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Abstract  

The precise control of the morphology of inorganic materials during their synthesis is important 

yet challenging. Here, we report that the morphology of a wide range of inorganic materials, grown 

by rapid precipitation from a metal cation solution, can be tuned during their crystallization from 

one- to three-dimensional (1D-3D) structures, without the need for capping agent or templates. 

This control is achieved by adjusting the balance between the electrolytic dissociation (α) of 

reactants and the supersaturation (S) of solutions. Low-α weak electrolytes promoted the growth 

of anisotropic (1D and 2D) samples, with 1D materials favoured in particular at low S. In contrast, 

isotropic 3D polyhedral structures could only be prepared in the presence of strong electrolyte 

reactants (α ≈ 1) with low S. Using this strategy, a wide range of materials were prepared, including 

metal oxides, hydroxides, carbonates, molybdates, oxalates, phosphates, fluorides, and iodate with 

a variety of morphologies.  

 

 

  Materials with well-defined microscopic and nanoscopic morphologies hold great promise for 

various practical applications, for example in catalysis, batteries, semiconductors, supercapacitors, 

mailto:jiazhao@uow.edu.au
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mailto:chenabc@nankai.edu.cn
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hydrogen storage, and magnetic and optical devices1-5. These can be tuned to some extent by 

traditional synthesis methods, such as the hydro- or solvothermal method, preformed-seed-

mediated growth strategy, polyol approach, template method, and electrochemical synthesis, but 

those are not ideal for large-scale commercialization because they typically require complex 

equipment, the use of toxic solvents, and time-consuming high-temperature or high-pressure 

processes6-10.  

    A variety of inorganic materials can also be obtained through a straightforward precipitation 

process. This growth method is widely used and generally well-understood11-12, but the rapid 

reaction rates involved make it difficult to precisely control the morphologies of the resulting 

products. We carried out a systematic study to explore precipitation processes carried out in a 

variety of electrolytes with different degrees of dissociation, to better understand the chemical 

driving force of the precipitation process and in turn precisely regulate the concentration of the 

reactants in solution to promote the precipitation of the desired species. Tuning two factors, the 

supersaturation (S) of solutions and the electrolytic dissociation (α) of reactants, enabled the 

control of morphologies from 1D to 3D during the rapid, room-temperature crystal growth.  

    S is widely known to significantly influence the surface engineering of crystals13. Theoretically, 

for each specialized material, the concentration of the desired ions in the solution determines the 

S by the following equation： 

  𝑆𝑆 = �𝐶𝐶𝑀𝑀×(𝐶𝐶𝐷𝐷𝐷𝐷)𝛿𝛿𝑘𝑘𝑠𝑠𝑠𝑠2
          (1)  

where CM and CDA represent the concentration of metal cations and dissociated reactant anions, 

respectively, δ is the number of ions in the material’s formula unit, and Ksp is the solubility product 

constant14-15. This means that regulating the concentration of ions is crucial in thermodynamic 

growth16. Meanwhile, it is believed that both thermodynamic and kinetic effects influence the 

processes of precipitation through steps such as pre-nucleation, nucleation, and growth17-19. 

Organic surfactants have been commonly used to obtain kinetic control over orientated nanocrystal 

growth by selective adhesion effects along the organic–inorganic interface20. Nevertheless, 

without the aid of capping agents and templates, controlling the evolution of crystallization by 

precipitation is not well understood and extremely challenging. 
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    Here, we show that the judicious choice of reactants enables the successful synthesis of a series 

of precipitates with elaborate morphologies. We describe in particular the growth of various 

materials with adjustable morphologies through a rapid room-temperature precipitation process, 

including 1D metal hydroxides (M(OH)2, M = (Co, Mg, Mn, Zn)), Cu2(OH)2SO4, metal carbonates 

(MCO3, M = (Co, Ba, Sr)), BaF2, CoC2O4 and BaMoO4; 2D metal hydroxides (M(OH)2, M = (Co, 

Ni, Mg, Mn, Zn), Cu2(OH)2SO4, Co2S(OH)2, Ca3(PO4)2, Cu2(Fe(CN)6), CoCO3, BaMoO4, 

Ca(OH)2, and BaF2; and 3D metal hydroxides (M(OH)2, M = (Cu, Co, Mn, Mg, Ca)), CaCO3, 

