X
sin ϕ. (25)

On the other hand, we also have (see Fig. 4)

n

N
= cosα ≃ 1 − 1

2

(

∂Z

∂Y

)2

≃ 1, (26)

so that, combining Eqs. (23)-(26), and neglecting powers
of derivatives of the height, we obtain the correction to
the flux

Φ(r) ≃ J(cosϕ + (∂XZ) sin ϕ). (27)

ϕ∆

..
n l

X
Y

Zϕ

ϕ
α

N

L

(X,Y,Z)

FIG. 4. Illustration of the calculation of the local correc-
tion to the average flux J due to the surface curvature.
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FIG. 5. Reference frame for the calculation of the erosion
velocity at point O. Following a straight trajectory (thick
solid line) the ion penetrates an average distance a inside the
solid (dotted line) after which it completely spreads out its
kinetic energy. The energy released at point P contributes to
erosion velocity at O. Inset shows the lateral view for Y ′ = 0.

Within the same approximation, the surface element
dr in Eq. (19) can be obtained in the local coordinate

system (X̂, Ŷ , Ẑ) as

dr ≃ dXdY. (28)

Next we determine the distances X ′, Y ′, Z ′ appearing
in the exponential distribution (17), evaluating them in
the local coordinate system. Using Fig. 5, we have

X ′ = X cosϕ + Z sin ϕ,

Y ′ = Y,

Z ′ = a + X sin ϕ − Z cosϕ.

(29)

Using these expressions, the correction to the ion flux
(27), the deposited energy distribution (17) and the ex-
pression for the surface area element dr (28), we can
calculate the integral (19) providing the erosion velocity
VO. Introducing the dimensionless variables ζX = X/a,
ζY = Y/a, and ζZ = Z/a, and extending the integration
limits to infinity, we obtain the following expression for
the erosion velocity in the laboratory coordinate frame

VO =
ǫpJa2

σµ2(2π)3/2
exp (−a2

σ/2)

×
∫ ∞

−∞

∫ ∞

−∞
dζX dζY (cosϕ +

∂ζZ

∂ζX
sin ϕ)

× exp(−ζ2
Y L2) exp(−ζXA) exp(−1

2
B1ζ

2
X)

× exp(−4Dζ2
Z) exp(−2CζXζZ) exp(B2ζZ), (30)

where we used the following notations

A = a2
σ sin ϕ, (31a)

B1 = a2
σ sin2 ϕ + a2

µ cos2 ϕ, (31b)

B2 = a2
σ cosϕ, (31c)

C =
1

2
(a2

µ − a2
σ) sin ϕ cosϕ, (31d)

D =
1

8
(a2

µ sin2 ϕ + a2
σ cos2 ϕ), (31e)

L =
aµ√

2
. (31f)

It must be noted that Eq. (30) coincides with the two-
dimensional version of the local erosion velocity derived
in Ref. [38]. Now we use the approximation for the sur-
face profile given by Eq. (21). Taking a small ∆nm (see
Eq. (22)) expansion of the C and B2 coefficients in Eq.
(30) and evaluating the Gaussian integrals over ζX and
ζY , we get

VO =
ǫpJa2

σµ
√

2π
exp (−a2

σ/2) exp

{

A2

2B1

}

1√
B1

× [cosϕ + Γ20∆20 + Γ02∆02 + Γ30∆30

+ Γ21∆21Γ40∆40 + Γ22∆22 + Γ04∆04] . (32)

The expressions for the coefficients Γnm can be found in
Appendix B.

Next we have to rewrite VO in terms of the labora-
tory coordinates (x, y, h), which we perform in two steps.
First, we write the angle ϕ as a function of θ and the
slopes of the surface at O as measured in the laboratory
frame. Second, we perform the transformation between
the local and the laboratory coordinates. For both steps
we will have to make expansions in powers of deriva-
tives of h(x, y, t). In line with our earlier assumption
on the smoothness of the surface, we will assume that h
varies smoothly enough so that we can neglect products
of derivatives of h for third and higher orders. In the
laboratory frame, the neglect of overhangs allows us to
describe a generic point at the surface, such as O, with
coordinates (x, y, h(x, y)). Considering now the unit vec-
tors n̂, m̂ shown in Fig. 3, the angle ϕ is given by

cosϕ = m̂ · n̂ =
cos θ − (∂xh) sin θ

√

1 + (∂xh)2 + (∂yh)2
, (33a)

sin ϕ =
(

sin2 θ + 2(∂xh) sin θ cos θ(∂xh)2 cos2 θ

+ (∂yh)2
)1/2 ×

(

1 + (∂xh)2 + (∂yh)2
)−1/2

. (33b)

Thus far, expressions (33a)-(33b) are exact, and the val-
ues of ∂xh and ∂yh are already evaluated in the labo-
ratory frame of reference. To implement our approxi-
mations, in principle we have to separate the cases for
normal (θ = 0) and off–normal (θ 6= 0) incidence. Nev-
ertheless, it can be shown that the former case can be
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obtained as a smooth limit of the latter. Therefore in
the following we give the expressions pertaining to the
off–normal incidence and refer the reader to Appendix C
for details on the θ = 0 limit. Expanding (33a) and (33b)
in powers of the surface height derivatives, we obtain

cosϕ ≃ cos θ − (∂xh) sin θ

−1

2
((∂xh)2 + (∂yh)2) cos θ, (34a)

sin ϕ ≃ sin θ + (∂xh) cos θ − 1

2
(∂xh)2 sin θ

+
1

2
(∂yh)2

cos2 θ

sin θ
. (34b)

Note that these expressions are invariant under the coor-
dinate transformation y → −y, but not under x → −x,
a consequence of θ being non-zero and of our choice of
coordinates. Naturally, the θ → 0 limit restores the sym-
metry in the x direction.

Having obtained the expressions (34a) and (34b), we
can return to Eq. (32) to calculate the dependence of VO

on the slopes at O. Finally, all derivatives in (22) have
to be expressed in terms of the laboratory coordinates.
This can be accomplished given the relation between the
base vectors of the local frame (X̂, Ŷ , Ẑ) and those of the

laboratory frame (x̂, ŷ, ĥ), derived in Appendix A. If the
coordinates of a generic vector r are given by

r = XX̂ + Y Ŷ + ZẐ local frame,

r = xx̂ + yŷ + zẑ laboratory frame, (35)

then these quantities are related to each other through





x
y
z



 = M





X
Y
Z



 , (36)

where M is a matrix which has as columns the com-
ponents of the (X̂, Ŷ , Ẑ) set of vectors in terms of the
(x̂, ŷ, ẑ) (see Appendix A). To obtain the expression for

the erosion velocity, analogous to (32), in the laboratory
frame, we use Eqs. (34a), (34b), and M along with the
chain rule for differentiation, and perform expansions in
powers of derivatives of h(x, y, t). After some algebra we
obtain in the laboratory frame

∂n+mh

∂nX∂mY
≃ ∂n+mh

∂nx∂my
, (37)

up to fourth order in products of derivatives of h(x, y).
To summarize our results thus far, within the approxi-
mations leading to (32) and neglecting nonlinearities of
cubic and higher orders in derivatives of h in the labora-
tory frame, we obtained Eq. (37), providing the relation
between the derivatives in the two reference frames, and
relations (34a) and (34b) for the angle of incidence mea-
sured in the local frame as a function of the angle of
incidence θ and of the surface slopes.

Finally, to relate the velocity of erosion VO, which is
normal to the surface at O, to the velocity of erosion of
the surface along the h axis, ∂h/∂t, we have to project
the former onto the latter, obtaining

∂h

∂t
= −VO

√
g, (38)

where the negative sign accounts for the fact that VO

is the rate at which the surface is eroded, i.e. the aver-
age height decreases. Furthermore, taking into account
surface diffusion effects, together with the fluctuations
(shot noise) in the flux of the bombarding particles, as
discussed in Section IVC, we complete (38) by adding
these physical effects

∂h

∂t
= −VO

√
g − K∇4h + η(r, t), (39)

Finally, we have to write down the contribution of the
−VO

√
g term to the evolution equation (39). Performing

a small slope expansion and using Eqs. (32), (34a), and
(34b), we obtain

∂h

∂t
= −v0 + γ

∂h

∂x
+ ξx

(

∂h

∂x

) (

∂2h

∂x2

)

+ ξy

(

∂h

∂x

) (

∂2h

∂y2

)

+ νx
∂2h

∂x2
+ νy

∂2h

∂y2
+ Ω1

∂3h

∂x3
+ Ω2

∂3h

∂x∂y2

−Dxy
∂4h

∂x2∂y2
− Dxx

∂4h

∂x4
− Dyy

∂4h

∂y4
− K∇4h +

λx

2

(

∂h

∂x

)2

+
λy

2

(

∂h

∂y

)2

+ η(x, y, t), (40)

where the coefficients are given by the expressions

v0 = Fc, (41)

γ = F
s

f2

{

a2
σa2

µc2(a2
σ − 1) − a4

σs2
}

, (42)

νx = Fa
a2

σ

2f3

{

2a4
σs4 − a4

σa2
µs2c2 + a2

σa2
µs2c2 − a4

µc4
}

, (43)
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λx = F
c

2f4

{

a8
σa2

µs4(3 + 2c2) + 4a6
σa4

µs2c4 − a4
σa6

µc4(1 + 2s2)

− f2(2a4
σs2 − a2

σa2
µ(1 + 2s2)) − a8

σa4
µs2c2 − f4

}

, (44)

νy = −Fa
c2a2

σ

2f
, (45)

λy = F
c

2f2

{

a4
σs2 + a2

σa2
µc2 − a4

σa2
µc2 − f2

}

, (46)

ξx = Fa
a2

σsc

2f5

{

−6s6a8
σ + a8

σa2
µs4(4 + 3c2) − a8

σa4
µc2s2 + a6

σa4
µc2s2(4 − 6s2) + a6

σa2
µs4(−3 + 15s2)

