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AB S TRACT

We discuss the morphology, photometry and kinematics of the bars which have formed in

three N-body simulations. These have initially the same disc and the same halo-to-disc mass

ratio, but their haloes have very different central concentrations. The third model includes a

bulge. The bar in the model with the centrally concentrated halo (model MH) is much

stronger, longer and thinner than the bar in the model with the less centrally concentrated halo

(model MD). Its shape, when viewed side-on, evolves from boxy to peanut and then to ‘X’-

shaped, as opposed to that of model MD, which stays boxy. The projected density profiles

obtained from cuts along the bar major axis, for both the face-on and the edge-on views, show

a flat part, as opposed to those of model MD which are falling rapidly. A Fourier analysis of

the face-on density distribution of model MH shows very largem ¼ 2, 4, 6 and 8 components.

Contrary to this, for model MD the components m ¼ 6 and 8 are negligible. The velocity field

of model MH shows strong deviations from axial symmetry, and in particular has wavy

isovelocities near the end of the bar when viewed along the bar minor axis. When viewed

edge-on, it shows cylindrical rotation, which the MD model does not. The properties of the

bar of the model with a bulge and a non-centrally concentrated halo (MDB) are intermediate

between those of the bars of the other two models. All three models exhibit a lot of inflow of

the disc material during their evolution, so that by the end of the simulations the disc

dominates over the halo in the inner parts, even for model MH, for which the halo and disc

contributions were initially comparable in that region.

Key words:methods: numerical – galaxies: kinematics and dynamics – galaxies: photometry

– galaxies: structure.

1 INTRODUCTION

A bar is an elongated concentration of matter in the central parts of

a disc galaxy. Within this loose and somewhat vague definition fit a

number of very different objects. Thus, different bars have very

different masses, axial ratios, shapes, mass and colour distri-

butions. They can also have widely different kinematics. Several

observational studies have been devoted to the structural properties

of bars and/or to their morphology, photometry and kinematics,

thus providing valuable information on these objects and on their

properties.

Many N-body simulations of the evolution of disc galaxies have

witnessed the formation of bars. Most studies have focused on

understanding what favours or hinders bar formation. Not much

work, however, has been done on the ‘observable’ properties of

N-body bars. This is quite unfortunate because such studies are

necessary for the comparison of real and numerical bars. In fact,

several observational studies have taken an N-body simulation

available in the literature and have analysed it in a way similar to

that used for the observations in order to make comparisons (e.g.

Kormendy 1983; Ohta, Hamabe & Wakamatsu 1990; Lütticke,

Dettmar & Pohlen 2000). Although this is very useful, it suffers

from lack of generality, as the specific simulation may not be

appropriate for the observational question at hand, and as it does

not give a sufficient overview of the alternative properties N-body

bars can have. Here wewill approach the comparisons between real

and N-body bars from the simulation side, giving as wide a range of

alternatives as possible, while making an analysis as near as

possible to that used by observers. We hope that in this way our

work will be of use to future observational studies and will provide

results for detailed comparisons.

An obvious problem when comparing N-body bars to real bars is

that simulations trace mass, while observations give information on

the distribution of light. The usual way to overcome this hurdle is

to assume a constant M/L ratio. This assumption should be

adequate for the inner parts of galaxies (e.g. Kent 1986; Peletier &PE-mail: lia@paxi.cnrs-mrs.fr
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Balcells 1996), particularly early types that have relatively little

star formation, and in the near-infrared wavelengths, where the

absorption from dust is least pronounced.

By their nature, real bars can be observed in only a much more

limited way than N-body bars. Galaxies are projected on the plane

of the sky and their deprojection is not unambiguous, particularly

for barred galaxies, which are the object of the present study. This

problem of course does not exist for simulations, which we

furthermore can ‘observe’ from any angle we wish. It is thus

possible to ‘observe’ the same snapshot both face-on and edge-on.

This is of course impossible to do for real galaxies and has led to a

number of complications, e.g. regarding the nature of peanuts and

the 3D structure of bars. A second limitation is that in observations

light is integrated along the line of sight and one cannot observe the

various components separately, as in N-body bars. Finally, the

biggest limitation comes from the fact that there is no direct way to

observe dark matter, while in N-body simulations the halo can be

analysed as any other component of the galaxy. All these

limitations lead to complications in the comparisons, but are also

one of the reasons as to why the observations of N-body bars are

most useful. We can observe our bars both in the restricted manner

that real galaxies allow and in the more detailed manner accessible

to simulations and, by comparing the two, derive the signatures of

the latter in the former. This can help us obtain information on

properties of real bars which are not directly observable.

In this paper we will discuss at length the observable properties

of three simulations. In Section 2 we present the simulations and

their initial conditions. In Section 3 we present the basic properties

of our three fiducial models and in Section 4 we present the shape

and the axial ratio of the isodensities in the bar region. Projected

density profiles with the disc seen face-on and edge-on are

presented in Sections 5 and 6, respectively. In Section 7 we present

the Fourier components of the mass distribution seen face-on, in

Section 8 we compare various ways of measuring the bar length,

and in Section 9 we quantify the peanut shape. Kinematics are

presented in Sections 10 and 11 and the shape of the bulge is

discussed in Section 12. We summarize in Section 13. In a

companion paper (Athanassoula, in preparation, hereafter Paper II)

will present more simulations, compare them to observations and

discuss implications about the distribution of the dark matter in

barred galaxies.

In this paper and its companion we will willingly refrain from

discussing resonances, their location and their effect on the

evolution of the bar. This discussion necessarily implies the

knowledge of the pattern speed of the bar, which is not directly

available from observations. Together with the discussions relying

on dynamics and/or some knowledge of the orbital structure, issues

implying resonances will be left for a future paper.

2 S IMULATIONS

We have made a large number of simulations of bar-unstable discs,

three of which we will discuss in this paper. Each is characteristic

of a class of models, other members of which will be discussed in

Paper II.

In order to prepare the initial conditions we basically followed

the method of Hernquist (1993), to which we brought a few

improvements, described in Appendix A.

The density distribution of the disc is given by

rdðR; zÞ ¼
Md

4ph 2z0
expð2R/hÞ sec h 2 z

z0

� �

; ð1Þ

that of the bulge by

rbðrÞ ¼
Mb

2pa 2

1

rð1þ r/aÞ3 ; ð2Þ

and that of the halo by

rhðrÞ ¼
Mh

2p3=2

a

rc

expð2r 2/r2cÞ
r 2 þ g 2

: ð3Þ

In the above, r is the radius, R is the cylindrical radius,Md,Mb and

Mh are the masses of the disc, bulge and halo respectively, h is the

disc radial scalelength, z0 is the vertical scale thickness of the disc,

a is the scalelength of the bulge, and g and rc are scalelengths of the

halo. The parameter a in the halo density equation is a

normalization constant defined by

a ¼ {12
ffiffiffiffi

p
p

expðq 2Þ½12 erfðqÞ�}21
; ð4Þ

where q ¼ g/rc (cf. Hernquist 1993). In all simulations we have

taken Md ¼ 1, h ¼ 1 and have represented the disc with 200 000

particles. The halo mass, calculated to infinity, is taken equal to 5,

and rc is always taken equal to 10. The halo mass distribution is

truncated at 15. The disc distribution is cut vertically at zcut ¼ 3z0
and radially at half the halo truncation radius, i.e. Rcut ¼ 7:5. The

velocity distributions are as described by Hernquist (1993) and in

Appendix A.

The first two fiducial models that we will discuss at length here

have very different central concentrations. For the first one we have

taken g ¼ 0:5, so that the halo is centrally concentrated and in the

inner parts has a contribution somewhat larger than that of the disc.

As the mass of the disc particles is the same as that of the halo

particles, the number of particles in the halo is set by the mass of

the halo within the truncation radius (in this case, roughly 4.8) and

in this simulation is roughly equal to 963 030. We will hereafter

call this model the ‘massive halo’ model, or, for short, MH. For the

second model we have taken g ¼ 5, so that the disc dominates in

the inner parts. The halo is represented by 931 206 particles. We

will hereafter call this model the ‘massive disc’ model, or, for

short, MD. Both the MH and MDmodels have no bulge. In order to

examine the effect of the bulge, we will consider a third fiducial

model, which is similar to MD but has a bulge of mass Mb ¼ 0:6

and of scalelength a ¼ 0:4. We will hereafter refer to this model as

the ‘massive disc with bulge’, or, for short, MDB. In the three

fiducial simulations we adopted a disc thickness of z0 ¼ 0:2 and

Q ¼ 0:9. Their circular velocity curves are shown in Fig. 1,

together with the contribution of each component separately. For

model MDB we also show the total contribution from the two

spherical components. The halo and disc contributions in the inner

parts are comparable in the case of model MH, while the disc

dominates in model MD. For model MDB, as one moves from the

centre outwards one has first a bulge-dominated part, then a disc-

dominated part and finally a halo-dominated part. Thus its

evolution could in principle be different from both that of the MH

and that of the MD models. All three cases have a flat rotation

curve, at least within a radius of five disc scalelengths. If we

consider larger radii, say up to 15 disc scalelengths, then the

rotation curves for models MD and MDB are still flat, whereas that

of model MH decreases, because its halo is centrally concentrated.