BaF2, CuC2O4, BaMoO4, and Ca(IO3)2. Based on our study of a variety of conditions, we propose 

that the use of strong electrolytes (α ≈ 1), such as NaOH, NaF, and Na2MoO4, is imperative to 

achieve isotropic growth and produce various 3D precipitates. In contrast, when the precipitation 

was carried out using weak electrolytes (α ≪ 1), such as NH4OH, NH4HF2, and CO(NH2)2, the 

process could be tuned to form either 1D rod-like or 2D nanosheet structures. In this case, lower S 

favors the formation of 1D nanostructures, whereas higher S typically promoted 2D morphologies. 

 

Results and discussion 

Synthesis of tunable inorganic materials  

In a typical synthesis, an aqueous solution containing metal cations (such as Co(NO3)2∙6H2O) was 

first prepared. Another solution of an appropriate precipitant (such as NH4OH) was then added at 

room temperature, under stirring at the rate of 300 rpm. The desired precipitation products (such 

as in this case Co(OH)2 nanosheets) were immediately obtained. Reactants with different α were 

used; the dissociation equilibrium is shown in Equation (2), 

 α =
𝐶𝐶𝐷𝐷𝐷𝐷 𝐶𝐶𝑅𝑅�         (2)  

where CDA and CR represent the concentration of dissociated anions and the concentration of 

reactant, respectively.  

Typically, a strong electrolyte (α ≈ 1) could instantly release sufficient ions and lead to fast 

nucleation and a high growth rate for precipitation. For a weak electrolyte (α ≪ 1), the gradual 

release of target ions is expected to slow down the kinetics of nucleation and growth21. Thus, 

reactants with different α values can precisely regulate the concentration of desired ions and 

simultaneously manage to achieve appropriate S, which plays a critical role in obtaining various 
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products according to their solubility product constant (Ksp). Additionally, it is well known that 

the size of crystallites decreases with increasing S, which is mainly governed by the nucleation 

process.  

    For materials with high Ksp, precipitation occurs in a solution with low saturation, which 

indicates that 3D isotropic growth is very favorable. In the case of BaF2, when a strong electrolyte 

NaF/F- (reactant/dissociated anions) (α ≈ 1) was used as precipitant, a supersaturated solution with 

S = 70 rapidly formed, which results in the formation of 3D polyhedra (Fig. 1aI). In contrast, the 

evolution of BaF2 from isotropic to anisotropic, achieved by using NH4HF2 instead of NaF, 

indicates that the presence of the weak electrolyte is another factor (besides the control of 

supersaturation) that can provide a kinetic driving force to support an anisotropic growth as well. 

The use of weak electrolyte NH4HF2/F- (α = 0.165) leads to the formation of 1D rod-like structures 

from a solution with S = 12.4 and 2D nanoplate structures through a quick anisotropic growth 

process in a solution of S = 40 (α = 0.32) (Fig. 1aII and III). It is notable that BaF2 could further 

transform from 1D to 2D (Supplementary Table 1) on increasing the supersaturation S by using 

weak electrolytes with a relative high α. The manipulation from 3D to 1D for high-Ksp materials 

is simple, because it is relatively easy to tune a slightly supersaturated environment (Fig. 1a).  

On the other hand, for low-Ksp materials such as metal hydroxides (Co(OH)2, MnOOH) 

(Supplementary Table 1), the solution is  saturated so quickly that  a high number of nuclei of the 

precipitates are generated. The solution with a high supersaturation causes a high chemical 

potential, which is converted as surface energy of crystallites via the Thomson−Gibbs equation.13 

The high surface energy is responsible for the extremely high nucleation rate during a short-time 

crystallization, leading to the formation of small, irregular particles, where the morphology is hard 

to control. In particular, when strong electrolytic NaOH was selected as reactant, the corresponding 

metal hydroxides solution had extremely high S (SCo(OH)2 = 222,887), leading to the formation of 

aggregated small irregular particles (Supplementary  Fig. 1). In order to form 3D regular 

nanostructures, the solution should therefore exhibit low supersaturation to decrease the reaction 

rate on nucleation and thus achieve isotropic crystal growth into regular shape. An effective 

technique to resolve this problem is to decrease the concentration of metal cations, for example by 

using CoCO3, MgF2, MnCO3, and CuC2O4 as metal ion sources instead of Co(NO3)2, Mg(NO3)2, 