+ a4
σa4

µ3c2s2(4 + 3s2) − a4
σa6

µ3c4(1 + s2) + a2
σa6

µc4(9 − 3s2) − 3a8
µc6

}

, (47)

ξy = Fa
a2

σsc

2f3

{

−a4
σa2

µc2 + a4
σs2(2 + c2) − a4

µc4 + a2
σa2

µc2(3 − 2s2)
}

, (48)

Ω1 = −Fa2 3

6

1

f2

s

a2
µ

{

f2 − fa4
σc2 − (a2

µ − a2
σ)c2(f + a4

σs2)
}

, (49)

Ω2 = Fa2 1

6

1

f4

{

−3sf2(f + a4
σs2) + a2

σc2(3a2
σsf + a6

σs3)f + 2(a2
µ − a2

σ)c2(3f2s + 6a4
σs3 + a8

σs5)
}

, (50)

Dxx = F
a3

24

1

f5

{

−4(3a2
σs2f + a6

σs4)f2 + a2
σc2(3f2 + 6a4

σs2f + a8
σs4)f

+ 2(a2
µ − a2

σ)c2(15a2
σs2f2 + 10a6

σs4f + a10
σ s6)

}

, (51)

Dyy = F
a3

24

1

f5

3a2
σ

a2
µ

{

f4c2
}

, (52)

Dxy = F
6a3

24

1

f5

f2

a2
µ

{

−2(a2
σs2)f2 + a2

σc2(f2 + a4
σs2f) + 2(a2

µ − a2
σ)c2(3a2

σs2f + a6
σs4)

}

. (53)

In the above expressions, we have defined

F ≡ Jǫpa

σµ
√

2πf
e−a2

σa2

µc2/2f . (54)

and, as introduced in Appendix B,

aσ ≡ a

σ
, aµ ≡ a

µ
,

s ≡ sin θ, c ≡ cos θ,

f ≡ a2
σs2 + a2

µc2. (55)

Equation (40) with the coefficients (41)-(55), fully de-
scribe the nonlinear time evolution of sputter eroded sur-
faces, provided that the leading relaxation mechanisms
are thermally activated surface diffusion and ion-induced

effective smoothing. Due to its highly nonlinear char-
acter, Eq. (40) can predict rather complex morphologies
and dynamical behaviors. In the remainder of the paper
we will focus on the physical interpretation of the co-
efficients (41)-(55), uncovering their dependence on the
experimental parameters, and we discuss the morpholo-
gies described by Eq. (40). Consistent with the sym-
metries imposed by the geometry of the problem, the
coefficients in Eq. (40) are symmetric under the transfor-
mation y → −y but not under x → −x, while for θ → 0
the system is isotropic in the x and y directions, specifi-
cally γ = ξx = ξy = Ω1 = Ω2 = 0, λx = λy, νx = νy, and
Dxx = Dyy = 1

2Dxy.
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VI. ANALYSIS OF THE GROWTH EQUATIONS

This section is devoted to the study of the morpho-
logical properties predicted by Eq. (40). This is not a
simple task, due to large number of linear and nonlinear
terms, each of which influence the surface morphology.
The complexity of the problem is illustrated by some spe-
cial cases of Eq. (40), for which the behavior is better
understood. For example, when nonlinear terms and the
noise are neglected (ξx = ξy = λx = λy = 0, η = 0),
Eq. (40) reduces to a linear generalization of BH the-
ory, which predicts ripple formation. It is also known
that the isotropic KS equation, obtained by taking νx =
νy, Dxx = Dyy = Dxy/2, and λx = λy , asymptotically
predicts kinetic roughening, with morphology and expo-
nents similar to those seen experimentally in ion sputter-
ing [28,29]. For positive νx and νy, Eq. (40) reduces to
the anisotropic KPZ equation, whose scaling behavior is
controlled by the sign of the product λx ·λy [53]. Finally,
recent integration by Rost and Krug [65] of the noiseless
anisotropic KS equation (i.e., when η = 0) showed that
when λx · λy < 0, ripples unaccounted for by the linear
theory appear, their direction being rotated with respect
to the ion direction.

To predict the morphology of ion-sputtered surfaces,
we need to gain a full understanding of the behavior pre-
dicted by (40) in the physically relevant two dimensional
case, going beyond the special cases. Help is provided
by the recent numerical integration of (40) by Park et al.

[100] that indicates a clear separation in time of the linear
and nonlinear behaviors. The results show that before a
characteristic time tc has been reached, the morphology is
fully described by the linear theory, as if nonlinear terms
were not present. However, after tc the nonlinear terms
completely determine the surface morphology. These re-
sults offer a natural layout for our discussion. In section
VI A we will limit our discussion to the linear theory.
However, even in this case we have to distinguish four
different cases, depending on whether the surface diffu-
sion in the system is thermally generated or of the effec-
tive type associated with the ion erosion process. Conse-
quently, in Sections VI A1 - VI A2, we discuss the high
temperature case, when relaxation is by thermal surface
diffusion, treating separately the symmetric (σ = µ), and
asymmetric (σ 6= µ) cases. Next we turn our attention
to low temperature ripple formation, when surface relax-
ation is dominated by erosion, and we again distinguish
the symmetric and asymmetric cases (Sects. VI A 3 and
VI A4). Finally, Sections VI B 1 - VI B4 are devoted to
the effect of the nonlinear terms, addressing such impor-
tant features as ripple stabilization, rotated ripples and
kinetic roughening.

A. Linear theory

1. Ripple formation at high temperatures:
Symmetric case

In this section we discuss the process of ripple forma-
tion in the symmetric case σ = µ, when the relaxation is
by thermally activated surface diffusion. Thus we assume
that the magnitude of the thermally activated surface dif-
fusion coefficient, K, is much larger than Dxx, Dxy, Dyy,
generated by the ion bombardment process. This is al-
ways the case for high temperatures since K increases as
(1/T ) exp(−∆E/kBT ) with T , while ion induced effec-
tive smoothing terms are independent of T . Dropping
the nonlinear terms in Eq. (40), we obtain

∂h

∂t
= −v0 + γ

∂h

∂x
+ νx

∂2h

∂x2
+ νy

∂2h

∂y2

+Ω1
∂3h

∂x3
+ Ω2

∂3h

∂x∂2y
− K∇4h + η(x, y, t), (56)

where the coefficients can be obtained from Eqs. (41) -
(54) by taking σ = µ:

v0 = Fc,

γ = Fs(a2
σc2 − 1),

νx =
Fa

2

{

2s2 − c2 − a2
σs2c2

}

,

νy = −Fa

2
c2,

Ω1 = −Fa2s

2a2
σ

(1 − a2
σc2),

Ω2 =
Fa2

6a2
σ

s
{

a2
σ(3c2 − 3s2) + a4

σc2s2 − 3
}

. (57)

Since the surface morphology depends on the signs and
absolute values of the coefficients in Eq. (56), in the fol-
lowing we discuss in detail their behavior as functions
of the angle of incidence θ and the reduced penetration
depth aσ.

Erosion velocity, v0: The v0 term describes the ero-
sion velocity of a flat surface. This term does not affect
the ripple characteristics, such as ripple wavelength and
ripple amplitude, and can be eliminated from the sur-
face evolution equation by the coordinate transformation
h̃ = h+ v0t. This corresponds to a transformation to the
coordinate frame moving with the eroded surface. How-
ever, since v0 is the largest contribution to the erosion
rate and is the only one that contributes in the linear
theory, it is worthwhile to investigate its dependence on
θ and aσ. Fig. 6 shows the v0 dependence on the angle
of incidence θ for three different values of the reduced
penetration depth aσ. From Eq. (57), v0 is positive for
all θ and aσ. In experiments v0(θ) corresponds to the
secondary ion yield variation with the incidence angle θ,
i.e. v0(θ) = JYflat(θ)/n, where n is the density of target
atoms.
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FIG. 6. The erosion velocity, v0/Π as a function of θ.
The three curves correspond to the reduced penetration
depth aσ = 1 (solid line), aσ = 2 (dotted line), aσ = 3
(dashed line). The velocity has been normalized by a factor
Π = pǫJ/(

√

2πa), independent of θ.

Note that v0 has the characteristic increasing part for
small θ, followed by saturation and decrease for large θ,
similar to the measured yield [2].

Traveling ripples, γ, Ω1, Ω2: If we consider a periodic
perturbation with wave vector (qx, qy) in the form

h = −v0t + A exp [i(qxx + qyy − ωt) + rt] , (58)

from Eq. (56) we obtain the mode velocity

ω = −γqx + Ω1q
3
x + Ω2qxq2

y, (59)

and the growth rate

r = −(νxq2
x + νyq2

y + K(q2
x + q2

y)2). (60)

Thus the coefficients γ, Ω1, Ω2 contribute to the Fourier
mode velocity ω in an anisotropic way that reflects the
asymmetry of the x and y directions for oblique (θ 6= 0)
ion incidence. The coefficients νx, νy, K, on the other
hand, contribute to the growth rate of the mode ampli-
tude. Carter [99,101] pointed out that dispersive terms,
such as Ω1 and Ω2, destroy the translational invariance
of the periodic morphology because the different modes
travel with different velocities. Note, however, that the
existence of a ripple structure means that there is essen-
tially only one Fourier mode describing the surface mor-
phology, which will thus move across the surface with
velocity ω. The coefficient γ contributes only to the ve-
locity of the ripples along the x direction, leaving unaf-
fected the y component of the ripple velocity. Thus, as
expected, γ = 0 for normal incidence (θ = 0). Similarly
to the v0 term, γ does not affect the ripple characteristics
and can actually be eliminated using the transformation
h̃ = h(x − γt, t).
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γ/Π

FIG. 7. The coefficient γ/Π as a function of the angle of in-
cidence θ for three reduced penetration depths: aσ = 1 (solid
line); aσ = 2 (dotted line); aσ = 3 (dashed line).