By adding an extra extended halo component, we can keep the

rotation curve flat up to such distances. This, however, more than

doubles the total mass of the system and raises the number of

particles accordingly, to a number which was beyond our CPU

capacities, particularly because of the large number of MH-type
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simulations described in this and the companion paper. We thus ran

a simulation with particles of double the mass, and therefore half

the number. This allowed us to check that the introduction of this

extended halo does not change qualitatively the results of the

morphology, photometry and kinematics of the bar. Having

established this, and because this simulation has only 100 000

particles in the disc, so that the noise is higher and the quantities

describing the bar which are discussed here less well defined, we

will present in this paper the results of the simulation without the

more extended halo component.

These three simulations are part of a bigger ensemble, covering a

large fraction of the available parameter space. In this paper we

will discuss only these three, which are each characteristic of a

certain type of simulation. By limiting ourselves to three

simulations, we will be able to make a very thorough analysis of

each case. In Paper II we will discuss more simulations in order to

assess how certain parameters, such as Q or the thickness of the

disc, influence the main results presented here.

The simulations were carried out on a Marseille Observatory

GRAPE-5 system consisting of two GRAPE-5 cards (Kawai et al.

2000) coupled via a PCI interface (Kawai et al. 1997) to a Compaq

DS 20 or an XP-1000. We used a GRAPE treecode similar to that

initially built for the GRAPE-3 system (see e.g. Athanassoula et al.

1998). For simulation MH we used an opening angle of 0.7, while

for simulations MD and MDB we used an opening angle of 0.6.

With the XP-1000 front end, one time-step for 106 particles takes

roughly 15 s for u ¼ 0:6 and less than 12 s for u ¼ 0:7. We used a

softening of 0.0625 and a time-step of 0.015 625. This gave us an

energy conservation better than or of the order of one part in a

thousand over the entire simulations, which were terminated after

t ¼ 900, i.e. after 57 600 time-steps. Full information on all the

particles in the simulation is kept every 20 time units, while

information on the total potential and kinetic energy and on the

centre of mass of the system is saved every 8 time-steps, i.e. every

0.125 time units. We calculate on line (Athanassoula et al. 1998)

the amplitude and the phase of the m ¼ 2 and 4 Fourier

components of the mass every 0.5 time units. We also produce GIF

files of the face-on and edge-on distributions of the disc particles

every 0.5 time units which, when viewed consecutively as a movie

with the help of the XANIM software, give a good global view of the

evolution.

In this paper, unless otherwise noted, all quantities are given in

computer units scaled so that the scalelength of the disc is unity, the

total mass of the disc equal to 1 and G ¼ 1. It is easy to convert

them to standard astronomical units by assigning a mass and a

scalelength to the disc. Thus, if the mass of the disc is taken to be

equal to 5 £ 1010 M( and its scalelength equal to 3.5 kpc, we find

that the unit of mass is 5 £ 1010 M(, the unit of length is 3.5 kpc,

the unit of velocity is 248 km s21 and the unit of time is

1:4 £ 107 yr. Thus time 500 corresponds to 7 £ 109 yr and time 800

to 1:1 £ 1010 yr. This calibration, however, is not unique. Adopting

different values for the disc scalelength and mass would have led to

alternative calibrations.

3 TWO TYPES OF N - BODY BARS

Figs 2 and 3 give some basic information on the three fiducial

simulations at times 600 and 800 respectively. The upper panels

give the total circular velocity curves, together with the contri-

bution of each component separately. In all three cases the disc

material has moved inwards as a result of the evolution and the

configurations become much more centrally concentrated. As a

result, the circular velocity curve of model MH rises much faster

than initially and after the rising part stays roughly constant. Also

the centre-most part is disc dominated, contrary to what was the

case at the start of the simulation. The circular velocity curves of

models MD and MDB develop a peak near the centre, also due to

the increased central concentration of the disc material. In model

MD all the central part is disc-dominated, as it was at the start of

the simulation. On the other hand, for model MDB there is no

region which is disc-dominated because of the joint effect of the

halo and bulge. There is not much difference between the circular

velocity curves at times 600 and 800.

Observed face-on1 (second and fifth rows in Figs 2 and 3) the

disc particle distributions are quite different in the three fiducial

cases. The bar in the MH model is longer and thinner than the bar

in model MD. At time t ¼ 600 it has ‘ansae’ at the extremities of

the bar, similar to those observed in early type barred galaxies.

These structures do not exist at time 800. The bar in model MD is

rather short and fat, while the bar in model MDB is intermediate

both in length and shape of the bars of models MD and MH, but

nearer to that of MH.

Model MH has a ring, which observers would call an inner ring

as it surrounds the bar and its radius is roughly equal to the semi-

major axis of the bar. It shows up clearer in the dot-plots of the fifth

row than in the isodensity plots of the second row. It can be

discerned in the isodensity plots at time 800, but not at time 600,

because of the fact that the region between the ring and the bar has

a much lower projected surface density at the later time. Such a

ring does not exist in the MD model. For model MDB it shows as a

broad diffuse structure. In model MH the ring has a density

enhancement near the ends of the bar both at times 600 and 800,

Figure 1. Circular velocity curves of our three fiducial models at the beginning of the simulation. The dashed, dotted and dash-dotted lines give the

contributions of the disc, halo and bulge respectively, while the thick full lines give the total circular velocity curves. For simulation MDBwe also give the total

contribution from the two spherical components with a thin solid line. The left-hand panel corresponds to simulation MH, the middle one to simulationMD and

the right-hand one to simulation MDB. The simulation name is given in the upper left-hand corner and the time in the upper right-hand corner of each panel.

1Unless otherwise noted, in this paper we adopt a coordinate system such

that the x and y axes lie on the equatorial plane, the y axis being along the

bar major axis.
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which is slightly stronger towards the leading side. In fact, rings

have not been witnessed before now in purely stellar N-body

simulations, with the notable exception of the fiducial simulation

of Debattista & Sellwood (2000). It is worth noting that both in

their simulation and in our MH model the maximum of the halo

rotation curve is near the centre of the galaxy.

We use the methods described in Appendix B to determine the

parameters of the ring. Applying the local (global) method to

model MH at time t ¼ 600, we find that the ring has a radius of 3.0

(3.2) and an axial ratio b/a of 0.7 (0.8). It is very thick – the width

of the fitting Gaussian (cf. Appendix B) being of the order of 1.8

(1.4) –, it is aligned parallel to the bar major axis and its mass is 31

(28) per cent of the total disc mass. For time t ¼ 800 we find that

the radius is 3.6 (3.7) and the axial ratio 0.8 (0.9). The width of the

Figure 2. Basic information on the three fiducial simulations at time t ¼ 600. Left-hand panels correspond to simulation MH, middle panels to simulation MD

and right-hand panels to simulation MDB. The upper panels give the circular velocity curve. The dashed, dotted and dash-dotted lines give the contributions of

the disc, halo and bulge, respectively, while the thick full lines give the total circular velocity curves. For simulation MDB we also give the total contribution

from the two spherical components (thin solid line). The second row of panels gives the isocontours of the density of the disc particles projected face-on, and

the third and fourth rows the side-on and end-on edge-on views, respectively. The fifth row of panels gives the dot-plots of the particles in the (x, y) plane. The

side of the box for the face-on views is 10 units, and the height of the box for the edge-on views is 3.33 units.
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fitting Gaussian is 1.4 (1.3), it is aligned parallel to the major axis

of the bar and its mass is 20 (20) per cent of the total disc mass.

This shows that the ring has become less eccentric and that its

diameter has increased with time. The results from the two

methods agree well, but they both overestimate the mass of the

ring, because they consider the total mass under the fitted Gaussian,

so that the wings of the Gaussian contribute substantially. Had we

truncated the Gaussian we would have obtained a considerably

lower value. Because, however, we do not know where to truncate

it, we leave it as it is, and let the reader obtain the mass after

truncation from the values of the parameters we give above.

Model MDB also shows a ring. At times 600 its radius is 3.1

(3.2) and its axial ratio is 0.9 (0.9). It is even broader than the

ring in model MH – the width of the Gaussian being of the

order of 2.1 (1.9) – and thus we can not give a reliable estimate

of its mass, as argued in Appendix B. At times 800 its radius is

3.6 (3.6) and its shape is near-circular. Again we note that the

size of the ring has increased with time and that its shape has

become more circular. Again there is good agreement between the

two methods.