MnSO4, and CuSO4, respectively. This is because these salts (CoCO3, MgF2, MnCO3, and 

CuC2O4) are only slightly soluble, so that they can only provide very limited concentrations of 
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metal ions, leading to relatively low supersaturation and the formation of 3D polyhedra. As shown 

in Fig. 1(b-f)I, 3D polyhedral products (BaMoO4, Mg(OH)2, Co(OH)2, MnOOH, Cu(OH)2) are 

successfully obtained. Similarly, suitable weak electrolytes can be used to produce 1D and 2D 

nanostructures for those low-Ksp samples. Lower supersaturation results in the formation of 1D 

BaMoO4, Mg(OH)2, Co(OH)2, MnOOH, and Cu2(OH)2SO4, respectively (Fig. 1(b-f)II). Higher 

supersaturation is responsible for the corresponding 2D morphology (Fig. 1(b-f)III). For example, 

urea with low-α (α = 2.25 × 10-6) leads to the growth of 1D Cu2(OH)2SO4 (Fig. 1fII), and in turn, 

NH4OH with relatively high α (α = 2.68 × 10-2) facilitates the formation of nanosheets of 

Cu2(OH)2SO4 (Fig. 1fIII).  

    These results indicate that the α of reactants and S of solutions play key roles in shape control. 

Specifically, only a strong electrolyte could lead to the formation of 3D anisotropic growth. In 

contrast, the weak electrolytes are favorable to achieve 1D or 2D isotropic growth, in which the 

evolution from 1D to 2D could be controlled by increasing S, which, in turn, is determined by 

selecting relatively high-α electrolytes. The values for α and S induced materials, including BaF2, 

BaMoO4, Mg(OH)2, Co(OH)2, MnOOH, and Cu2(OH)2SO4, are summarized in Fig. 1(a-f)IV. For 

example, the value of log10(α) of 3D-BaF2 tends to 0, which means that α ≈ 1, indicating that the 

strong electrolyte can release its F- anions quickly, while 1D and 2D BaF2 have much lower 

log10(α) values. This is the most common principle of evolution from anisotropic to isotropic 

structures, that is, strong electrolytes tend to promote the formation of 3D samples, while the weak 

electrolytes can be used for the synthesis of isotropic materials. This pattern can also be seen in 

these other materials, including BaMoO4, Mg(OH)2, Co(OH)2, MnOOH, and Cu2(OH)2SO4. 

Moreover, we observe that increasing S promoted a change of morphology from 1D to 2D for all 

materials. 

    To further explore the generality of this issue, more 1D samples, including BaCO3, CoCO3, 

CoC2O4, Zn(OH)2, and SrCO3 (Fig. 2a-d, Supplementary Fig. 2), were successfully prepared by 

using various complexes with low α, such as CO2/CO3
2- (considering that CO2 gas can 

continuously provide soluble CO3
2-, which is similar to a weak electrolyte), NaHC2O4/C2O4

2-, and 

Na2SO4/OH-. Also, 2D nanosheets, such as from metal hydroxides (M(OH)2, M = Ni, Zn, metal 

sulfide hydroxides (Co2S(OH)2), and metal phosphate (Ca3(PO4)2), were synthesized in high S by 

using NH4OH/OH-, CH3COONa/OH-, and Na2HPO4/PO43- (Fig. 3e-h). The TEM images of 

representative 2D materials show rolled-up edges and wrinkled structures, indicating ultrathin 
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materials8. The thickness of typical materials, such as Ni(OH)2 and MnOOH, is only ~ 10-14 Å, 

corresponding to approximately four-atomic layers, as shown by both HRTEM and atomic force 

microscopy (AFM) images (Supplementary Fig. 3). These 2D crystals with atomic thickness show 

enhanced intrinsic properties and expanded utilization beyond what is possible with the bulk 

materials22.  