As can be seen in Fig. 7, γ can change sign with θ, in-
dicating that ripples travel in both positive and negative
directions along the x coordinate, depending on the angle
of incidence and the penetration depth: ripples travel in
the positive x direction for small θ and in the negative x
direction for larger θ. Travelling ripples were observed in
numerical simulations of Koponen et al. [90].

As discussed above, the terms Ω1, Ω2 also contribute
to the travelling of the ripples, and thus have no further
effect on the surface morphology. Fig. 8 shows the coef-
ficients Ω1 and Ω2 as functions of the angle of incidence
θ. We find that the absolute value of these coefficients at
small angles is small compared to γ (see Fig. 7), thus the
main contribution to the ripple velocity comes from the
(γ∂h/∂x) term. On the other hand, for angles θ ≥ 60◦,
these terms are comparable to or larger than γ.
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FIG. 8. The reduced third order coefficients Ω1/Π (a) and
Ω2/Π (b) as functions of the angle of incidence θ for three re-
duced penetration depths: aσ = 2 (solid line); aσ = 3 (dotted
line); aσ = 4 (dashed line).
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FIG. 9. The surface tension coefficients νx/Π (a) and νy/Π
(b) as functions of the angle of incidence θ for three reduced
penetration depths: aσ = 2 (solid line); aσ = 3 (dotted line);
aσ = 4 (dashed line).

The coefficients νx and νy: As we discussed above (see
Sect. IVB) the negative surface tension coefficients are
the origin of the instability responsible for ripple forma-
tion. Consequently, they play a particularly important
role in determining the surface morphology. The coeffi-
cients νx and νy are not equal due to the fact that the
direction of the ion beam breaks the symmetry along the
surface. As seen in Eq. (57), νy is always negative, while
νx can change sign as θ and aσ vary, as shown in Fig. 9.
The sign and the magnitude of νx and νy determine both
the wavelength and the orientation of the ripples.

Ripple wavelength and orientation: The experimental
studies on ripple formation have mainly focused on the
measurement of the ripple characteristics, such as the rip-
ple wavelength and amplitude. Thus, a successful theory
must address and predict these quantities. In the follow-
ing we outline the method for calculating the ripple wave-
lengths ℓx and ℓy. Taking into account the noisy charac-
ter of Eq. (56), the experimentally observed ripple wave-
length corresponds to the unstable Fourier mode which
yields the maximum value of the structure factor. The
structure factor, S(q, t), is calculated from the Fourier
transform h(q, t) of the instantaneous surface profile and
is defined as

S(q, t) = 〈h(−q, t)h(q, t)〉, (61)

where

h(q, t) =

∫

dr

(2π)2
exp(iqr)h(r, t). (62)

Fourier transforming Eq. (56) and inserting the expres-
sion for the Fourier transforms of h(r, t) into (61), we
obtain

S(q, t) = 〈h(−q, t)h(q, t)〉 = −J

2

1 − exp(r(q)t)

r(q)
, (63)

where r is the growth rate of the mode q given by Eq.
(60) and is positive for all unstable Fourier modes in the

system. We find that, depending on the sign of νx and
the relative magnitude of νx and νy, we can distinguish
two cases:

(i) For νx < νy < 0, which, according to Eq. (57),
holds when

aσ >

√

2

c2
, (64)

the ripple structure is oriented in the x direction, with
ripple wavelength

ℓx = 2π

√

2K

|νx|
. (65)

This means that the maximum of S(q, t) is at (
√

|νx|
2K , 0).

To illustrate this, in Fig. 10 we show the dependence of
the structure factor on the wavevectors qx and qy. The
contour plot indicates the existence of a global maxi-

mum at (
√

|νx|
2K , 0), indicating that the ripples are ori-

ented along the x direction.
(ii) For νx > νy, which holds when

aσ <

√

2

c2
, (66)

the ripple structure is oriented along the y-direction, with
ripple wavelength

ℓy = 2π

√

2K

|νy|
. (67)
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FIG. 10. Contour plot of the structure factor 2S(qx, qy)/J
as a function of the two dimensionless wavevectors qxa and
qya calculated for the angle of incidence θ = 30◦. The reduced
coefficients νx/Π and νy/Π are obtained using Eq. (57), their
values being νx/Π = −0.057, and νy/Π = −0.0418, while
K/Π is taken to be 0.01. These parameter values correspond
to Region I in Fig. 12.
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FIG. 11. Contour plot of the structure factor 2S(qx, qy)/J
as a function of the two dimensionless wavevectors qxa and
qya calculated for the angle of incidence θ = 60◦. The reduced
coefficients νx/Π and νy/Π are obtained using Eq. (57), their
values being νx/Π = 0.0758, and νy/Π = −0.0379, while K/Π
is taken to be 0.01.These parameter values correspond to Re-
gion II in Fig. 12.

Figure 11 shows an example of this regime, indicating

the existence of a global maximum at point (0,

√

|νy|
2K ),

corresponding to the ripple structure oriented along the
y direction.

Phase diagram for ripple orientation— The results ob-
tained on ripple formation can be summarized in a (θ, aσ)
morphological phase diagram, shown in Fig. 12, which
has the following regions:

Region I— For small θ both νx and νy are negative
such that νx < νy, thus the ripples are oriented along the

x direction. Their wavelength is ℓx = 2π
√

2K/|νx|.
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FIG. 12. Ripple orientation phase diagram for the isotropic
case σ = µ = 1. Region I: νx < νy < 0; Region II: νx > νy.
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FIG. 13. Ripple wavelengths ℓx (solid line) and ℓy (dot-
ted line) as functions of the angle of incidence θ for
KpǫJ/(

√

2πa) = 0.01. The reduced penetration depth is
taken as aσ = 2.

The amplitude of the ripples is expected to be weakly
modulated by the larger wavelength ℓy = 2π

√

2K/|νy|.
The ripple amplitude grows as h0 ∼ exp(rxt), where

rx = r(
√

|νx|
2K , 0) (see Eq. (58)). The boundary of this

region is defined by νx(aσ, θ) = νy(aσ, θ), i.e.

aσ =

√

2

c2
. (68)

Region II— This region is characterized by νy < νx.
The ripples are directed along the y direction and have
wavelength ℓy = 2π

√

2K/|νy|. Note that Region II ex-
tends down to small values of the incidence angle θ for
small enough reduced penetration depth aσ. This some-
what unphysical result is a consequence of the assump-
tion of a symmetric (σ = µ) distribution of deposited
energy. We will see in the next section that the more
physical asymmetric case with σ > µ leads in most cases
to ripples only oriented along the x direction for small
enough angles of incidence, as generally observed.

Figure 13 shows the θ dependence of the ripple wave-
lengths along the x and y directions. In the framework
of this model, where thermal surface diffusion is the only
smoothing mechanism, the observed ripple orientation
corresponds to the direction featuring the smallest value
of ℓ, and changes when ℓx = ℓy. The prediction for the
ripple wavelength close to 90◦ is questionable since re-
flection [69,70] and shadowing [102], not incorporated in
the model, start to play an important role during ion-
bombardment at these high angles.

Summary: The dependence of ℓ on the main physical
parameters characterizing the sputtering process is given
by
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ℓ = 2π

√

2K

|ν| ∼
√

2K

Fa
(69)

This prediction has a number of consequences, some
of which have been verified experimentally (see Section
VII):

(a) Since the penetration depth, a, is proportional to
ǫ2m (see IVE), and σ ∼ µ ∼ a, we have aσ ∼ const, and
F ∼ (ǫa)/(σµ) ∼ ǫ1−2m, which is independent of ǫ, when
m = 1/2. Consequently

ℓ ∼ ǫ−1/2, (70)

i.e. the ripple wavelength is expected to decrease with
the ion energy.

(b) Taking into account that K is independent of the
flux and ν ∼ J , we obtain that the ripple wavelength is
also a decreasing function of the incident ion flux, given
by

ℓ ∼ 1

J1/2
. (71)

(c) As was mentioned above, the negative surface ten-
sion is the origin of the instability leading to ripple for-
mation. When both νx and νy are negative the experi-
mentally observed ripple structure has the direction for
which the growth rate r is largest. However, in general,
we expect a superposition of both wavelengths, where
the long wavelength will appear as a modulation of the
ripple amplitude. Indeed, such modulations have been
observed both experimentally and numerically [100].

(d) An important prediction of this model, illustrated
in Fig. 13, is the existence of the critical angle θc where
the ripple orientation changes. In the case when surface
diffusion is thermally activated, this transition coincides
with the condition νx = νy.

2. Ripple formation at high temperatures:
Asymmetric case

The results of the previous section were derived for the
isotropic case, σ = µ. While this approximation consider-
ably simplifies our discussion, most systems present some
anisotropy in the deposited energy distribution. In this
section we demonstrate that the existence of anisotropy
does not modify the overall qualitative result on the ex-
istence of the two parameter regions corresponding to
ripples oriented along the x or y directions. However,
anisotropy does change the numerical value of the rip-
ple wavelength and the exact boundary between the two
morphological regions: we demonstrate that, for large
enough anisotropies, if the incidence angle is small only
ripples oriented along the x direction are possible.