The edge-on projections of the disc density (given by

isodensities in the third and fourth rows in Figs 2 and 3) are also

Figure 3. Same as for Fig. 2, but for time t ¼ 800.
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widely different in the three fiducial cases. In the side-on2 view,

model MD has a boxy outline. On the other hand model MH is

peanut-like at time 600 and is ‘X’-shaped at time 800. Model MDB

has the form of a peanut. Seen end-on, models MH and MDB show

a central structure of considerable size, which could well be

mistaken for a bulge. This is particularly strong for model MH at

time 800. At that time we also see the signature of the ring on the

side-on view, as closing isodensities on either side of the central

area.

4 THE AXIAL RATIO AND SHAPE OF THE

ISODENSIT IES IN THE BAR REGION:

FACE-ON VIEW

In order to measure the axial ratio and shape of the bar isodensities

seen face-on we project all disc particles on the (x, y) plane on

which we superpose a 200 £ 200 Cartesian grid covering a square

of length (216, 16). The density at the centre of each cell is

calculated by counting the number of particles in the cell and

dividing by its area. The density at intermediate points is calculated

using bilinear interpolation. We then fit generalized ellipses to the

isodensities. The equation of the generalized ellipse, initially

introduced by Athanassoula et al. (1990), is

ðjxj/aÞc þ ðjyj/bÞc ¼ 1; ð5Þ
where a and b are the semi-major and semi-minor axes

respectively, and c is a parameter describing the shape of the

generalized ellipse. For c ¼ 2 we obtain a standard ellipse, for

c , 2 a lozenge, while for c . 2 the shape approaches a rectangle,

and will, for simplicity, be called hereafter rectangular-like.

Athanassoula et al. (1990) have used generalized ellipses to

quantify the shape of the isophotes of strongly barred early-type

galaxies and we will use them here to describe the shape of our

N-body bars. Unfortunately the comparison between the two is not

as straightforward as it sounds. All galaxies in the Athanassoula

et al. sample have a sizeable bulge, so that it was not possible to get

information on the isophotes of the inner parts of the bar. Because

isophotes are determined both by the light of the bulge and that of

the bar, it was necessary to blank out the inner parts of the galaxy,

where the bulge light dominates. In a few cases there were also

small spiral features starting off from the end of the bar, and these

also had to be blanked out. As the sample was relatively small it

was possible to determine interactively the areas to be blanked out,

separately in each frame.

Models MH and MD have no bulge, so it is possible to continue

the fits much further in than in the case of early-type barred

galaxies. (It is nevertheless recommended to exclude the innermost

few pixels, where the shape of the pixel may influence the shape of

the isophote). Comparisons with observations, however, will not

extend all the way to the centre. Model MDB has a sizeable bulge,

but we fitted the generalized ellipses to the disc component only.

We did this in order to be able to discuss the effect of the bulge on

the real shape of the bar, rather than the shape of the disc and bulge

components combined. This is trivial to do in the case of models,

but of course impossible for real galaxies. We will discuss at the

end of this Section how the existence of the bulge obscures the

issue when the generalized ellipses are fitted to both components,

as is the case in real galaxies.

For every simulation and for every time-step for which full

information on the particle positions is available – i.e. 45 time-

steps per simulation – we fitted generalized ellipses to 70

isodensities covering the density range in the disc. We repeated the

exercise twice, once generously excluding a central region, and the

other excluding only a very small central region. For reasons of

homogeneity, and considering the very large number of frames to

be treated, we determined the area to be blanked out automatically

and not interactively. For this we first took the difference of the

projected density along the minor and major axes of the bar and

calculated the radius at which this is maximum. In the first passage

we excluded all the region within this radius, and in the second the

region within one tenth of this radius. We made several tests with

other blanking radii and thus asserted that our results are not

dependent on this radius. Because the blanking out was done

automatically we did not blank out the spirals coming from the

ends of the bar. This presents problems in the early steps of the

simulations, where the spirals are important and therefore influence

wrongly the fits. In the later stages though, no such spirals are

present, and the fits pertain to the bar only.

For model MD the generalized ellipses fit the isodensities very

well all the way to the centre, and thus the results obtained with the

generous and those obtained with the limited blanking agree very

well in the region where both give information. This is true also for

most of the MDB and a large fraction of the MH cases. For some

MH cases, however, the b/a values obtained with the two fits are in

good agreement, but the c values are not. The reason is that the

generalized ellipse is too simple a shape to fit properly the

isophotes which have ansae or rectangular-like tips of the bar. In

fact, for those cases, the shape enclosed by the isodensities is fatter

around the major axis than what the generalized ellipse will allow.

Thus the c value obtained by such a fit is not meaningful if the

central parts have not been blanked out. This shortcoming was not

clear for real galaxies, as there the inner parts are bulge dominated

and thus were blanked out.

The upper panels of Fig. 4 show the ellipticity, 12 b/a, as a

function of semi-major axis a for our three fiducial models. For

model MD we present the average of the five times in the time

interval [780, 860] for which we have full information on all the

particle positions. This was done in order to get a better signal-to-

nose ratio, and was possible because the axial ratio does not show

any clear evolution with time. This is not the case for models MH

and MDB, where evolution is present, and we cannot make

averages without losing information. These curves establish

quantitatively the general impression we had already from Figs 2

and 3, namely that the bar in model MH is much thinner than that

in model MD, the one in MDB being intermediate. Indeed the

ð12 b/aÞmax is 0.75, 0.44 and 0.69 respectively for models MH,

MD and MDB. The run of the ellipticity with radius is also

different in the three cases. For model MD the 12 b/a rises to a

maximum, occurring around a ¼ 1:9, and then drops again. In

many cases the drop after the maximum is more gradual than that

shown in the figure. This means that the isodensities are nearer to

circular in the innermost and outermost parts of the bar and are

more elongated in the intermediate region. For models MH and

MDB the ellipticity curve is quite flat, meaning that the bar is thin

even in the inner and outermost parts. After this flat region there is

a very steep drop to a near-circular value. The value of a at which

this drop occurs increases noticeably with time, so that making

time averages would have smoothed out this feature considerably.

Right after the steep drop there is a region with very low values of

ellipticity, after which the ellipticity rises again, albeit to a lower

2We call the edge-on view for which the line of sight is along the minor axis

of the bar the side-on view. Similarly we call the edge-on view where the

line of sight is along the major axis of the bar the end-on view.
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value. This intermediate low-ellipticity region corresponds to the

near-circular isophotes in the ring region, while the disc outside it

has more elongated isophotes, their orientation being perpendicu-

lar to the bar, as expected. The disc of models MD and MDB

outside the bar region has less elongated isophotes.

The lower panels of Fig. 4 give, for our three fiducial models, the

shape parameter c as a function of the semi-major axis a. This is

less well determined than the axial ratio. One reason is that the

value of c is much more sensitive to noise than the axial ratio, and

our isodensities have significant noise as we have ‘only’ 200 000

particles in the disc. A second reason, as argued above, is that in

cases where the shape of the isodensity is not well described by a

generalized ellipse, the parameter c is more prone to error than the

axial ratio b/a. Although individual profiles can show a number of

spurious jumps, due mainly to noise, it is nevertheless possible to

see that there are considerable differences between the three

fiducial models. The form of this curve for model MD does not

evolve with time, so we give here, as in the upper panel, the average

of the five times in the time-range [780, 860], in order to increase

the signal-to-noise ratio. We note that the value of c increases from

a value of around 2 in the centre-most parts to a value of around 3

for a ¼ 3:3, and then drops again to a value near 2. This means that

the isophotes are well fitted by ellipses in the centre-most and outer

parts of the bar, with a region in between with somewhat

rectangular-like isophotes. The deviations from the elliptical

shape, however, are never very pronounced. The shape of the c

profile for model MH is very different. It has a sharp peak in the

outer parts of the bar, after which the value of c drops abruptly. The

maximum value is very high, around 5, but the region in which

high values are seen is rather narrow. The value of a at which the c

value drops sharply increases considerably with time, and for this

reason we have not taken time averages, but present in Fig. 4 only

the values for t ¼ 900. For model MDB the fits to generalized

ellipses can extend to the innermost regions. Starting from the

innermost parts we find first an extended region where c drops from

over 3 to roughly 2, and then a very sharp peak of c ¼ 8:1 at a

radius of 3.9. The drop after the maximum is very steep. For model

MDB, as for model MH, the value of a at which the maximum

occurs increases with time.

We repeated the exercise for model MDB, this time keeping both

the disc and the bulge particles, in order to see what effect the

inclusion of the bulge would have on the results. We find that the

shape parameter c has considerably smaller values, in fact in

between 2 and 3. The ellipticity also drops, by roughly of the order

of 0.1. Of course this value will depend on the density profile of

the bulge, but the general trend should always be that including the

bulge will make the isophotes nearer to ellipses and less eccentric.