    Furthermore, the low-magnification scanning electron microscope (SEM) images of various 

low-dimensional materials confirm that this facile approach could achieve high quality and 

excellent uniformity of anisotropic products (Supplementary Figs. 4 and 5). The elemental 

mapping analysis of representative 1D and 2D samples demonstrates that the expected elements 

are uniformly distributed within their corresponding morphologies (Supplementary Figs. 6 and 7). 

More specifically, the 1D materials formed in a solution with low S are found to grow into single 

crystalline form with a dominant direction, but polycrystalline samples are formed for 2D materials 

obtained in a high-S solution (Supplementary Fig. 8); thus, the electronic structure of precipitates 

could be tuned to realize variable crystalline structures and band gaps via selecting 𝛼𝛼 in relation to 

S (Supplementary Figs. 9-11). Meanwhile, the X-ray diffraction patterns of these 1D, 2D, and 3D 

materials can be indexed to their corresponding crystalline phases (Supplementary Figs. 12-14), 

confirming the formation of diverse products. Similarly, with strong electrolytes, such as 

NaOH/OH-, Na2MoO4/MoO4
2-, and Na2CO3/CO3

2-, the resultant precipitates are prone to exhibit 

3D isotropic polyhedral morphology, including Ca(OH)2, CaCO3, CuC2O4, and Ca(IO3)2 (Fig.3i-

l) in a slightly saturated solution. These 3D materials show different polyhedral morphologies, 

such as spheres, cuboctahedra, cubes, octahedra, and dodecahedra.   

 

Balance between electrolytic dissociation and supersaturation 

To further investigate the mechanism, the calculated values of log10(S), log10(α), and -log10(Ksp) 

applied in selected materials with different dimensions are summarized in Fig. 3a (Supplementary 

Table 1). From the projected image of log10(S) vs. -log10(Ksp), the supersaturation S of 1D materials 

is separated from that of the 2D materials by the critical threshold of supersaturation. Compared 

to 2D materials, the 1D materials are prone to grow in a solution at lower supersaturation, which 

is achieved upon the synchronous with low α, such Ksp (Fig. 4b). Also, according to the projected 

image of log10(α) vs. -log10(Ksp) (Fig. 3c), isotropic (3D) structured materials are located at the top 
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near to the log10(α) value 0, but anisotropic (1D and 2D) structured samples have relatively low 

log10(α), which indicates that low α determines the anisotropic growth. Moreover, as summarized 

in Fig. 3d and Supplementary Fig. 15, the S tuned by α is the most critical factor to determine the 

specific 3D morphology, in which Sirregular particles > Sspheres > Spolyhedra; for instance, CaCO3 polyhedra 

(Fig. 2j) could be tuned into spheres by increasing S from 56 to 154 (Supplementary Fig. 15). More 

specifically, the evolution amongst multiple dimensions has been simulated in Supplementary Fig. 

16a and b, which indicates the morphologies distribution of various materials (different Ksp) with 

1-3D edges tuned by S and α , respectively. This process can be confirmed by preparing the mixture 

of 2D and 1D Cu2(OH)2SO4 through using relatively high-α aniline to replace urea (Supplementary 

Fig. 16 and Fig. 1fII). 

 

Formation mechanisms 

The formation processes of various morphologies are illustrated in Fig. 4a. For the weak 

electrolytes, once the precipitation reaction between reactant anions and metal cations occurs, the 

non-equilibrium environment of a weak electrolyte serves as a chemical driving force to trigger 

the release of new anions from the reactant and induce the outward-migration for continuous 

growth of precipitation. Also, the cycle of achieving re-equilibrium of a weak electrolyte based on 

α can provide a consistent kinetic driving force to support the orientated expansion of growth.  