Fig. 14 shows the coefficients νx and νy, given by Eq.
(57), as functions of the angle of incidence θ, for three
different degrees of asymmetry τ = σ/µ in the physical

[38,69,70] τ > 1 range. As one can observe the qualitative
behavior of νx and νy is similar to that observed in the
symmetric case. One interesting feature, however, must
be emphasized: the increasing asymmetry leads to larger
ripple wavelength, since the absolute values of νx and νy

decrease. With respect to the the third order linear terms
Ω1 and Ω2, their behavior as functions of the angle of in-
cidence can be also seen to be qualitatively analogous
to the symmetric case. Thus the asymmetry does not
change our conclusions regarding the travelling ripples.
Ripple wavelength: The calculation of ripple characteris-
tics in the asymmetric case is identical to the one used in
the symmetric case. Therefore, we limit ourselves to the
presentation of the results. Again, there are two possi-
ble ripple directions, and the dominant one can be found
from the maximum of the structure factor (63) or, as
can be seen to be equivalent, from the maximum of the
growth rate (60):

(i) When νx < νy < 0, i.e.,

aσ >

√

s2(2 + c2) + τ2c2(1 + 2c2) − τ4c4

τ2c2
, (72)

the ripple structure is oriented along the x-direction with

ripple wavelength ℓx = 2π
√

2K
|νx| .

(ii) When νx > νy, i.e.,

aσ <

√

s2(2 + c2) + τ2c2(1 + 2c2) − τ4c4

τ2c2
, (73)

the ripples are oriented along the y-direction, with ripple

wavelength ℓy = 2π
√

2K
|νx| .
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FIG. 14. The effective surface tensions νx/Π (a) and νy/Π
(b) plotted as functions of the incidence angle θ in the asym-
metric case. The curves correspond to values of the asymme-
try parameter τ = 1.5 (solid line), τ = 2 (dotted line), τ = 3
(dashed line), with aσ = 2.
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Phase diagram for ripple orientation: To consider the
effect of asymmetry on the different regimes in ion sput-
tering, we have studied the ripple orientation phase dia-
gram for different values of τ . As τ changes, we find a
smooth evolution which does not uncover any new mor-
phological regime. However, the topology of the phase
diagram does change as τ increases. For τ <

√
3 the

topology of the phase diagram is similar to the symmet-
ric case (see Fig. 12). As Fig. 15 illustrates, for τ ≥

√
3

the ripples oriented along the y direction, predicted by
the linear theory for small enough θ and aσ, are absent,
which is consistent with most experimental observations.
The characteristics of Region I and Region II of the
phase diagram are the same as in the symmetric case.
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FIG. 15. Ripple orientation phase diagram for the asym-
metric case with asymmetry parameter τ = 2 and aσ = 2.
Region I: νx < νy < 0; Region II: νx > νy.

3. Ripple formation at low temperatures:
Symmetric case

In the previous two sections we discussed the process of
ripple formation when the origin of surface smoothing is
surface diffusion, described by the −K∇4h term. How-
ever, in the series expansion of the erosion velocity we
found linear fourth order terms of the form −Dxx∂4

xh,
−Dxy∂

2
x∂2

yh, and −Dyy∂
4
yh, which are formally equiv-

alent to the thermally induced surface diffusion terms.
These terms arise as a higher order correction to the lo-
cal surface curvature, being fully determined by the pro-
cess of surface erosion. Consequently, these terms do not
imply actual mass transport along the surface, as ther-
mal surface diffusion does. In this section we show that,
in some parameter regions, these terms have a smooth-
ing effect that counteracts the erosion instability, in such
a way that they can also lead to ripple formation. We

believe this explains the ripples observed at low temper-
atures both experimentally [12] and in computer simula-
tions [90].

Neglecting the thermally induced relaxation terms (i.e,
taking K = 0), nonlinear terms and the terms v0, γ, Ω1

and Ω2, that do not affect the ripple characteristics, from
Eq. (40) we obtain the linear equation

∂h

∂t
= νx

∂2h

∂x2
+ νy

∂2h

∂y2
− Dxx

∂4h

∂x4

−Dxy
∂4h

∂x2∂y2
− Dyy

∂4h

∂y4
+ η(x, y, t). (74)

The expressions for the coefficients of the ion-induced ef-
fective smoothing terms can be obtained from Eqs. (51)-
(53) using σ = µ:

Dxx =
Fa3

24a2
σ

{

a4
σs4c2 + a2

σ(6c2s2 − 4s4) + 3c2 − 12s2
}

,

Dxy =
Fa3

24a2
σ

6
{

a2
σs2c2 + c2 − 2s2

}

,

Dyy =
Fa3

24a2
σ

3c2. (75)

From Eq. (75), Dyy is always positive, while Dxy and
Dxx change sign with θ. As we discuss below, the posi-
tive Dxx and Dyy coefficients play a role similar to ther-
mally activated surface diffusion. Furthermore, the ab-
solute value of Dxx is comparable with the thermally
activated surface diffusion coefficient even at high tem-
peratures (see Sect. VII).

Ripple wavelength and orientation: The ripple wave-
length and orientation can be calculated following the
arguments presented in Section VI A1, being determined
by the maxima of the structure factor S(q, t). The
growth rate r is now given by

r(qx, qy) = −(νxq2
x + νyq2

y + Dxxq4
x

+Dxyq
2
xq2

y + Dyyq
4
y). (76)

In principle the asymmetry of the Dij coefficients may
lead to maxima of S(q, t) at nonzero qx and qy values,
which correspond to ripples forming a nonzero angle with
both the x and y directions. However, straightforward
calculations indicate that the following condition holds

Dxyνy = 2νxDyy, (77)

for all values of aσ and θ in (57) and (75). This iden-
tity implies that no extrema (q∗x, q∗y) of S(q, t) exist other
than of the form (q∗x, 0) or (0, q∗y). Of these two solutions
the one with the largest positive value of r(qx, qy) corre-
sponds to the observed ripple structure. For small angles
of incidence so that Dxx ≥ 0 (Region I in Fig. 16),
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FIG. 16. Morphological phase diagram in the symmetric
case σ = µ = 1. Different regions correspond to: Region I:
νx < 0, νy < 0, Dxx > 0, Dyy > 0 and rx > ry; Region II:
νx < 0, νy < 0, Dxx < 0, Dyy > 0; Region III: νx > 0, νy < 0,
Dxx < 0 and Dyy > 0.

it can be easily seen that νx < 0, and the absolute max-
imum of S(q, t) is at (q∗x, 0) with q∗x =

√

|νx|/2Dxx, thus
the ripple structure is aligned along the x direction (see
for example Fig. 17).
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FIG. 17. Contour plot of the structure factor 2S(qx, qy)/J
shown as a function of the two dimensionless wavevectors qxa
and qya calculated for the angle of incidence θ = 30◦. The re-
duced coefficients νx/Π and νy/Π are obtained using Eq. (57),
their values being νx/Π = −0.0578 and νy/Π = −0.0418.
These parameter values correspond to Region I in Fig. 16.
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FIG. 18. Contour plot of the structure factor 2S(qx, qy)/J
shown as a function of the two dimensionless wavevectors qxa
and qya calculated for the angle of incidence θ = 30◦. The re-
duced coefficients νx/Π and νy/Π are obtained using Eq. (57),
their values being νx/Π = −0.0758 and νy/Π = −0.0379.
These parameters values correspond to Region II in Fig. 16.

Crossing the Dxx = 0 line into Region II in Fig. 16 the
(q∗x, 0) solution disappears, the structure factor having an

extremum at (0, q∗y), with q∗y =
√

|νy|/2Dyy. However,
this extremum is not a global maximum, see for example
Fig. 18. The lower boundary of Region II is provided by
the condition νx = 0. When we cross it (entering Region
III in Fig. 16), we have Dxx < 0 and νx > 0. Under this
condition, again, there exists an extremum of S(q, t) at

(q∗x, 0), with q∗x =
√

νx/2|Dxx|. However, the structure
factor takes its absolute maximum at (0, q∗y).

Phase diagram for ripple orientation: In summary,
three different regions can be determined in the morpho-
logical phase diagram shown in Fig. 16 for the case of
ion-induced effective smoothing in the symmetric σ = µ
case.

Region I— In this region, the surface tension coeffi-
cients νx and νy are negative, while Dxx and Dyy are
both positive. The observed ripple structure corresponds
to the maximum of S(q, t), which indicates that the rip-
ple structure is oriented along the x direction. The lower
boundary of this region, separating it from Region II, is
given by the Dxx(aσ, θ) = 0 line or, equivalently, by

aσ =

√

(2s2 − 3c2) +
√

6c4 + 4s4

s2c2
. (78)

Region II— In this region both Dxx and νx are nega-
tive. This region is bounded below by the νx(aσ, θ) = 0
line, given by

aσ =

√

(2s2 − c2)

s2c2
. (79)

In a continuum description, the maximum of r(q) is at
infinite q, thus our theory possibly breaks down in the
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sense that not even non-linear effects can be expected
to stabilize the surface under such conditions. In such a
case, a higher order Taylor expansion should be carried
out in Sec. V in order to be able to describe our system.
Additional effects, such as shadowing, could also start to
play a role under such conditions.

Region III — In this region Dxx is negative and νx is
positive. Thus the instability given by the negative Dxx

is smoothed out by the positive νx. Since the structure
factor takes on its absolute maximum at the finite wave
vector (0, q∗y), in principle there is still a ripple structure
oriented along the y direction. However, remarks similar
to those made in Region II might apply here, since we
still have Dxx < 0.

Summary: In the presence of ion-induced effective
smoothing the dependence of the ripple wavelength on
the physical parameters is different from the case of ther-
mal surface diffusion (see Sect. VI A1). Here we summa-
rize some of the differences.

(a) The dependence of ℓ on the ion energy is given by

ℓ =

√

2D

|ν| ∼
√

Fa3

Fa
∼ a ∼ ǫ2m, (80)

indicating that the ripple wavelength depends linearly on
the penetration depth a. This is very different from the
behavior predicted by Eq. (56), derived for thermal sur-
face diffusion, and indicates that monitoring the ripple
wavelength dependence on ǫ can be used to identify the
dominant smoothing mechanism. Such a linear behavior
of ℓ on ǫ has indeed been seen experimentally (see Section
III A).