The isophotes in the outermost disc region are also of interest, as

they are often used by observers to deproject a galaxy, with the

assumption that they are circular. In order to check whether this is a

reasonable hypothesis, we fitted ellipses to the outermost parts of

the disc of our three fiducial models. We find that the deviations of

the ellipticity from unity – i.e. of the isodensities from circularity

– are less than 0.1 in the outermost parts. For model MH the slight

elongation is perpendicular to the bar major axis, while for models

MD and MDB it is along it. This may mean that for the latter two

we are outside the outer Lindblad resonance, and for the former we

are not. We will discuss this further in a future paper, after we have

introduced the measurements of the pattern speed. Independent of

the orientation of the outermost ellipses, their ellipticity is very

near unity. Our fiducial models thus argue that it is reasonable to

use the outermost disc isophotes to deproject an observed barred

galaxy.

5 DENSITY PROFILES ALONG THE MAJOR

AND MINOR AXES OF BARS SEEN FACE-ON

Fig. 5 shows the projected density profiles along the minor and

major axes of the bar of our three fiducial simulations at time

t ¼ 700. We note that the three sets of profiles differ significantly.

For MDmodels the bar has a fast decreasing profile along its major

axis, with a slope that is steeper than that of the outer disc. The

Figure 4. The upper panels show the run of the ellipticity 12 b/a as a function of the semi-major axis a. The lower panels show the run of the shape parameter

c, also as a function of a. The left-hand panels corresponds to model MH, the middle ones to model MD and the right-hand ones to model MDB. For reasons

explained in the text we show for models MH andMDB the results at a given time, namely t ¼ 900, while for model MD we give the average of a time interval,

namely [780, 860]. The dispersion during that time is indicated by the error bars. The simulation name is given in the upper left-hand corner and the times in the

upper right-hand corner of the upper panels.
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MDB major axis profile resembles that of MD. On the other hand,

for MH models the profile has a flat part followed by a relatively

abrupt drop at the end of the bar region. MD bar profiles stay of the

same shape all through the simulation, while the shape of MH

profiles shows some evolution; their flatness shows clearest

between times 540 and 740.

Model MH also shows a considerable density concentration in

the innermost parts, well above the flat part. If such an

enhancement was present in observations it would be attributed

to a bulge component, and this would have been wrong because we

know that this simulation does not have a bulge. It is just an

important central concentration of the disc component. It can also

be present in models MD and MDB. As, however, the bar has an

exponential-like profile, it is not easy to disentangle the

contribution of this component from that of the remaining bar. In

this respect it is worth noting that the central projected surface

density has roughly the same value for the three models.

The minor axis profiles of MD and MH models fall at

considerably different rates. This, however, is not a new finding. It

is just a result of the fact that the MH bars are considerably thinner

than the bars of type MD. In fact from the major and minor axis

cuts alone one can get an estimate of the axial ratio of the bar at

different isophotal levels, simply by drawing horizontal lines at

given isophotal levels on plots like those of Fig. 5 and measuring

the radii at which the two profiles reach the given isophotal level.

6 DENSITY PROFILES OF BARS SEEN

EDGE-ON

Let us now observe our three fiducial models edge-on with the bar

seen side-on, i.e. with the line of sight perpendicular to the major

axis of the bar. Fig. 6 shows the projected density along cuts

parallel to the major axis made at equidistant z values differing by

Dz ¼ 0:2. Again we note clear differences between the three

models. For cuts which are offset from the equatorial plane of the

galaxy, model MH shows a clear minimum at the centre, followed

on either side by a maximum, followed by a steep drop. This is the

direct signature of the peanut, which is due to the minimum

thickness in the centre, followed by two maxima on either side.

This is very clear in the three cuts which correspond to the highest z

displacements, i.e. for z between 1.0 and 1.4. For models MD and

MDB, the peanut signature is much less pronounced. The profiles

have, if any, a very shallow minimum at the centre followed by a

maximum nearer to the centre than in model MH, visible in a rather

restricted range of z displacements.

Another clear distinction between the MH and MDmodels is the

form of the profile at z ¼ 0. For model MH it shows clear ledges on

either side of the peak, while there are no corresponding structures

on the MD and MDB profiles. Thus for model MH at time 500 the

ledge at z ¼ 0 ends roughly at 2.9. These ledges can be found also

on cuts somewhat displaced from z ¼ 0, but disappear after the

displacement has become too large, in this case jzj of the order

of 0.4. Similar values are found for time 800. The ratio of the

maximum distance to which the ledge on the z ¼ 0 cut extends to

the radius of the very steep drop found on cuts offset from z ¼ 0 is

roughly 1.5.

The peak in the centre is due to material that has accumulated in

the central regions of the galaxy and is the edge-on analogue of the

corresponding density enhancement seen in the face-on profiles.

This peak can be seen only on profiles near z ¼ 0, and disappears

once the displacement from the equatorial plane becomes

sufficiently large, i.e. jzj . 0:8.

Figure 5. Projected density profiles along the bar major and minor axes (solid lines) and azimuthally averaged (dashed lines). The disc is seen face-on. The left-

hand panel corresponds to model MH, the middle one to model MD and the right-hand one to model MDB. The simulation name is given in the upper left-hand

corner and the time in the upper right-hand corner of each panel.

Figure 6. Projected surface density along cuts which are parallel to the major axis (the bar is seen side-on) at equidistant z values differing by Dz ¼ 0:2. The

uppermost curve corresponds to a cut at z ¼ 0 and the lower-most one to a cut at z ¼ 1:4. The left-hand panel corresponds to model MH, the middle one to

model MD and the right-hand one to model MDB, all taken at time 600. The simulation name is given in the upper left-hand corner and the time in the upper

right-hand corner of each panel.
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7 FOURIER COMPONENTS OF THE FACE-ON

DENSITY DISTRIBUTION

Fig. 7 shows the relative amplitude of the m ¼ 2, 4, 6 and 8

components of the mass or density for our three fiducial cases. To

calculate them we first projected the disc particles on the (x, y)

plane and then obtained the Fourier components

AmðrÞ ¼
1

p

ð2p

0

Sðr; uÞ cosðmuÞ du; m ¼ 0; 1; 2; . . . ð6Þ

and

BmðrÞ ¼
1

p

ð2p

0

Sðr; uÞ sinðmuÞ du; m ¼ 1; 2; . . . ð7Þ

by dividing the surface into annuli of equal width Dr ¼ 0:14 and

calculating the Am and Bm for each annulus. In practice, instead of

the surface density S(r,u ) we use the mass, but this comes to the

same result because we will be using only the ratios of the

amplitudes
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2
m þ B2

m

p
/A0.

The maximum amplitude of the m ¼ 2 component is biggest in

the MH and smallest in the MD model, reflecting the fact that the

bar in the MH model is the strongest and that in the MD model is

the weakest of the three. Also in model MH the maximum occurs at

a larger radius than in MD, and in general the region where this

component is large extends to larger radii. This reflects the fact

that, as seen in Section 3, the bar in model MH is the longest and

that in MD the shortest of the three. The most striking difference,

however, between the three models concerns the higher-order

terms. Thus for the MD and MDB the m ¼ 6 and m ¼ 8

components basically stay within the noise, while in the MHmodel

they are 44 and 27 per cent of the m ¼ 2, respectively. The relative

importance of m ¼ 4 is also very different. It is 68, 34 and 55 per

cent of the m ¼ 2, respectively, in models MH, MD and MDB.

At time 500, the form of the curves is roughly the same as at 800.

There is, however, a growth of the relative amplitude with time,

which is quite strong for simulations MH, and exists also for MDB.

Thus the maximum relative amplitude at time 500 is 0.56, 0.32 and

0.52 for models MH, MD and MDB, respectively. Also the

locations of the maxima of simulations MH andMDBmove further

out with time. At time 500 they are at R ¼ 1:4, 1.4 and 1.2,

respectively, for the three models. Finally, the secondary maximum

occurring in simulation MH at larger radii – R somewhat less

than 4 – is very pronounced at time 500 and is located at a smaller

radius.

8 LENGTH OF THE BAR

Measuring the length of the bar is not unambiguous and several

methods have been proposed so far. In order to apply them to our

simulations we have had in certain cases to extend or modify them.

Thus we have defined the length of the bar as follows.

(i) From the value of the semi-major axis at which the ellipticity

is maximum ðLb/aÞ. One can use this value as such, or take a

multiple of it. Here we adopted the former.

(ii) From the steep drop in the run of the ellipticity (or axial

ratio) as a function of the semi-major axis (Ldrop). As we saw in

Section 4, in model MH the ellipticity presents a steep drop

towards the end of the bar region. Although this is not the case for

model MDwewill still use the radius at which the axial ratio shows

the largest drop as a possible measure of the bar length, because it

is a straightforward and direct method and it does not introduce any

ad hoc constants. It could prove to be a good estimate for cases like

model MH, where the drop is clear. It can unfortunately not be used

blindly, because in some cases, as in model MD, there may not be a

steep drop.