Specifically, when a low-S solution is achieved, the material is favorable to be a slow epitaxial 

growth, leading to 1D morphology (The green reacting path). When a weak electrolyte is relatively 

strong and can release more anions during dissociation process, a high-S solution can be realized 

with a larger saturated region, which can support 2D growth rather than 1D growth. (The orange 

reacting path). In contrast, strong electrolyte-based reactants with α ≈ 1 can completely release the 

precipitant anions all at once, which results in the absence of a chemical driving force formed 

within the period of growth, so that the materials uniformly grow on each axis and are prone to 

form 3D isotropic morphologies. In particular, when the solution is controlled with a low S, the 

precipitates can have regular shapes with relatively slow growth rate rather than irregular small 

particles if in high-S condition. Thus, when selecting different weak electrolytes as anion-releasing 

solutions, the reaction solutions can be regulated to achieve different degrees of S, leading to 1D-

crystal growth for a low-S solution and 2D structure in a high-S solution, respectively. By contrast, 



8 
 

the strong electrolytes enable the formation of 3D regular crystals in a low-S solution. This 

approach was successfully extended to the synthesis of different complexes with anisotropic 

structure, including 1D Cu(OH)2 and 2D Cu2(Fe(CN)6) (Supplementary Figs. 17-19). This 

precipitation strategy, based on adjusting S relatively to a, represents a universal way to tune 1D, 

2D, and 3D morphologies for a wide range of materials.  

    More importantly, this approach is a flexible way to explore diverse unique nanostructures by 

virtue of various auxiliary conditions. The growth of Ca(OH)2 materials can be tuned to form either 

polyhedra (Fig. 2i) or nanoflakes by changing the sequence in which reactants are added. When 

adding Ca(CH3COO)2 into NaOH, the  dissociation equilibrium of Ca(CH3COO)2 can be 

interrupted by OH- and work as a weak electrolyte, continuously releasing Ca2+ as a kinetic driving 

force. Meanwhile, the mixed solution shows high S, generated very quickly at the interface of the 

growing material by the high concentration of OH-. Like the reaction mechanism illustrated in Fig. 

4b, the two factors jointly lead to favorable 2D growth into nanoflakes. (Supplementary Fig. 20).  

    We found that the mechanical driving force also influences the growth of the materials. For 

example, by increasing the stirring rate, the morphology of Co(OH)2 with NaOH as precipitant 

changes from aggregated irregular particles into small nanoplates, and CaCO3 evolves from large 

layer-stacked secondary particles to small layer-stacked secondary particles (Supplementary Fig. 

21). The increased stirring speed facilitates the reaction between metal cations and reactant anions, 

leading to increased S and abundant nucleation, which is conducive to structural evolution and 

smaller size. Furthermore, we found that the pH values due to reactant dissociation, or even 

deliberate pH adjustment, mostly induce slight structural variations, such as crystalline structures 

and nanosize, but the presupposed morphologies are maintained, especially for anisotropic 

materials (Supplementary Fig. 22). This innovative and facile technique is simply modified and 

realized several distinctive nanostructures for the first time with high specific surface areas, 

including hollow BaF2 tubes and cubes, porous CaF2 cubes, and holey Co(OH)2 sheets (Fig. 4b-e, 

Supplementary Figs. 23-26). These structures can hugely increase the specific surface area, which 

is in turn likely to increase performance in potential applications. 

    The precipitates obtained represent a wide variety of common materials, which generally hold 

promise for a broad scope of applications, such as in energy storage and conversion. As shown in 

Supplementary Fig. 27, 1D Co(OH)2 has an overpotential (η1D) of 310 mV, which indicates better 
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oxygen evolution reaction (OER) performance than 2D and 3D Co(OH)2 (η2D = 400 mV and η3D 

= 400 mV). BaF2 shows decent performance for the oxygen reduction reaction (ORR). Compared 

with 1D and 3D BaF2, the as-prepared 2D BaF2 shows the highest half-potential E1/2, suggesting 

its superior efficiency towards oxygen reduction. 2D Co(OH)2-derived CoO mesoporous 

nanosheets exhibit good electrochemical performance when applied as an anode in lithium-ion 

batteries (LIBs), delivering high reversible capacity (~850 mAh g-1) at a current density of 2 A g-

1 after 400 cycles, and the high rate capability of ~700 mA h g-1 at a current density of 5 A g-1 

(Supplementary Fig. 28). The better performances of 2D Co(OH)2-derived CoO mesoporous 

nanosheets compared with the reported results on various CoO anodes (including  nanocages23, 

porous nanowire arrays24, multilayer platelets25, microspheres26, mesoporous nanorods27, 

mesoporous nanodiscs28, microsheets29, and nanowire clusters30) stems from their 

nanoarchitecture . (Supplementary Figs. 29-31). Furthermore, the CoO nanosheets retained their 

mesoporous structure after 400 cycles (Supplementary Fig. 32). To illustrate the commercial 

potential of CoO mesoporous nanosheets, mass produced from the 2D Co(OH)2 nanosheets and 

obtained here in high yield, we assembled a pouch-type full cell by pairing with a LiFePO4 cathode 

(Supplementary Figs. 33 and 34). 