(b) From Eq. (80) it also follows that the ripple wave-
length is independent of the incident ion flux. This pre-
diction is again quite different from the case dominated
by thermal surface diffusion, given by Eq. (71). Such a
flux independent behavior has been observed experimen-
tally (see Section III A).

Finally, analogues of characteristics (c) and (d), dis-
cussed in Sect. VI A1, apply here as well.

4. Ripple formation at low temperatures:
Asymmetric case

In this section we discuss the effect of asymmetry
(σ 6= µ) of the energy distribution on the morphological
regimes predicted by Eq. (74). We find that the coeffi-
cients of Eq. (74) vary slowly with the asymmetry, but
this does not change the qualitative picture presented in
the previous section, regarding the ripple wavelength and
orientation, or the major morphological regimes found in
the isotropic case, including the conditions of validity
of our continuum theory. Specifically, we find that the
asymmetry enlarges the region in θ where Dxx and Dyy

are positive, thus shifting Region II to larger values of
θ.

Phase diagram for ripple orientation— The topology
of the morphological phase diagram and the character-
istics of the three main regions are not changed by the
asymmetry. We find that the only effect of the asymme-
try is to move the boundaries smoothly to larger values
of θ as τ increases. The condition D(aσ, θ) = 0 (see Eq.
(78)) now takes the form

aσ =

√

(s2 + τ2c2)
(2s2 − 3τ2c2) +

√
6τ4c4 + 4s4

τ2s2c2
, (81)

and the condition νx(aσ, θ) = 0 (see Eq. (79)) becomes

aσ =

√

2s4 + τ2c2s2 − τ4c4

τ2s2c2
. (82)

B. Nonlinear theory

As we demonstrated in the previous section, linear the-
ory can predict many features of ripple formation, such
as the ripple wavelength and orientation, both at high
and low temperatures. However, a number of impor-
tant experimental features are incorrectly predicted by
linear theory. They include the stabilization of the rip-
ple amplitude (according to the linear theory the ampli-
tude increases indefinitely at an exponential rate) or the
presence of kinetic roughening (completely unaccounted
for by the linear approach). To account for these fea-
tures, we have to consider the effect of the nonlinear
terms. Consequently, this section is devoted to the ef-
fect of the nonlinear terms on the surface morphology.
There is an important difference between the linear and
nonlinear theories: while all predictions of the linear the-
ory can be calculated analytically (as we demonstrated
in the previous section), the discussion of the nonlinear
effects requires a combination of analytical and numer-
ical tools. Even with these tools, the understanding of
the nonlinear effects is far less complete than that of the
linear theory.

1. High temperature morphology: Symmetric case

In the high temperature regime, where thermal surface
diffusion dominates over ion-induced effective smoothing,
the nonlinear equation of the interface evolution has the
form

∂h

∂t
= −v0 + γ

∂h

∂x
+ ξx

(

∂h

∂x

) (

∂2h

∂x2

)

+ξy

(

∂h

∂x

) (

∂2h

∂y2

)

+ νx
∂2h

∂x2

+νy
∂2h

∂y2
+

λx

2

(

∂h

∂x

)2

+
λy

2

(

∂h

∂y

)2

+Ω1
∂3h

∂x3
+ Ω2

∂3h

∂x∂y2
− K∇4h + η(x, y, t), (83)
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where the coefficients of the linear terms, v0, γ, νx, νy,
Ω1, Ω2, and K have been discussed in Sections VI A1
and VI A2. The coefficients of the nonlinear terms in
the symmetric case (σ = µ) are

λx =
F

2
c
{

a2
σ(3s2 − c2) − a4

σs2c2
}

,

λy = −F

2
c{a2

σc2},

ξx =
Fa

2
sc

{

−a4
σc2s2 + a2

σ(4s2 − 3c2) + 6
}

,

ξy =
Fa

2
sc

{

2 − a2
σc2

}

. (84)

Next we discuss the physical interpretation and the
behavior of these coefficients as functions of θ and aσ.

The coefficients ξx and ξy: Fig. 19 shows the nonlin-
ear coefficients ξx and ξy as functions of the angle of
incidence θ. As the numerical analysis of Eq. (83) shows,
these nonlinearities are responsible for the development
of overhangs on the surface [103]. Even though the ξx

and ξy terms are expected not to determine the asymp-
totic scaling behavior, they can play a relevant role at
intermediate time scales after the development of the rip-
ple structure, particularly in the region of large θ. The
precise contribution of these nonlinearities to the surface
dynamics is currently under investigation [103].

The coefficients λx and λy: As we discussed in Sec.
IVA2, the morphology of the surface described by Eq.
(83) depends on the relative signs of the the nonlinear
terms λx and λy. As it is evident from Eq. (84), λy

is negative for all angles of incidence and penetration
depths.
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FIG. 19. The reduced coefficients ξx/Π (a) and ξy/Π (b)
shown as functions of θ for different values of the reduced
penetration depths: aσ = 2 (solid line); aσ = 3 (dotted line);
aσ = 4 (dashed line).
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FIG. 20. The reduced coefficients λx/Π (a) and λy/Π (b)
shown as functions of θ. The different curves correspond to
different values of the reduced penetration depth: aσ = 2
(solid line); aσ = 3 (dotted line); aσ = 4 (dashed line).

However, as shown in Fig. 20, the sign of λx depends
on θ and aσ: λx is negative for small θ and changes sign
for larger angles of incidence. In principle the nonlin-
ear terms completely determine the surface morphology.
Since the nonlinear terms are always present, an impor-
tant question is whether the linear regimes are relevant
at all. Recent results by Park et al. [100] indicate that,
while the nonlinear effects indeed change the surface mor-
phology, the regime described by the linear terms is still
visible for a wide range of parameters. By numerically in-
tegrating Eq. (83) they have shown that there is a clear
separation of the linear and nonlinear regimes in time:
for times up to a crossover time tc the surface erodes
as if the nonlinear terms would be completely absent,
following the predictions of the linear theory. After tc,
however, the nonlinear terms take over and completely
determine the surface morphology. The transition from
the linear to the nonlinear regime can be seen either by
monitoring the surface width (which is proportional to
the ripple amplitude) or the erosion velocity. The sim-
ulations indicate that the width increases exponentially
with time, as predicted by the linear theory, until tc, af-
ter which the width growths at a much slower rate [100].
This transition is typically accompanied by the disap-
pearance of ripples predicted by the linear theory and
the appearance of either kinetic roughening or of a new
rotated ripple structure. The erosion velocity is constant
in the linear regime (before tc), while it increases or de-
creases after tc, depending on the relative signs of the
nonlinear terms.

Crossover time: The crossover time tc from the lin-
ear to the nonlinear behavior can be estimated [100] by
comparing the strength of the linear terms with that of
the nonlinear terms. Let the typical surface width at the
crossover time tc be Wo =

√

W 2(L, tc). Then from the
linear equation we obtain
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FIG. 21. Phase diagram for the isotropic case σ = µ = 1.
Region I: νx < 0, νy < 0, λx < 0, λy < 0; Region II: νx < 0,
νy < 0, λx > 0, λy < 0; Region III: νx > 0, νy < 0, λx > 0,
λy < 0.

Wo ∼ exp(νtc/ℓ2), (85)

while from ∂th ∼ λ(∇h)2 we estimate

Wo/tc ∼ λW 2
o /ℓ2. (86)

Combining these relations we obtain

tc ∼ (K/ν2) ln(ν/λ). (87)

In this expression, ν, K, and λ correspond to the direc-
tion parallel to the ripple orientation. The predicted λ
dependence of tc has been confirmed by numerical simu-
lations [100].

Surface morphology: The surface morphology in the
nonlinear regime depends on the relative signs of νx, νy,
λx and λy. The different morphological regimes can be
summarized in a phase diagram, shown in Fig. 21. Next
we discuss each of the phases separately.

Region I— For small θ the nonlinear terms λx and λy

have the same (negative) sign, the boundary of this re-
gion being given by the condition that λx(aσ, θ) = 0, or
equivalently

aσ =

√

3s2 − c2

c2s2
. (88)

In this region both νx and νy are negative, thus at short
time scales (t ≤ tc), the linear theory (see Section VI A 1)
predicts ripples oriented along the direction (x for large
aσ and y for small aσ) for which the absolute value of ν

is largest, with ripple wavelength ℓ = 2π
√

2K
|ν| . On the

other hand, at long times (t ≫ tc), the ripple structure
disappears and the surface undergoes kinetic roughen-
ing [100]. Since λx · λy > 0, we expect the dynamics
of the kinetic roughening regime to be described by the

KPZ equation, i.e. the surface width follows W ∼ Lα,
W ∼ tβ , where the scaling exponents are α ≃ 0.38 and
β ≃ 0.25 (see Sect. IVA1).

Region II— In this region both the νx and the νy co-
efficients are still negative, but in contrast with Region I
the product λx · λy is negative. Recent studies by Park
et al. [100] have shown that in time three morphological
regimes can be distinguished. For short times, t ≤ tI , the
ripple structure predicted by the linear theory (see Sec-
tion IV A1) is observed, with ripples oriented along the
direction which has the largest value of |ν|. For interme-
diate times tI ≤ t ≤ tII , the surface is rough. If this
roughness would follow kinetic roughening, one would
expect logarithmic scaling, described by the Edwards-
Wilkinson equation (see Sections VI B 2-VIB4), since
λx · λy < 0. However, this transient regime is somewhat
different from what we expect during kinetic roughening.
The numerical simulations often show the development
of individual ripples, which soon disappear, and no long-
range order is present in the system. However, at a sec-
ond crossover time, tII , a new ripple structure suddenly
forms, in which the ripples are stable and rotated an an-
gle θc with respect to the x direction. Rost and Krug
[65] have shown [for the deterministic limit of Eq. (83)]
that, by defining αν = νx/νy and βλ = λx/λy, the fact
that αν > 0 and βλ < 0 throughout Region II implies
the existence of “cancellation modes” which dominate
the dynamics and lead to this rotated ripple morphol-
ogy. (Note the parameter ratios αν and βλ are not to
be confused with the roughness and growth exponents α
and β introduced in Section II.) The angle θc calculated

by Rost and Krug has the value θc = tan−1
√

−λx/λy

(see also Appendix D), and can be obtained by moving
to a rotated frame of coordinates that cancels the non-
linear terms in the transverse direction. The boundary
of Region II is given by the condition νx(aσ, θ) = 0, Eq.
(79).