(iii) From the phase of the bar (Lphase). The phase of a perfect

(theoretical) bar should be constant. This is of course only

approximately true in N-body or observed bars. Nevertheless the

phase varies little and the bar can be defined as the region within

which the phase varies less than a given amount. Instead of

considering the differences between the phases in two consecutive

annuli, which may be heavily influenced by noise, we use a

somewhat less local definition. We first calculate the phase of the

m ¼ 2 component of the whole disc, i.e. the phase of the bar. Then

we repeat the exercise after slicing the disc in circular annuli. In the

innermost parts the amplitude of the m ¼ 2 is very low and the

noise in the phase can therefore be important. Then there is a region

where the phase is nearly constant and equal to the phase of the bar,

and then it starts varying with radius. We define as length of the bar

the radius of the first annulus for which the phase differs by more

than arcsin(0.3) from the phase of the bar. The choice of the

constant is of course ad hoc. It has simply been estimated so as to

give reasonable results in a few test cases.

(iv) From the m ¼ 2 component, or from the ratio of the m ¼ 2

to the m ¼ 0 components ðLm¼2Þ. In a model in which the disc does

not respond to the bar, one would expect the end of the bar to be

where all components except m ¼ 0 go to zero. This is not true in

N-body simulations and in real galaxies, where the disc responds to

the bar and thus is not perfectly axisymmetric. One can,

nevertheless, get an estimate of the bar length from the radius at

which the relative m ¼ 2 component is less than a given fraction of

Figure 7. Relative amplitude of the m ¼ 2 (solid line), 4 (dashed line), 6 (dot-dashed line) and 8 (dotted line) components of the mass or density. The left-hand

panel corresponds to model MH, the middle one to model MD and the right-hand one to model MDB. The simulation number is given in the upper left-hand

corner and the time in the upper right-hand corner of each panel.
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the maximum, provided there is no clear spiral structure. Here we

will adopt the radius at which the relative m ¼ 2 component

reaches 20 per cent of its maximum value as length of the bar.

Again the choice of the constant is ad hoc, estimated so as to give

reasonable results in a few test cases.

(v) From the face-on profiles (Lprof). We take the difference

between the projected density profiles along the major and minor

axes of the bar. This is of course zero at the centre and increases

with distance to reach a maximum and then drops. In a theoretical

case of a bar in a rigid disc, the end of the bar would be where the

two projected density profiles became equal again. Because in

N-body simulations the disc is responsive, the difference will not

be zero even in the disc. We thus define as bar length the outer

distance from the centre at which the difference falls to 5 per cent

of the maximum. Again the choice of the constant is ad hoc,

estimated so as to give reasonable results in a few test cases.

(vi) From the edge-on profiles (Lzprof). We can define as length

of the bar the distance of the end of the ledge on the z ¼ 0 cut from

the centre of the galaxy.

(vii) From the ratio of the intensities in the bar and the inter-bar

region (LOhta and LAgr). Ohta et al. (1990) defined as bar region the

zone with a contrast Ib/Iib exceeding 2, where Ib and Iib are,

respectively, the bar and the inter-bar intensities. These can

be simply defined as Ib ¼ I0 þ I2 þ I4 þ I6 and Iib ¼ I0 2 I2 þ
I4 2 I6: This criterion was modified by Aguerri et al. (2000) to

delineate the region where Ib/Iib . 0:5½ðIb/IibÞmax 2 ðIb/IibÞmin� þ
ðIb/IibÞmin: The length of the bar is then simply the outer radius at

which Ib/Iib ¼ 0:5½ðIb/IibÞmax 2 ðIb/IibÞmin� þ ðIb/IibÞmin. This defi-

nition can be applied to N-body bars by changing the intensity for

the density, so we will adopt it as one of our definitions. Contrary to

other definitions, it has the advantage of being applicable to

analytic models for which the length of the bar is known exactly.

We have thus applied it to all models in Athanassoula (1992) and

found in all cases an agreement of better than 4 per cent, except for

the models with the very thin homogeneous bars of axial ratio a/b

larger than 4, where the error can reach 8 per cent.

Several of the above definitions are much easier to apply in

N-body models than in real galaxies, as in the former we are sure to

be in the equatorial plane of the disc, and thus we do not have the

considerable uncertainties which a deprojection from the plane of

the sky can bring to real galaxies. Most of them have been used in

one study or another. Unfortunately they have never been applied

all to the same case, so as to allow comparisons. For this reason we

have applied them all to all simulations and to all time-steps, and

give the results for two times of our three fiducial simulations in

Table 1. Because these estimates suffer from the existence of noise,

we have used an average over a given time-range. This time-range,

however, should be rather small, since the length of the bar

increases with time. Thus the s given in the table is an overestimate

of the real uncertainty, since it includes the effect of time evolution.

The first column in Table 1 gives the name of the model, the second

one the time-range over which the average was taken and columns

3 to 9 give the estimates of the various methods. The second line in

each case is similar, but contains the values of the dispersion. For

the first two estimates (Lb/a and Ldrop) we use the ellipse fitting with

the generous blanking (cf. Section 4), because this is more

generally applicable. We do not include Ohta’s estimate in the

Table. For the cases where the ellipticity is almost flat (like MH and

MDB) Lb/a is not meaningful, while for MD the ellipticity profile

does not show a steep drop, so that Ldrop is not well defined.

Generally, the largest values are given by Lphase and Lprof, and the

smallest values are given by Lb/a and LAgr. Ldrop and Lm=2 generally

give estimates which are intermediate.

It is clear that the differences between the various methods are

larger than the dispersions within each method. It is thus of interest

to see which method, if any, gives the best results. For this, in Figs 8

and 9 we overlay on the isodensity curves taken at times 600 and

800, respectively, circles with radii the various estimates of the bar

length. We note that there is no single method which fares well in

all cases. For time 600 the best estimates are Ldrop and Lm=2 for

MH, Lzprof and LAgr for MD, and Lb/a and Lm=2 for MDB. For time

800 the best estimates are Lzprof for MH, Lphase for MD, and Ldrop,

Lphase and Lprof for MDB.

It is also interesting to see whether the average values represent

the length of the bar well or not. Column 10 gives the average of all

the estimates (L1) in the first line and the standard deviation in the

second. We also tried a second average (L2), for which we omitted

the entries which were considered unsafe. For this we rely on the

applicability of the method to the models and not on whether they

give results compatible with the visual estimates of the bar. For

cases MH and MDB Lb/a is meaningless, because the ellipticity

profile is very flat. Similarly, for model MD Ldrop is unreliable

because there is no clear drop in the b/a profile. For model MD

Table 1. Length of the bar.

Model Time Lb/a Ldrop Lphase Lm=2 Lprof Lzprof LAgr L1 L2 LP1 LP2 LP/L2

MH 540–660 2.9 3.4 4.1 3.4 4.3 2.9 2.6 3.4 3.4 1.7 1.9 0.5
MH 540–660 0.2 0.6 0.8 0.2 0.5 0.2 0.3 0.7 0.7 0.3 0.2

MD 540–660 2.0 3.5 4.0 4.1 4.6 2.4 2.5 3.3 3.1 1.0 1.1 0.3
MD 540–660 0.1 1.6 1.6 0.2 0.3 0.5 0.2 1.0 1.1 0.1 0.1

MDB 540–660 2.8 3.4 3.3 3.0 3.3 2.5 2.3 3.0 3.0 1.3 1.4 0.5
MDB 540–660 0.2 0.1 0.1 0.1 0.1 0.2 0.1 0.4 0.5 0.3 0.1

MH 740–860 2.8 4.4 5.1 4.3 5.5 3.6 2.9 4.1 4.3 2.2 2.5 0.6
MH 740–860 0.2 0.1 0.9 0.4 0.5 0.1 0.1 1.0 1.0 0.0 0.1

MD 740–860 2.1 4.3 2.4 4.1 4.4 2.1 2.3 3.1 2.7 1.0 1.2 0.4
MD 740–860 0.1 0.2 2.0 0.1 0.3 0.4 0.2 1.1 0.9 0.2 0.0

MDB 740–860 3.3 3.9 3.7 3.4 3.8 2.9 2.6 3.4 3.4 1.5 1.7 0.5
MDB 740–860 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.5 0.5 0.1 0.1
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Figure 8. The main determinations of the bar length superposed on isocontours of the projected density for the disc component. In the upper panel we give

Lphase (solid line), Lm¼2 (dashed), Lprof (dash-dotted) and LAgr (dotted). In the lower panel we give Lb/a (solid line), Ldrop (dashed) and Lzprof (dash-dotted). The

name of the simulation is given in the upper left-hand corner of the upper panels. The isocontours correspond to the time given in the upper right corner. The bar

length estimates are obtained by averaging the results of seven times, centred around the time given, and spaced at equal intervals of dt ¼ 20, as in Table 1. The

length between two tick marks is 2 computer units.

Figure 9. Same as the previous figure, but for time 800.
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there are two more estimates that could be unreliable. By

examining the individual face-on profiles we see that the difference

between the profile along the bar and perpendicular to it is not very

dependent on radius (cf. Fig. 5) and thus Lprof is badly defined.