     In summary, we successfully fabricated a wide variety of materials by virtue of our rapid 

chemical precipitation strategy. Reactants as precipitants with different α values can precisely 

regulate the concentration of desired ions and simultaneously manage to achieve appropriate S, 

which plays a critical role in obtaining various products according to their solubility product 

constant (Ksp). The synergetic control between α of reactants and S of precipitates, therefore, can 

tune the morphology from 1D to 3D through quick precipitation. The formation of 1D and 2D 

materials relies on the low dissociation capability of weak electrolytes. The selection of a strong 

electrolyte (α ≈ 1) is conducive to the growth of isotropic 3D structures. Moreover, lower 

supersaturation is critical for the formation of 1D and 3D polyhedral structures, whereas 2D 

materials require a high supersaturation condition. We hope that these insights will help the facile 

synthesis, and morphology control, of a variety of materials.  
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Figure captions 

Fig. 1: Morphological evolution of typical materials with 3D, 1D, and 2D nanostructures. a-

f, Typical scanning electron microscope (SEM) (a-fI) and typical transmission electron microscope 

(TEM) images (a-fII, a-fIII) of several materials in various morphologies; BaF2 (a) BaMoO4 (b) 

Mg(OH)2 (c) Co(OH)2 (d) MnOOH (e) Cu(OH)2 (f,i) and Cu2(OH)2SO4 (f,ii,iii). In each case, 

panel (i), (ii), (iii)_show 1D, 2D and 3D morphologies, respectively, and (iv) shows the α and S 

conditions that promoted the growth of these structures.  

 

Fig. 2: TEM and SEM images of various materials produced by the versatile precipitation. 

a-d, TEM images of 1D materials, including BaCO3 nanoneedles (a), CoCO3 nanoneedles (b), 

Zn(OH)2 nanorods (c), and CoC2O4 nanorods (d). e-h, TEM images of various 2D materials, 

including nanosheet-like Ni(OH)2 (e), CoSOH (f), Ca3(PO4)2 (g), and CoCO3 (h). i-l SEM images 

of diverse 3D polyhedral materials, including Ca(OH)2 (i), CaCO3 (j), CuC2O4 (k), and Ca(IO3)2 

(l). 

Fig. 3: Summary of the synergy between α and S for materials with different morphologies. 

a, Dispersion of Ksp of various materials depending on α and S (Note: the small coloured dots 

represent the projection of the data points on each corresponding 2D graphs in b and c). b, 

Projected image of S and Ksp of 1D and 2D materials; the regions shaded in pink and blue highlight 

the 2D structure and 1D structures, respectively. c, Projected image of α and Ksp: both of the 1D 

and 2D materials are anisotropic materials, while the 3D structures are considered isotropic; they 

are highlighted by brown and dark-blue shading, respectively. d, The average values of S (Sa) of 

3D polyhedra (green bar), spheres (blue bar), and irregular particles (cyan bar). Data represents 

the means value; Error bars represent standard deviation, n = 3 independent experiments. 

Fig. 4: The mechanism of the formation of 1D, 2D, and 3D morphologies. a, Schematic 

illustrations of the formation of 1D, 2D, and 3D structures with regular shapes. Color code: Green 

arrow: 1D reacting path; Orange arrow: 2D reacting path; Blue arrow: 3D reacting path; Purple 

arrow:  the value of α; Red arrow: the value of S. b-e, TEM images of a BaF2 tube (b), a hollow 

BaF2 cube (c), a porous CaF2 cube (d), and a holey Co(OH)2 sheet (e). 
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