Region III — This region is characterized by a positive
νx and a negative νy. At short time scales, t ≤ tc, the pe-
riodic structure associated with the instability is oriented

along the y direction and has wavelength ℓy = 2π
√

2K
|νy| .

Much less is known, however, about the nonlinear regime.
Such an anisotropic and linearly unstable equation is un-
explored in the context of growth equations. The analysis
by Rost and Krug [65] for the corresponding determinis-
tic equation predicts that, given that βλ < αν < 0 does
hold all over Region III, again cancellation modes induce
a rotated ripple morphology.

Summary: Even though several aspects of the scaling
behavior predicted by Eq. (83) remain to be clarified, we
believe that this equation contains the relevant ingredi-
ents for understanding roughening by ion bombardment.
To summarize, at short time scales the morphology con-
sists of a periodic structure oriented along the direction
determined by the largest in absolute value of the nega-
tive surface tension coefficients [38]. Modifying the values
of aσ or θ changes the orientation of the ripples [38]. At
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long time scales we expect two different morphological
regimes. One is characterized by the KPZ exponents,
which might be observed in Region I in Fig. 21. In-
deed, the values of the exponents reported by Eklund et

al. [28,29] are consistent within the experimental errors
with the KPZ exponents. In Region II kinetic roughen-
ing is not expected. Rather, nonlinear terms lead to a
new ripple structure that is rotated with respect to the
ion direction. Region III is less understood; analysis of
the deterministic equation [65] again predicts a rotated
ripple structure. By tuning the values of θ and/or aσ

one may induce transitions among these morphological
regimes.

2. High temperature morphology: Asymmetric case

In this section we discuss the effect of asymmetry on
the scaling regimes of Eq. (83). Here again we obtain
that the effect of asymmetry does not bring in new qual-
itative features. Specifically, we find that the qualitative
behavior of ξx and ξy is not affected by the asymmetry.
As the asymmetry grows, the absolute value of the co-
efficients in the region of small angles decreases and the
peaks at large θ increase. Similarly, while the numerical
values of λx and λy are affected by the asymmetry τ ,
their qualitative features are not.

Finally, we find that the morphological diagram is
topologically equivalent to the phase diagram obtained
in the symmetric case (see Fig. 21), the only difference
being in the position of the boundaries. As τ changes, we
find a smooth evolution of the boundaries, which does not
uncover any new regimes. Since the morphological prop-
erties of the system in the three regimes are the same as
those discussed in the symmetric case, we will not discuss
them again.

3. Low temperature morphology: Symmetric case

In this section we discuss the effect of the effective sur-
face smoothing on the surface morphology in the nonlin-
ear regime. In the absence of thermally activated surface
diffusion, from Eq. (40) we obtain the following equation
governing the morphology evolution

∂h

∂t
= −v0 + γ

∂h

∂x
+ ξx

(

∂h

∂x

) (

∂2h

∂x2

)

+ξy

(

∂h

∂x

) (

∂2h

∂y2

)

+ νx
∂2h

∂x2

+νy
∂2h

∂y2
+

λx

2

(

∂h

∂x

)2

+
λy

2

(

∂h

∂y

)2

+Ω1
∂3h

∂x3
+ Ω2

∂3h

∂x∂y2
− Dxx

∂4h

∂x4

−Dxy
∂4h

∂x2∂y2
− Dyy

∂4h

∂y4
+ η(x, y, t). (89)
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FIG. 22. Nonlinear phase diagram for the isotropic case
σ = µ = 1 at low temperatures. Region I: νx < 0, νy < 0,
Dxx > 0, Dyy > 0 and λx < 0, λy < 0; Region IIa: νx < 0,
νy < 0, Dxx < 0, Dyy > 0 and λx < 0, λy < 0; Region IIb:
νx < 0, νy < 0, Dxx < 0, Dyy > 0 and λx > 0, λy < 0; Region
III: νx > 0, νy < 0, Dxx < 0, Dyy > 0 and λx > 0, λy < 0.

The terms γ, νx, νy, Ω1, Ω2, ξx, ξy, λx, λy, as well as
the ion-induced effective smoothing coefficients Dxx, Dxy

and Dyy have been discussed in the previous sections.

In the following we discuss the morphological phase di-
agram predicted by Eq. (89) and shown in Fig. 22. The
different regimes have the following characteristics:

Region I: The surface tensions νx and νy are negative
while Dxx and Dyy are positive, and λx, λy are both
negative. This regime has been previously described in
Section VI B 1 (Regime I in Fig. 21), the only difference
being that here the ion-induced effective surface smooth-
ing plays the role of K. The boundary of this region is
given by Dxx(aσ, θ) = 0, Eq. (78).

Region IIa: Here νx, νy, λx, and λy are still negative,
Dyy is positive, while Dxx < 0. Consequently, along the
x direction the surface is unstable, all modes growing
exponentially. However, the nonlinear terms λx and λy

have the same sign. The nonlinear regime in this param-
eter region has not yet been explored numerically, thus
its morphology is unknown. The boundary of this region
is given by λx(aσ, θ) = 0, Eq. (88).

Region IIb: In this region Dxx is negative, Dyy is pos-
itive, νx < 0, νy < 0, and λx > 0, λy < 0. Thus, the only
difference of this region with respect to Region IIa is that
the nonlinear terms have different signs. Similarly to Re-
gion IIa, nothing is known about the nonlinear behavior.
The boundary of this region is given by νx(aσ, θ) = 0,
Eq. (79).

Region III: Here we have νx > 0, νy < 0, Dxx < 0,
Dyy > 0, λx > 0 and λy < 0. This region has similar
features to Region III in the phase diagram of Fig. 21,
except for the negative value of the Dxx coefficient.
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FIG. 23. Nonlinear phase diagram for the anisotropic case
with τ = 2 and aσ = 2. Different regions in the diagram
correspond to: Region I: νx < 0, νy < 0, Dxx > 0, Dyy > 0
and λx < 0, λy < 0; Region IIa: νx < 0, νy < 0, Dxx < 0,
Dyy > 0 and λx < 0, λy < 0; Region IIb: νx < 0, νy < 0,
Dxx < 0, Dyy > 0 and λx > 0, λy < 0; Region IIc: νx < 0,
νy < 0, Dxx > 0, Dyy > 0 and λx > 0, λy < 0; Region III:
νx > 0, νy < 0, Dxx < 0, Dyy > 0 and λx > 0, λy < 0.

4. Low temperature morphology: Asymmetric case

In this section we discuss the effect of asymmetry on
the long distance properties of Eq. (89). The effect of the
asymmetry on the coefficients appearing in the equation
were discussed earlier. Therefore we concentrate here
merely on the morphological phase diagram predicted
by Eq. (89) for the asymmetric case, which is displayed
in Fig. 23. As before, asymmetry (τ 6= 1) leads to a
smooth shift of the boundaries of the regions provided
by the lines where the coefficients Dxx(aσ, θ), νx(aσ, θ),
and λx(aσ, θ) change sign. In the presence of effective
smoothing, however, asymmetry in the deposited energy
distribution induces the appearance of a fifth morpho-
logical regime. This is caused by the smooth motion of
the boundary determined by λx(aσ, θ) = 0, which in-
tersects for some value of τ the boundary defined by
Dxx(aσ, θ) = 0. Comparison of Fig. 23 and Fig. 22 il-
lustrates how the boundaries move with τ . Regions I,
IIa, IIb and III are analogous of those shown in Fig. 22.
Region IIc in the phase diagram, on the other hand, is
analogous of Region II of the high temperature phase di-
agram, shown in Fig. 21, and all the conclusions obtained
in that section regarding the morphological properties in
this regime also apply here.

VII. COMPARISON WITH EXPERIMENTS

In this section we compare the predictions of the the-
ory presented in this paper with experimental results

on ripple formation and surface roughening. For a bet-
ter presentation, we choose to structure the material
around well known features of the morphological evolu-
tion, present the theoretical predictions and discuss to
which extent are they supported by the available exper-
imental data. We also discuss predictions that have not
been tested in sufficient detail but could offer future tests
of the theory.

Ripple amplitude: A key quantity in ripple formation
is the time evolution of the ripple amplitude. As we
have shown in Section VI A1, at early times (t ≤ tc)
the ripple amplitude grows exponentially, following h ∼
exp (r(q∗x, q∗y)t), where r is the growth rate of the most
unstable mode (q∗x, q∗y). According to the linear theory,
this growth continues indefinitely. In contrast, the non-
linear theory predicts that the amplitude should stabilize
after time tc, where tc is given by Eq. (87). This is consis-
tent with the experimental investigations [18,20]. On the
other hand, recently Erlebacher et al. [19] also found that
at initial stages the ripple morphology is growing expo-
nentially. Furthermore, they observed that at some time
tc the exponential growth stops and the ripple amplitude
saturates. Measuring the temperature dependence of the
saturation curves, they found that rescaling the time t
with a factor ν2/4K and the amplitude h with

√

ν/2K,
the different curves representing the amplitude as a func-
tion of time collapse onto a single one. This result is in
excellent agreement with our prediction that suggest that
plotting the result in terms of the rescaled parameters,
t/tc and h

√

ν/2K, the different curves should collapse
[100]. They also offer direct proof that the nonlinear
terms play a major role in determining the amplitude of
the ripples, indicating that the incorporation of the non-
linear mechanisms in the theory of ripple formation is
essential.