Finally the ledge is also not clear on the edge-on profiles, so that

the Lzprof estimate is also unreliable. We thus omitted these two

estimates as well for model MD.3 L2 and its standard deviation are

given in the first and second line of column 11. Taking into account

the error bars, we see that average values are good estimates of the

length of the bar. This, however, is not a big help, because the error

bars are rather large, particularly so for model MD.

Columns 12 to 15 contain information on the peanut length and

will be discussed in the next Section.

9 QUANTIFYING THE PEANUT SHAPE

From the third row of panels of Figs 2 and 3 we can see that

simulation MDB and the earlier time of simulation MH show a

clear peanut shape and simulation MD is boxy, while in the later

times simulation MH has a clear ‘X’ signature. In this Section we

will make this comparison more quantitative. We explore two

different ways of quantifying the peanut shape.

The first relies on cuts parallel to the major axis when the galaxy

is observed side-on, as introduced in Section 6. From such cuts the

strength of the peanut can be parametrized by

SP1 ¼ Smaxðy; zrefÞ=Sð0; zrefÞ; ð8Þ
where y is the distance from the centre along the cut, zref is the z

value at which this cut is made, S(y, zref) is the projected density

along the cut, Smax is the maximum value of the density along the

cut and S(0, zref) is the value at the centre of the cut. The value of
SP1 is heavily dependent on the value of zref. For too low a value of

zref, the peanut strength is not well revealed, while for too high a

value Sð0; zrefÞ ¼ 0, and therefore the above definition is not

applicable. We have chosen zref ¼ 1, which we believe is a

reasonable compromise. Such cuts can also tell us the radial size

of the peanut, defined as the value of y for which S(y, zref) is

maximum. This also depends on zref. It increases strongly with z for

small values of z and less so for larger z values. We choose as our

first measure of the peanut length LP1, the value of y for which

S(y,1) is maximum.

Applying this definition to model MH we get SP1 ¼ 5:5 for time

600 and SP1 ¼ 12 for time 800. The corresponding lengths of the

peanut are LP1 ¼ 1:7 and LP1 ¼ 2:2 correspondingly. For model

MDB we get for SP1 and time 600 (800) the value of 2.2 (3.0), and

for model MD the value 1.5 (1.2). For the latter model the minima

and maxima, and therefore the values of the peanut length, are

poorly defined, showing that the form is more a box than a peanut.

For the second method we ‘observe’ our models side-on and

make cuts parallel to the z axis at different values of y. For each cut

we make a profile of the projected surface density as a function of

z. We symmetrize the profiles with respect to z ¼ 0, fit to them

generalized Gaussians of the form exp½2ðz/z0Þl� and thus

determine the values of z0 and l for which the generalized

Gaussian fits best the profile. Larger values of z0 correspond to

broader Gaussians, while the parameter l defines the shape of the

generalized Gaussian. For l ¼ 1, the generalized ellipse becomes

an exponential and for l ¼ 2 it becomes a standard Gaussian. For

small values of l the generalized Gaussian is very peaked at the

centre and for large ones it has a relatively flat top.

Fig. 10 shows the values of z0 and l as a function of the y value at

which the cut was made. Because the results are relatively noisy we

apply a sliding means. For model MH z0 shows a clear minimum at

y ¼ 0 followed by a clear maximum. This is a signature of a

peanut. Thus our second way of quantifying the peanut is from the

ratio of the maximum of z0 to its value at the centre, namely

SP2 ¼ z0;max/z0ð0Þ: ð9Þ

This is 1.3 (1.8) for times 600 (800) and model MH. For model

MD, the value of SP2 at time 600 (800) is 1.1 (1.1), and for model

MDB 1.2 (1.3). From these and a number of other cases we can see

that SP2 can distinguish well between shapes which are boxy,

Figure 10. Parameters z0 (upper panels) and l (lower panels) of the generalized Gaussian fitting best cuts parallel to the z axis. The left-hand panels correspond

to model MH, the middle ones to model MD and the right-hand ones to model MDB. The name of the simulation is given in the upper left-hand corner and the

times in the upper right-hand corner of the upper panels. The solid line corresponds to time 600 and the dashed one to time 800.

3 In fact, the ledge is also difficult to see for model MDB up to time 620.

Therefore a more careful treatment would omit this estimate for part of

simulation MDB.
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where it gives values hardly above 1, peanuts, where it gives larger

values, and ‘X’ shapes, where it gives considerably larger values. It

can thus be used as a measure of the box/peanut/‘X’ strength.

The location of the maximum of z0 can be used as a measure of

the radial extent of the peanut (LP2). We find LP2 ¼ 2:0 (2.6) for

time 600 (800). The results for the peanut length obtained with the

two above definitions averaged in the [540, 660] and [740, 860]

time-ranges are listed in columns 13 and 14 of Table 1. The

agreement between the two results is of the order of 10 per cent,

except for the later time of model MD, where the difference is 20

per cent. We can thus consider either of them, or their average, as a

reliable estimate of the peanut length. They show clearly that the

radial extent of the peanut increases considerably with time. We

also calculated the ratio of the peanut length (as the average of the

two estimates) to the bar length (L2) and give it in the last column

of Table 1.

The parameter l also shows a minimum in the centre surrounded

by two maxima, one on either side. This does not necessarily imply

that it can be used as a measure of the peanut strength or length.

Indeed, the shape of the Gaussians need not correlate with their

width.

A different parametrization, based on the a4 parameter (Bender

et al. 1989) often used for elliptical galaxies, will be discussed in a

future paper in collaboration with M. Bureau.

1 0 ROTATION

The orbits of particles in a barred galaxy are far from circular, and

Figure 11. Velocity field of the disc, for three different orientations of the bar: along the y axis (upper panels), at 458 to it (middle panels), and along the x axis

(lower panels). The isovelocities are given by thick lines and the kinematic major axis, i.e. the isovelocity corresponding to the systemic velocity (in our case

zero), with a dashed line. TheDv between two consecutive isovelocities is 0.1. We also overlay the isodensities with thin line contours. The line of sight is along

the y axis. The left-hand panels correspond to model MH, the middle ones to model MD and the right-hand ones to model MDB, all at time 800.
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this of course reflects itself on the galaxy velocity field. Fig. 11

shows the velocity fields of our three fiducial models. It is obtained

in a way that varies somewhat from that of observations, yet it is

the most convenient for comparing with observations of galaxies at

intermediate inclinations, for which the contribution of the z

component of the velocity is relatively small. To obtain it we

project all particles on the equatorial plane, observe their vy
velocity component and plot the corresponding isovelocities. For

the three views shown in the figure this is equivalent to observing

along the bar major axis, at 458 to it and along the bar minor axis,

respectively.

Model MD gives velocity fields analogous to those given by

previously published models. When we observe along the bar

major axis, the isovelocities show a characteristic concentration

towards the central region, due to the fact that particle orbits are

elongated along the bar and the velocity along an orbit is larger at

pericentre than at apocentre. The intermediate angle velocity field

shows the Z structure characteristic of barred galaxy velocity fields

(see e.g. Peterson et al. 1978, for NGC 5383), and finally the

velocity field obtained when we view along the bar minor axis

shows a sizeable area of solid body rotation in the inner parts.

Several of these features are seen also in the case of model MH,

but with some notable differences. Thus when we observe along

the bar major axis we note a strong pinching of the isovelocities in

the innermost region, on or near the bar minor axis. For the 45

degrees orientation the Z shape is much more pronounced than in

the MD case, which could be expected as the bar in model MH is so

much stronger. The greatest surprise, however, comes from the last

orientation, where we view the disc along the minor axis of the bar.

The innermost solid body rotation part is there, as for model MD.

However, as we move away from the kinematical minor axis the

isovelocities show a clear wavy pattern, indicating that the mean

velocity is lower at the ends of the bar than right above or right

below that. This is due to the fact that near the ends of the bar the

particles are at their apocentres. The mean velocities in those

regions can be further lowered if the corresponding periodic orbits

have loops at their apocentres. Athanassoula (1992) discusses such

loops, and the regions where they appear in her models correspond

roughly to the low-velocity regions discussed here. She also shows

that such loops occur mainly in periodic orbits in strong bars, i.e.

that such loops are more liable to be found in model MH than in

model MD. A more quantitative comparison will have to wait for a

complete study of the orbital structure in these models, which

should furthermore elucidate the formation and properties of the

ansae. Let us also note here that the velocity field is that of a stellar

component and should not be compared to those obtained by

observing the gas or from hydrodynamical simulations.

The velocity field of model MDB is intermediate of those of

models MH and MD. This holds both for the Z pattern seen in the

458 orientation and the wavy pattern at the ends of the bar when we

view along the minor axis of the bar. The central crowding,

however, is more important than in models MD and MH. This is

due to the extra central concentration of the bulge component.

Let us note in passing that no velocity gradients are seen along

the line of sight when that coincides with the major or the minor

axis of the bar. Furthermore, hardly any velocity gradient can be

seen in the MD and MDB cases, even when the line of sight is at

458 to these axes. Thus the existence of a velocity gradient along

the minor axis is not a very good criterion to picking out bars and

oval distortions and should be left for cases where only limited

information along slits is available. If a 2D velocity field is

available one should rather look at whether the kinematical major

and minor axes are orthogonal to each other (cf. e.g. Bosma 1981

for a discussion) and at the twists of the isovelocity contours.

Fig. 12 shows the velocity field that is obtained when the disc is

seen edge-on, for four different angles of the bar with respect to the

line of sight, for models MH, MD and MDB, respectively. Again

there are important differences between models MH and MD. For

model MH the mean rotation does not depend on the distance z

from the equatorial plane in a central region, whose size depends

on the orientation of the bar. Perpendicular to the equatorial plane it

extends roughly as far as the bar material extends. The distance

along the equatorial plane is smallest when the bar is seen end-on

and biggest when the bar is seen side-on. In the latter case it

Figure 12.Velocity field of the three fiducial discs seen edge-on, for four different orientations of the bar: end-on (upper row), at 308 to the line of sight (second

row), at 608 to the line of sight (third row) and side-on (fourth row). The kinematic major axis is given by a dashed line. The left-hand panels correspond to

model MH, the middle ones to model MD and the right-hand ones to model MDB, all at time 500.
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extends over most of the area covered by the peanut. On the other

hand in the MD model the mean rotational velocity drops

considerably with increasing distance from the equatorial plane,

thus again providing a clear dichotomy between the two fiducial

cases. Model MDB has a velocity field similar to that of model

MD.

As already discussed, the form of the MH bar viewed side-on

evolves from box-like to peanut and then to ‘X’ shaped. When it

reaches this last stage the area within which the rotation does not

depend on z is somewhat less extended, particularly in the low-

density areas on and around the z-axis, on either side of the

centre.

11 VELOCITY DISPERS IONS OF A THIN

STRIP OF PARTICLES TAKEN ALONG THE

BAR MAJOR AXIS

In order to get more information on the motions in our fiducial

models we have isolated a strip of particles centred on the bar

major axis and having a width of 0.07. Fig. 13 shows the three

components of the velocity dispersion, sx, sy and sz, as a function

of the distance from the centre of the galaxy measured along the

strip, at time 800. The sx for model MH shows two sizeable

maxima, one at either side of the centre. They should be due to the

form of the x1 orbits in that region, either to the loops that these

orbits can have on the major axis, or to their more rectangular like

shape, and will be discussed in those terms in a future paper, where

the orbital structure of these models will be presented. Here we will

note that the shape of the isophotes in that region is very

rectangular-like for model MH. The sx for model MDB also shows

two similar maxima, of relatively lower amplitude. This model also

has bar isophotes with a rectangular-like shape, but the maximum

rectangularity occurs at larger distances from the centre than the

secondary maxima of the sx profile. No such maxima can be seen

for model MD.

The central value of all three components for model MDB are

much larger than those of the other two models, presumably as a

result of the presence of the bulge. This is particularly clear for the

sy component. Also the velocity dispersions are large over a more

extended region in model MH than in model MD. This can be

easily understood by the fact that the size of the bar is larger, and

that the velocity dispersions are larger within the bar region.

It is also worth noting that the sy component for model MH has a

minimum at the centre, surrounded by two low maxima close to it

and on either side of the bar, and followed by a quasi-linear drop.

This is not the case for models MD and MDB, where the maximum

velocity dispersion is reached at the centre. Again the explanation

of this in terms of orbits will be discussed after we present the

orbital structure in each model.

1 2 THE BULGE

We used the inertia tensor to obtain information on the shape of the

bulge. For this we first calculated the local density at the position of

each bulge particle, using the distance to its six nearest neighbours

(Casertano & Hut 1985) and then sorted the bulge particles in order

of increasing local density. We believe that the density is more

appropriate than the radius, which introduces a circular bias, or

than the binding energy, which also introduces such a bias, albeit

much less than the radius. We then discarded the 10 per cent in the

most dense environment, part of which could be influenced by the

softening, and the 10 per cent in the least dense environment,

which contains particles at very large distances from the centre,

divided the remaining particles into five groups of equal mass and

calculated the eigenvalues and eigenvectors of the inertia tensor

separately for each group and then for the five groups together. The

axial ratios can then be obtained (e.g. Barnes 1992) as those of the

homogeneous ellipsoid that has the same moment of inertia. We

thus obtain

bb/ab ¼
ffiffiffiffiffiffiffiffiffiffiffi

q2/q1
p

and

cb/ab ¼
ffiffiffiffiffiffiffiffiffiffiffi

q3/q1
p

;

where ab, bb and cb are the lengths of the three principal semi-axes

Figure 13. Velocity dispersion as a function of distance from the centre for our three fiducial models at time 800, as discussed in Section 11. The components

sx, sy and sz are shown in the upper, middle and lower panels respectively. The left-hand panels corresponds to model MH, the middle ones to model MD and

the right-hand ones to model MDB. The simulation name is given in the upper left-hand corner and the time in the upper right-hand corner of the upper panels.
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of the bulge, and q1, q2 and q3 are the eigenvalues of the inertia

tensor.

When considered as a whole, the bulge of the fiducial MDB

model is an oblate object, with the shortest dimension along the

z-axis, i.e. perpendicular to the disc plane. The value of cb/ab is

around 0.9. However, when we consider each group of particles

separately, the departure from sphericity can be much more

important. Thus the group with the highest densities, which has a

mean distance from the centre of 0.3, is somewhat triaxial with

axial ratios roughly 0.75 and 0.7 respectively. The median group,

with a mean distance from the centre of 1.2, has axial ratios of

roughly 0.9 and 0.8, respectively. In general, as we go from highest

to lowest densities, the shape becomes gradually more spherical.

13 SUMMARY AND DISCUSS ION

In this paper we present three simulations of bar unstable disc

galaxies. Initially in the first model, MH, the halo mass is

concentrated in the inner parts, while in the second one, MD, it is

the disc mass that dominates in the central parts. The third model,

MDB, is similar to model MD, but has also a bulge of mass 60 per

cent of the disc mass. In all three cases the halo mass is about five

times the mass of the disc. All three models evolve and form a bar

in their central parts. The properties of the bar, however, are very

different in the three cases.

Model MH forms a very strong bar, which is long and thin when

viewed face-on. It is surrounded by a massive inner ring, slightly

elongated along the bar. Seen edge-on the galaxy has a peanut or

‘X’ shape. This model has initially no bulge, so the particles

forming the peanut are disc particles, or, more precisely, bar

particles. It is thus not appropriate to call this component a bulge,

as is often done. This is not, however, the only way that we could

have attributed material to a bulge in this bulge-less galaxy. When

seen end-on the disc material has a definite central spheroidal

concentration, extending well out of the plane, which could easily

be mistaken as a bulge sticking out of an edge-on disc galaxy.

Surface photometry will only enhance this impression. Projected

density profiles, obtained both from face-on and edge-on views,

show clear central concentrations in the inner part, which would

again easily be attributed to a bulge.

The bar of model MH is not only strong and long, but it is also

thin and rectangular-like, as we could show by fitting generalized

ellipses to the isophotes. The rectangularity is particularly strong in

the outer parts of the bar. Within the main bar region the ellipticity

of the bar isophotes does not change much with distance from the

centre, and then it drops abruptly to near-circular in the ring region.

Outside the ring the isophotes become somewhat more elliptical

shaped and are oriented perpendicular to the bar. At sufficiently

large distances from the centre they are again near-circular. Thus

even in this very strongly barred case the ellipticity of the outer disc

isophotes is sufficiently low for observers to be able to consider

them circular and use them for deprojecting.

For model MH the projected surface density profiles, obtained

from cuts along the bar major axis of the galaxy viewed face-on,

show a flat region on either side of the central concentration, the

end of which can be used as a measure of the bar length. Similar

profiles, now from the galaxy seen edge-on, also show this

characteristic ledge. Cuts which are offset from the equatorial

plane and parallel to the major axis of the bar reveal a two-horned

shape, characteristic of a peanut. They can be used to parametrize

the length and the strength of the peanut.

We also Fourier analysed the face-on density distribution of the

disc particles. We find that the relative m ¼ 2 component is quite

large, between 0.6 and 0.8 for the times we discuss here. The

position of the maximum is well within the bar; half or a quarter of

the way to the centre. Nevertheless, the m ¼ 2 component is

important all through the bar region. The relative amplitudes of the

higher m components are smaller than that of the m ¼ 2, but are

still very big. Even m ¼ 8 is of the order of one third of the m ¼ 2.

The distance of the location of the maximum of the relative

amplitude from the centre increases with m.

The velocity field also shows very strong deviations from circular

motion, due to the presence of the bar. When the line of sight is along

the bar major axis, or at 458 to it we observe crowding of the

isovelocities in the centre-most areas. The 458 orientation shows very

clearly the strong Z-type isovelocities, classical of barred galaxies.