Temperature dependence of the ripple wavelength: A
key quantity that provides direct information about the
nature of the relaxation mechanism is the temperature
dependence of the ripple wavelength. Our results in-
dicate that there are two mechanisms contributing to
surface relaxation: thermally induced surface diffusion
(Sects. VI A1-VIA 2) and ion-induced smoothing (Sects.
VI A3-VIA4). At high temperatures thermal surface dif-
fusion is rather intensive, thus it is the main mechanism
determining the relaxation process, the ripple wavelength
being given by (65) or (67). Since the surface diffusion
constant K decreases with T as (1/T ) exp(−∆E/kBT ),
the ripple wavelength is also expected to decrease expo-
nentially with T . Indeed, such an exponential tempera-
ture dependence of ℓ has been observed by various groups
[12,13]. However, in Section VI A3 we demonstrated the
existence of ion induced smoothing, that is present at
any temperature. Thus, up to some inessential numer-
ical factors, the total surface diffusion constants have a
form DT = K + D, where D is independent of temper-
ature. Since K decreases exponentially with T , at low
enough temperatures we have K ≪ D, indicating that
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the main relaxation mechanism is ion-induced. Conse-
quently, below a certain critical temperature Tc, given
by K(Tc) = D, one expects the ripple wavelength to be
independent of T . Support for this scenario has been
provided by the experiments in [12] and [13] and the
molecular dynamics simulations of Koponen et al. [90].
Consequently, as the theoretical results in this paper in-
dicate, the temperature dependence of ℓ can be used to
identify the relaxation mechanism: when ℓ increases ex-
ponentially with T , we are dealing with relaxation by
thermal surface diffusion, while a temperature indepen-
dent wavelength is an indication of ion induced smooth-
ing.

Ripple orientation: An important feature of ripple for-
mation is that, as the linear theory predicts, the ripple
orientation depends on the angle of incidence θ. The de-
pendence of the ripple orientation on the experimental
parameters has been summarized in the phase diagrams
shown in Figs. 12, 15, 16, 21, 22, and 23. In general,
for physical values of the asymmetry parameter (i.e. for
τ > 1), we find that for small angles the ripples are ori-
ented in the x direction (along the incoming ions), and
they change orientation to the y direction for large θ. The
boundary separating these two morphological regions de-
pends on the parameters characterizing the sputtering
process, such as the ion penetration depth and the geome-
try of the deposited energy distribution. Such transition
in the ripple orientation has been found in the simula-
tions of [88], where for θ ≤ 45◦ the observed ripples were
oriented along the x direction, while for θ ≥ 45◦, they
changed their orientation to y. Furthermore, the nonlin-
ear theory predicts that after the nonlinear terms take
over, new ripples, with orientation different from both
x and y directions, might appear (see Sect. VI B1). To
the best of our knowledge, such rotated ripples have not
been observed experimentally as yet. Nevertheless, this
morphology might also lead to additional effects, such as
shadowing, which have been neglected in our approach.

Ripple wavelength dependence on the flux: Depending
on the nature of the relaxation mechanism, the linear
theory has two different predictions on the flux depen-
dence of the ripple wavelength: for high temperatures,
when thermal surface diffusion dominates, one expects
ℓ ∼ J−1/2 [see Eq. (71)], while at low temperatures, char-
acterized by ion induced smoothing, we expect the wave-
length to be independent of flux (see Sect. VI A3). Con-
sequently, due to its strong dependence on the relaxation
mechanism, the flux dependence of the ripple wavelength
can also be used to identify the relaxation mechanism.
Indeed, a number of experiments [18,13] are compatible
with the prediction of a flux independent wavelength.
Other aspects of ripple characteristics (such as energy or
temperature dependence) also lead to the same conclu-
sion. On the other hand, we are not aware of results
indicating decreasing ripple wavelength with increasing
flux. However, support for the relevance of thermal sur-
face diffusion comes from the experiments of Chason et
al. [16], who reported that the growth rate r(q∗x, q∗y) as

a function of flux follows the predictions of the linear
theory with thermal surface diffusion.

Ripple wavelength dependence on the ion energy: The
linear theory indicates that the ion energy dependence of
the ripple wavelength can be used to distinguish between
the two relaxation mechanisms: at high temperatures
we expect ℓ ∼ ǫ−1/2 [see Eq. (70)], i.e., the wavelength
decreases with the energy, while at low temperature we
have ℓ ∼ ǫ2m ∼ ǫ [see Eq. (80)], i.e., the wavelength
should increase with energy, strikingly different predic-
tions. A number of experimental groups have found that
the ripple wavelength increases linearly with the ion en-
ergy [7,9,18]. However, while we are not aware of any
direct observation of a decreasing ripple wavelength with
increasing ion energy, the growth rate dependence on the
ion energy measured by Chason et al. [17] provided re-
sults which are in agreement with the predictions based
on thermal surface diffusion.

The magnitude of the effective surface diffusion con-
stant: Since the transition between the low and high tem-
perature regimes is determined by the relative magnitude
of Dxx, Dxy, Dyy (ion induced smoothing), and K (ther-
mal surface diffusion), we need to estimate the magnitude
of these constants. In the following we give an order of
magnitude estimate for the effective surface diffusion con-
stant Dxx and compare it to K, using data from [18,19]
for Si(001). Taking Y = 2.6, J = 670 µA/cm2, ǫ = 9
keV, a = 100 Å, aσ = 2, aµ = 4, and θ = 40◦, Eq.
(51) gives Dxx ≃ 12 × 10−28 cm4/s. For comparison,
at T = 550 C it is estimated [19] that K ≃ 34 × 10−28

cm4/s. Hence, since K decreases exponentially with tem-
perature, ion induced smoothing can be significant at
low temperatures (including room temperature), in some
cases being comparable or more relevant than thermal
surface diffusion.

Kinetic roughening: An important feature of our the-
ory is that it goes beyond the linear approach, han-
dling systematically the nonlinear effects as well. As we
demonstrated in Sect. VI B, the presence of the nonlin-
ear terms can affect both the dynamics and the mor-
phology of the surface. The first and the most dramatic
consequence is the stabilization of the ripple amplitude,
discussed above. Furthermore, after the stabilization of
the ripple amplitude the surface morphology is rather
different from the morphology predicted by the linear
theory. In particular, depending on the signs of λx and
λy, different morphological features can develop. When
λxλy is positive, at large times the surface undergoes ki-
netic roughening, following the predictions of the KPZ
equation. This behavior has, indeed, been observed ex-
perimentally [28,29] and numerically [91], providing di-
rect support for the predictions of the nonlinear theory.
When λxλy is negative, direct numerical integration of
the nonlinear theory [100,65] indicated the existence of a
new, rotated ripple structure. The absence of experimen-
tal data on this phase might be due to the required large
sputtering times: the simulations indicate [100] that be-
tween the linear regime and the formation of the rotated
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ripple structure there is a rather long transient regime
with an apparently rough surface morphology. The above
predictions apply when the surface diffusion terms, ion
or thermally induced, act to smooth the surface (i.e.,
DT ≥ 0). However, at low temperatures, when ion in-
duced smoothing dominates, surface diffusion can gener-
ate an instability that can further modify this behavior
(see Sect. VI B 3). In general, while rather detailed ex-
perimental data are available describing the linear regime
of ion sputtering, explanation of the nonlinear regime is
only at its beginning, hiding the possibility of new inter-
esting phases and behaviors.

VIII. CONCLUSIONS

In this paper we investigated the morphological prop-
erties of surfaces eroded by ion bombardment. Start-
ing from the expression for the erosion velocity derived
in the framework of Sigmund’s theory of sputtering of
amorphous targets, we derived a stochastic partial dif-
ferential equation for the surface height, which involves
up to fourth order derivatives of the height, and incor-
porates surface diffusion and the fluctuations arising in
the erosion process due to the inhomogeneities in the ion
flux. In some special cases the derived nonlinear theory
reduces to the much studied KS or the KPZ equations,
well known descriptions of dynamically evolving surfaces.
However, in contrast with these theories, which have been
derived using symmetry and conservation considerations
[37], here we derived the continuum theory directly from
a microscopic model of sputtering, and thus all coeffi-
cients can be explicitly expressed in terms of the physi-
cal parameters (such as angle of incidence, ion penetra-
tion depth, etc.) characterizing the ion bombardment
process. An important feature of the derived nonlinear
continuum theory is that the linear and the nonlinear
regimes are separated in time. As a result, they can be
discussed separately, the former controlling the behavior
at early times, the latter at late times. Furthermore, an
important result of our calculations is that higher order
effects of the sputtering process can smooth the surface.
This effective mechanism was necessary to explain ripple
formation at low temperatures, when thermally induced
surface diffusion is not relevant. Consequently, based on
these two ingredients (separation of time scales between
linear and the nonlinear regimes and the existence of two
different relaxation mechanisms) we have discussed four
different cases. In the linear high temperature regime
the equations reduce to the linear theory of Bradley and
Harper, predicting ripple formation, and explaining such
experimentally observed phenomenon as ripple orienta-
tion (and its change with aσ and θ), exponential increase
in ripple amplitude (valid for short times), or flux and en-
ergy dependence of the ripple wavelength. On the other
hand, phenomena not explained by this approach, such
as the stabilization of the ripple amplitude, can be ex-

plained by considering the nonlinear terms as well. We
also show that, depending on the sign of the coefficients
of the nonlinear terms, the late time morphology of the
surface is either rough, or dominated by new rotated rip-
ples. The rough phase is expected to be described by
the KPZ equation, which has its own significance: while
the introduction of the KPZ equation has catalyzed an
explosion in the study of the morphological properties
of growing surfaces, there are very few actual surfaces
that are described by it (and not by one of its offsprings,
such as the MBE or related equations [37]), and most no-
tably none, as far as we know, that describe crystal sur-
faces. The sputtering problem provides one of the first
systems that is convincingly described by this continuum
theory. Many of the previous mysteries of low tempera-
ture ripple formation have also been solved by the present
theory. By deriving the higher order ion-induced effec-
tive smoothing terms, we can explain the existence of
ripples at temperatures where thermally induced surface
diffusion is not active. We showed that the derived ef-
fective smoothing affects both the linear and the nonlin-
ear regimes, governing the early time ripple formation,
and the late time nonlinear behavior. The coexistence of
thermal and ion induced smoothing can explain the sta-
bilization of the ripple wavelength at low temperatures,
in contrast with its exponential T dependence at higher
temperatures. On the other hand, our theory has limi-
tations, most of which can be already identified in Sig-
mund’s and Bradley and Harper’s theories, with which
it is related. Namely, it is devised for amorphous sub-
strates, whereupon it neglects effects such as viscous re-
laxation [74], which might be the cause for the failure of
the theory to predict the absence in many experiments
of ripples at low (but non-zero) angles of incidence. This
issue should constitute one of the most important exten-
sions of our present theory. Perhaps related with this, we
have seen that there exist parameter regions at low tem-
peratures within which our theory breaks down, due to
the unstable higher order derivative terms that occur. A
relevant issue is thus to determine the correct continuum
description of the surface under these conditions.

Most of the predictions offered by the presented con-
tinuum theory have been already verified experimen-
tally. However, many unexplained predictions remain
at low temperatures both in the linear and the nonlin-
ear regimes, as well as regarding the nonlinear regime
at high temperatures. We hope that the rather precise
derivations offered in this paper will guide such future ex-
perimental work. Furthermore, some of the morphologies
expected in the nonlinear regime need further theoretical
understanding as well, allowing for the continuation of
this inquiry. With the dramatic advances in computer
speed, the understanding of some of these questions, ei-
ther through numerical integration of the continuum the-
ory or through discrete models, might be not too far.
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APPENDIX A:

The algebraic relation between the coordinates of the
laboratory frame and the local frame, depicted in Fig.
3, follows from the definitions given in point (i) of Sect.

V. Accordingly, the unit vector along the Ẑ axis is the
normal at point O

Ẑ ≡ n̂ =
(−∂xh,−∂yh, 1)√

g
, (A1)

where g ≡ 1 + (∂xh)2 + (∂yh)2. The vector m̂ drawn on
Fig. 3 has components

m̂ = (sin θ, 0, cos θ). (A2)

Therefore, the unit vector along the Ŷ axis reads:

Ŷ ≡ n̂ × m̂

|n̂ × m̂| =
1√

g sin ϕ
(−(∂yh) cos θ, sin θ

+(∂xh) cos θ, (∂yh) sin θ), (A3)

and finally (A1) and (A3) yield for the unit vector along

the X̂ axis:

X̂ = Ŷ × Ẑ

=
1

g sin ϕ

(

sin θ + (∂xh) cos θ(∂yh)2 sin θ,

(∂yh) cos θ − (∂xh)(∂yh) sin θ,

(∂xh) sin θ + ((∂xh)2 + (∂yh)2) cos θ
)

. (A4)

The matrix M defined in Eq. (36) and which relates the
coordinates in the local and laboratory frames reads

M =









s+c∂yh+s(∂yh)2√
gr − c∂yh

r −∂xh√
g

c∂yh−s∂xh∂yh√
gr

s+c∂xh
r −∂yh√

g

s∂xh−c((∂xh)2+(∂yh)2)√
gr

s∂yh
r − 1√

g









, (A6)

where s = sin θ, c = cos θ, and
r ≡

√

(s + c∂xh)2 + (∂yh)2.

APPENDIX B:

If we perform a small ∆nm expansion in Eq. (30) we
obtain

VO =
ǫpJa2

σµ(2π)3/2
exp (−a2

σ/2)

×
∫ ∞

−∞

∫ ∞

−∞
dζX dζY exp(−ζY L2)

× exp(−ζXA − 1

2
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3
X)

]

. (B1)

Evaluating the Gaussian integrals in this formula we ob-
tain Eq. (32), where the coefficients Γnm(ϕ) are given
by

Γ20(ϕ) = −2A

B1
sinϕ +

B2

B1

[

1 +
A2

B1

]

cosϕ

+
2AC

B2
1

[

3 +
A2

B1

]

cosϕ,

Γ02(ϕ) = 2
µ2

a2
cosϕ

(

B2

2
+

AC

B1

)

,

Γ30(ϕ) = sinϕ

(

1

B1
+

A2

B2
1

)

− B2 cosϕ

(

3A

B2
1

+
A3

B3
1

)

− 2C cosϕ

(

3

B2
1

+
6A2

B3
1

+
A4

B4
1

)

,

Γ12(ϕ) = 2
µ2

a2

{

sin ϕ − B2 cosϕ
A

B1

− 2C cosϕ

(

1

B1
+

A2

B2
1

)}

,

Γ40(ϕ) =

{

4 sinϕ

(−3A

B2
1

− A3

B3
1

)

+ B2 cosϕ

(

3

B2
1

+
6A2

B3
1

+
A4

B4
1

)

+ 2C cosϕ

(

15A

B3
1

+
10A3

B4
1

+
A5

B5
1

)}

.

Γ22(ϕ) = 2
µ2

a2

{

−2 sinϕ
A

B1
+ B2 cosϕ

(

1

B1
+

A2

B2
1

)

+ 2C cosϕ

(

3A

B2
1

+
A3

B3
1

)}

.

Γ04(ϕ) = 3
µ4

a4

{

B2 cosϕ + 2C cosϕ
A

B1

}

. (B2)

Taking into account Eqs. (33a), (33b) relating the local
(ϕ) and the global (θ) angles of incidence through the sur-
face slopes ∂xh, ∂yh, a small slope approximation leads
to
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eA2/2B1 ≃ ea4

σs2/2f

{

1 +
a4

σ

2f

[

a2
µ

f
s(∂xh) +

a2
µ

f
c2(∂yh)2

+
a2

µ

f2
(∂xh)2

(

a2
µc2(1 + 2s2) − a2

σs2(1 + 2c2)

+
a4

σa2
µ

f
s2c2

)]}

,

B
−1/2
1 ≃ 1√

f

{

1 −
a2

σ − a2
µ

f
sc(∂xh)

+
a2

σ − a2
µ

2f2
(∂xh)2

(

a2
σs2(1 + c2)

− a2
µc2(1 + s2)

)

−
a2

σ − a2
µ

2f
c2(∂yh)2

}

. (B3)

Also, we have

Γ20(θ) = Γ
(0)
20 (θ) + Γ

(1)
20 (θ)(∂xh),

Γ02(θ) = Γ
(0)
02 (θ) + Γ

(1)
02 (θ)(∂xh),

Γ
(0)
20 (θ) =

a2
σ

2f3

{

−2a6
σs4c2 + 2a4

σs4(s2 − 2c2)

+ a4
σa2

µs2c2(s2 − c2) + a2
σa2

µ

× s2c2(7s2 − 5c2) + a4
µc4(5s2 − c2)

}

,

Γ
(1)
20 (θ) =

a2
σsc

f4

{

−2a6
σs4 − a6

µc4 + a6
σa2

µ

× (s2 + s2c2) − a4
σa4

µ(c2 + c2s2)

+ a4
σa2

µ(5s2 − 3s2c2) + 4a2
σa4

µc2
}

,

Γ
(0)
02 (θ) = −c2a2

σ

2f
,

Γ
(1)
02 (θ) =

a4
σcs

f2
. (B4)

In the above expressions we used the notations

aσ ≡ a

σ
, aµ ≡ a

µ
, s ≡ sin θ,

c ≡ cos θ, f ≡ a2
σs2 + a2

µc2. (B5)

APPENDIX C:

Equations (34a)-(34b) relating the incidence angle as
measured in the local and laboratory reference frames ap-
ply only in the off-normal incidence case (θ 6= 0). In the
following we derive the correct expressions for the normal
incidence case (θ = 0). Indeed, if θ = 0, the vectors n̂
and m̂ shown in Fig. 3 are given by

n̂ =
(−∂xh,−∂yh, 1)√

g
, m̂ = (0, 0, 1). (C1)

Proceeding now as in (33a)-(33b), we obtain

cosϕ =
1√
g
, sinϕ =

√

(∂xh)2 + (∂yh)2

g
, (C2)

which are the θ → 0 limit of Eqs. (33a) and (33b). The
small gradient expansion performed on Eq. (C2) now
gives

cosϕ ≃ 1 − 1

2
((∂xh)2 + (∂yh)2),

sin ϕ ≃
√

(∂xh)2 + (∂yh)2. (C3)

Using Eqs. (C3) in the expansions leading to Eq. (40), it
can be seen that the expressions obtained for the coeffi-
cients indeed are the θ → 0 limit of Eqs. (41)-(55).

APPENDIX D:

The solution corresponding to a rotated ripple struc-
ture follows from Eq. (83). Indeed, in the absence of the
ξx and ξy terms, if we consider a solution of (83) of the
form h(x, y, t) = g(x − vy, t) with v an arbitrary con-
stant, the surface morphology evolution equation takes
the form

∂tg = −v0 + γ∂lg + (νx + v2νy)∂2
l g

+
1

2
(λx + v2λy)(∂lg)2 + (Ω1 + v2Ω2)∂

3
l g

−K(1 + v2)2∂4
l g, (D1)

where g(l) = g(x− vy) is the steady wave solution [104].
From (D1) it follows that the nonlinearity vanishes when

λx + v2λy = 0, or v =
√

−λx/λy. In this case we ob-
tain an exponentially growing ripple structure with rip-
ples forming an angle θc = tan−1(v) = tan−1(

√

−λx/λy)
with respect to the x axis.
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