When the line of sight is along the bar minor axis the isovelocities

passing near the ends of the bar show a strong wavy form. This is

due to the low mean velocities in the end of the bar region.

When viewed edge-on the model exhibits strong cylindrical

rotation over a large area. The bar signature is also clear in the

velocity dispersions, which are high in all the bar region. The

component perpendicular to the bar major axis shows clear local

maxima around the ends of the bar. The component parallel to the

bar major axis shows a shallow minimum or a plateau at the centre.

The bar in the MD model is quite different. It is considerably

shorter, thicker and less rectangular-like than the MH bar. Viewed

edge-on it has a form which is better described as boxy. Its

projected density profiles decrease steeply with radius in the bar

region and that both in the face-on and edge-on view, as opposed to

the flatter profiles of the MH bar. The relative amplitude of the

m ¼ 2 component is less than 0.4, and them ¼ 6 and 8 components

are negligible. The relative m ¼ 4 component is considerably

smaller than the relative m ¼ 8 component of the MH model.

Viewed edge-on, model MD does not display cylindrical rotation.

Finally, model MDB has a bar which is intermediate in length

and shape to that of the previously discussed two models. Viewed

edge-on it has a peanut shape, which never evolves to an ‘X’ shape,

at least within the times considered here. Its projected density

profiles, both for the face-on and the edge-on viewing, as well as its

velocity field are intermediate of those of models MH and MD. In

the face-on profiles there is more difference between the major and

the minor axis profiles than in the MD case. On the other hand there

is no flat part, except perhaps at the very late times of the evolution,

where such a structure starts to form.

In all three cases the formation and evolution of the bar is

followed by a substantial inflow of disc material towards the

central parts. This implies qualitative changes for model MH.

Indeed at the initial times the halo contribution is somewhat larger

than the disc one in the inner parts. The halo density distribution

does not change much with time, while the disc becomes

considerably more centrally concentrated. Thus at latter times the

disc dominates within the central region, to a distance larger than

an initial disc scalelength. For the MD and MDB spheroids also the

density distribution does not change much with time, and again

the disc component becomes more centrally concentrated. Thus the

central areas become even more disc dominated than they were at

the beginning of the simulation. The difference, however, is

quantitative, rather than qualitative, as it was for the MH model.

We used a number of different ways of measuring the bar length.

Some of them are more suited for MH type models, others for MD

types, while others can be used for both. Unfortunately we could

not find any criterion which could do well for all simulations and

all times. Average values give satisfactory estimates within their

50 E. Athanassoula and A. Misiriotis

q 2002 RAS, MNRAS 330, 35–52

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/3
3
0
/1

/3
5
/1

0
2
0
2
9
1
 b

y
 g

u
e
s
t o

n
 1

6
 D

e
c
e
m

b
e
r 2

0
2
0



error bars, but their error bars are rather large. This will prove to be

a major problem when we will want to compare the length of the

bar to the corotation radius, to see how evolution affects this ratio

and whether it stays compatible with observational limits (cf.

Debattista & Sellwood 2000).

We also introduced two ways of measuring the strength and

length of the peanut. They allow to distinguish between boxy,

peanut-shaped and ‘X’-shaped outlines. They also show that the

length of the peanut is considerably shorter than the length of the

bar.
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Aguerri J. A. L., Muñoz-Tuñón C., Varela A. M., Prieto M., 2000, A&A,

361, 841

Athanassoula E., 1992, MNRAS, 259, 328

Athanassoula E., Morin S., Wozniak H., Puy D., Pierce M., Lombard J.,

Bosma A., 1990, MNRAS, 245, 130

Athanassoula E., Bosma A., Lambert J. C., Makino J., 1998, MNRAS, 293,

369

Bosma A., 1981, AJ, 86, 1825

Barnes J. E., 1992, ApJ, 393, 484
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APPENDIX A: IN IT IAL CONDIT IONS

In order to generate the initial conditions of our simulations we

widely followed the method described by Hernquist (1993), with

the following small differences.

(i) For the radial velocity dispersion Hernquist (1993) adopts

s2
RðRÞ ¼ C expð2R/hÞ, where the constant C is normalized so that

the Toomre Q parameter (Toomre 1964) has a prescribed value at a

given radius. One technical problem with this choice is that the

central parts may be very hot, making the epicyclic approximation,

on which the calculation of the asymmetric drift and of the

azimuthal velocity dispersion is based, totally inadequate. A

second problem is that, for certain choices of C and of the reference

radius, the disc may turn out to be locally unstable at certain radii.

As an alternative we have adopted a Q that is constant all through

the disc. This also has some technical problems, but we found them

to be less severe than those of Hernquist’s choice. Namely in cases

with strong bulges one has to take care that the forces are properly

calculated in the central parts of the disc before obtaining the

epicyclic frequency (see also point iii below). Even so, in difficult

cases, it is possible that the streaming velocity becomes larger than

the circular velocity. In such cases we artificially lower the value of

the streaming velocity to the value of the circular velocity.

(ii) In Hernquist’s method, the velocities of the halo particles are

drawn from a Gaussian whose second moment is the velocity

dispersion of the halo distribution at the radius under consideration.

While a Gaussian is the most natural choice, it has the

inconvenience of extending to infinity. Thus particles are often

drawn with velocities larger than the escape velocity. To avoid this

we have used another function, namely:

Fðv; rÞ ¼
C1 12

v2i

C2
2

� �

vi # C2

0 vi . C2

8

>

<

>

:

where vi is the x, y, or z component of the velocity and the constants

C1 and C2 are calculated so that the zeroth and second moments are

the same as those of the Gaussian. This function limits the values of

the velocity components to the interval ð2C2;C2Þ. While it is still

possible for some particles to be drawn with velocities larger than

the escape velocity, their number is significantly smaller than in the

case of the Gaussian.

(iii) In order to calculate the epicyclic frequency we need first to

calculate the force on the disc particles, and for that we used direct

summation, including the softening. This allows a more accurate

determination of the forces, particularly in the central parts of

models with bulges. In fact, Hernquist (1993) does not give

sufficient information on how he calculates the force, so we cannot

be sure that this is indeed a difference between his method and

ours.

APPENDIX B : MEASURING THE MASS ,

RADIUS AND AXIAL RATIO OF THE RING

We developed two different, independent, methods of fitting a ring

and obtaining its basic parameters. In the first we fit a single

function I(R,u ) simultaneously to most of the face of the galaxy.

We first exclude the regions with R , 1, as they do not contain

information relative to the ring, and the regions where

cosðDfÞ , 0:5, where Df the azimuthal angle measured from

the major axis of the bar, because there the ring does not detach

itself sufficiently well from the inner part of the profile to allow an

accurate fit. To the remaining part we fit a function

IðR;fÞ ¼ C0ðfÞR2C1ðfÞ þ C2ðfÞ exp{2 ½R2 C3ðfÞ�2/C4ðfÞ2};

where CiðfÞ ¼ P2i þ P2iþ1 cosð2fÞ, i ¼ 0; . . .4. This is a

10-parameter fit and we call this method and the corresponding

fit ‘global’.

We also used a different method, inspired from photometric

work on barred galaxies. We first obtained a face-on projected

density of the model and then made 100 radial cuts with an angle

of 3.68 between two consecutive cuts. For each cut we make a

two-component fit of the radial density profile using the

N-body bars 51
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functional form

IðR;fÞ ¼ D0R
2D1 þ D2 exp{2 ½ðR2 D3Þ/D4�2};

D0, D1, D2, D3 and D4 are constants and are determined

independently for each radial cut, i.e. for each value of the

azimuthal angle. When doing these fits we do not take into account

the regions with R , 1, as these are too near the centre to contain

any useful information about the ring. Because this method deals

with each radial cut independent of all the others we call it ‘local’.

We thus have for each radial cut a set of Di values, i ¼ 0; . . .; 4.

We now discard those cuts – and the corresponding values of Di –

which are at angles less than 308 from the major axis of the bar, as

well as all other cuts where the ring contribution does not detach

itself from the background. To the remaining values of (Di,f ) we

then fit the simple forms

DiðfÞ ¼ pi þ qi cosð2fÞ; i ¼ 0; . . .; 4 ðB1Þ
where pi and qi are constants.

In the above two methods we have parametrized all the density

except for the ring by a simple power law. It could be argued that it

would have been more realistic had we used an exponential disc

plus a functional form to describe the bar. This, however, would

have implied a very large number of free parameters and made the

problem badly determined. We find that in most cases a Gaussian

profile gives a very good fit to the ring component, while the power

law profile is adequate for the remaining part. In this way we limit

the number of free parameters. In a large number of cases we

checked by eye that the results are satisfactory. As a further

measure of the quality of the fits we could compare how well the

estimates given independently by the two methods agree. In

general we find that the radius of the ring is very well determined.

This is less so for its width and mass, as they can be considerably

influenced by the wings of the Gaussian. This is not too serious for

narrow rings, but much more so for wide ones.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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